
On the Use of Delta Debugging to Reduce Recordings and
Facilitate Debugging of Web Applications

Mouna Hammoudi1, Brian Burg2, Gigon Bae1, Gregg Rothermel1
1University of Nebraska - Lincoln, USA {mouna,gbae,grother}@cse.unl.edu

2University of Washington, USA burg@cs.washington.edu

ABSTRACT
Recording the sequence of events that lead to a failure of a web
application can be an effective aid for debugging. Nevertheless,
a recording of an event sequence may include many events that
are not related to a failure, and this may render debugging more
difficult. To address this problem, we have adapted Delta Debug-
ging to function on recordings of web applications, in a manner
that lets it identify and discard portions of those recordings that do
not influence the occurrence of a failure, We present the results of
three empirical studies that show that (1) recording reduction can
achieve significant reductions in recording size and replay time on
actual web applications obtained from developer forums, (2) re-
duced recordings do in fact help programmers locate faults signifi-
cantly more efficiently as, and no less effectively than non-reduced
recordings, and (3) recording reduction produces even greater re-
ductions on larger, more complex applications.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—Debug-
ging aids, Tracing

General Terms
Reliability, Experimentation

Keywords
Delta Debugging, Web Applications, Record/Replay Techniques,
Recording Reduction

1. INTRODUCTION
Users of web applications often experience intermittent, annoy-

ing failures that reduce their productivity. When such a failure is
encountered, a user may be prompted to send feedback to the appli-
cation’s developers. While better than nothing, user-provided bug
reports frequently omit important details such as clear reproduction
steps and expected behavior [55]. Many crash reporting tools sup-
plement user reports with automatically gathered post-failure data

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

(e.g., crash stacks). This is not without its costs: developers can
easily be overwhelmed by the large amount of collected data [14].
Even with detailed post-failure reports, it can be difficult to locate
a fault because these reports often lack the specific inputs and exe-
cution conditions underlying the failure.

An alternative approach for reporting a failure is to automati-
cally capture the inputs and events that led to it. Macro-replay tools
such as Sikuli [51], CoScripter [28], and Selenium [47] do this, re-
producing user inputs for automated testing or sharing automated
workflows. Researchers have also been investigating record/replay
approaches for web applications and Javascript programs [2,32,48].
There has also been research on deterministic record/replay tech-
niques [7,12], that capture entire executions while additionally con-
trolling sources of nondeterminism (Section 6 provides details).

A record/replay infrastructure for web applications captures user
inputs and events (mouse, keyboard, navigation commands, etc.)
before they are hit-tested or parsed by the browser engine. Dur-
ing playback, inputs and events are re-delivered to the browser en-
gine. A challenge faced by record/replay approaches is that the
recordings they capture may be lengthy and thus, difficult to uti-
lize. Even if an execution is exactly recorded, the number of events
and program states can render opportunistic debugging strategies
ineffective [7]. Captured inputs and events that are not necessary to
reproduce a failure are distracting, yet no prior work has attempted
to reduce the size of recordings of web applications.

In this work we adapt the well-known Delta Debugging algo-
rithm [11, 53] to function on recordings of web applications, in a
manner that lets it identify and discard portions of those record-
ings that do not influence the occurrence of a failure. When a user
encounters a failure in a web application, he or she can record an
extended interaction with the application and send it to the appli-
cation’s developers. The user’s recording can then be reviewed and
reduced, and utilized in bug triage, fault localization, and regres-
sion testing. Alternatively, developers can capture recordings of
web applications found to contain faults in-house, and reduce these
recordings in order to find and correct the faults.

There are several questions that one might wish to answer about
the effectiveness and the efficiency of recording reduction via Delta
Debugging in the domain of web applications, but three questions
that we believe are particularly important are (1) whether the ap-
proach sufficiently reduces recordings, (2) whether reduced record-
ings actually facilitate debugging, and (3) whether the approach
scales to large and complex web applications. To address these
questions, we conducted three empirical studies.

In our first study, we sought to determine whether recording re-
duction via Delta Debugging can in fact produce potentially ef-
fective reductions in recordings when applied to a relatively large
number of actual web applications containing actual failures re-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

ESEC/FSE’15, August 30 – September 4, 2015, Bergamo, Italy
c© 2015 ACM. 978-1-4503-3675-8/15/08...$15.00

http://dx.doi.org/10.1145/2786805.2786846

333

ported by their programmers. The study assessed the degree of
reduction that could be achieved by applying recording reduction
to 30 faulty web applications obtained from developer forums. The
technique was able to reduce each recording to 50% or less of its
original size, on average reducing recording sizes to 17.1% of orig-
inal sizes, and reducing replay times to 34.6% of original times.

Years of work on fault localization techniques have resulted in
numerous empirical studies showing that these techniques can re-
duce the numbers of statements that could be seen as related to
faults. Virtually all papers on this topic have simply assumed that
this would help programmers locate faults, without directly study-
ing whether it could in fact do so. Parnin and Orso [42] recently
provided data suggesting the potential folly of that assumption.
Over 15 years of work on Delta Debugging have resulted in em-
pirical studies that show that it can reduce the sizes of input sets
or programs, but here as well, we can find no published studies of
whether this can help programmers, either. Thus, in our second
study we asked twenty computer science students to detect fail-
ures, locate faults, and correct them given reduced and unreduced
recordings made over web applications. The results of this study
show that reduced recordings statistically significantly decreased
the time required by developers to locate and correct faults, with-
out adversely affecting their effectiveness in doing so.

Results of our first and second studies show that Delta Debug-
ging can substantially reduce recordings and facilitate the debug-
ging process, but were limited to extracts of code posted by devel-
opers online. Our third study addresses scalability issues, attempt-
ing to ascertain whether Delta Debugging can successfully reduce
recordings of larger, more complex web applications. Thus, in our
third study we applied our recording reduction technique to several
larger, more complex web applications. The technique was able to
reduce each recording to 28% or less of its original size, on average
reducing recording sizes to 14.0% of original sizes, and reducing
replay times to 22.2% of original times.

2. DELTA DEBUGGING FOR WEB APPS
In this section, we describe our adaptation of Delta Debugging

for reducing recordings of web application failures. We then dis-
cuss some simplifying assumptions made to facilitate the work.

2.1 Algorithm and Implementation
Selenium and other replay tools enable a user to capture a record-

ing R of events that lead to the occurrence of a specific failure f .
Our goal is to reduce recordingR to a new recordingR′ by discard-
ing events1 that are not required for failure f to occur. Using R′ to
reproduce f , a developer should be able to consider fewer events
and less code when attempting to locate the fault responsible for f .

Our recording reduction approach adapts the Delta Debugging
algorithm presented in Reference [53] to operate on recordings of
web applications. At a high level, the algorithm operates by repeat-
edly selecting subsets of the events in a recording, and replaying
these on the failing application to determine whether these subsets
can, by themselves, reveal the failure. If so, then the algorithm con-
tinues to search these subsets for smaller failure-revealing subsets,
until no such subsets can be found.

More precisely, the Delta Debugging algorithm attempts to par-
tition a given recording R′ into a number of subsets and test each
subset as well as its complement subset until each subset contains

1We use the term event to define the various elements that appear in
Selenium traces, such as keyboard entries inputs, and mouse move-
ments; in general, however our approach is applicable to most va-
rieties of event- and input-based replay systems.

only one change. If the execution of a subset raises failure f , the
algorithm treats the failing subset of R′ as a new recording and
repeats the same procedure until there is no smaller subset caus-
ing failure f . Numbers of subsets are determined by a variable n
that stands for “granularity”; n is initialized to two at the first it-
eration but subsequently can change (1) to two if a subset induces
failure f (“reduce to subset”), (2) to max(n − 1, 2) if a subset’s
complement induces failure f (“reduce to complement”), or (3) to
min(|R′|, 2n) if n < |R′| (“increase granularity”). Otherwise,
the reduction procedure terminates and returnsR′, a 1-minimal test
case [53] from which no one element can be removed while pre-
serving failure f .

A critical building block for any recording reduction algorithm
is a failure oracle: the ability to tell whether the failure occurs dur-
ing an execution. Our approach does not depend on any particular
oracle; for the purposes of our studies we use manually inserted
assertions that detect whether a failure occurs. Given a web ap-
plication with a known failure, such assertions can be inserted by
software engineers prior to proceeding with recording reduction.

Our implementation makes use of recordings generated by Se-
lenium. We chose this platform for several reasons, including the
facts that it is open-source, is widely used among web application
testers with regard to web application testing, and there is a wide
availability of IDEs and abundant web browser control APIs that
make it easy to record event sequences as a test case and to execute
them programmatically. Selenium-IDE, a Firefox extension, can
record a user’s actions (or events) in the Firefox browser and save
them as a record (or a test case) in various formats (e.g., HTML,
Java JUnit/TestNG, Ruby RSpec, and C# NUnit). Our prototype
implementation is written in Java, and uses the Selenium Web-
Driver library2 and Groovy script engine; this allows the tool to
execute any portion of a Selenium script.

The input to our tool is a test script derived from the record-
ing made with the Selenium IDE. The recording reflects the user’s
interactions with the interface. Each time the user interacts with
the interface, a Selenese command is inserted into the recording;
once the recording process is completed, the final set of Selenese
commands forms a test script. Each Selenese command represents
one user interaction with the interface and is denoted by the fol-
lowing tuple: <action, locator, value>. The action component of
a Selenese command indicates the event that is performed on the
user interface (e.g., click, select) during the recording process. The
locator component specifies the user interface element (i.e., input
field) that the user is interacting with during the recording process.
The value component refers to any input entered by the user within
the locator previously specified, while recording user interactions.
The first line of every Selenium test script consists of the open Se-
lenese command, which specifies the URL of the web page under
test. The action of the open command is “open” and its locator is
that URL. We inserted assertions within our test scripts via the Se-
lenium IDE to signal the occurrence of a failure during the replay
process. Once the recording process ends, the test script is exported
via the Selenium IDE as a “JUnit4 WebDriver” script. Our record-
ing reduction tool is able to replay the user interactions initially
recorded based on the sequence of Selenese commands contained
within this test script.

Our approach depends on the ability to replay subsections of a
failure recording. In general, Delta Debugging can generate re-
duced recordings that are infeasible, in that they contain events that
cannot be executed. Selenium can start playback from any position
in a recording, but if the recording ends up being infeasible, our im-

2http://docs.seleniumhq.org/download/

334

plementation of the playback follows the approach used by Delta
Debugging, and outputs “UNRESOLVED” as the test result of the
subset. Otherwise, each test of a subset outputs “PASS” or “FAIL”,
according to the existence of failure f . Future work could ana-
lyze dependencies among events and filter out some non-feasible
sequences before executing them, but whether this would reduce
the cost of the approach would need to be studied.

Finally, because recordings of web applications may include cer-
tain steps that must be present in order to replay any portion of them
(e.g., the input of a username and password), our implementation
also allows users to flag certain events in a Selenium trace as pre-
fix events; all such events are ignored during recording reduction,
ensuring that they remain in any reduced recording.

Given that data sources could change between a recording ses-
sion and a replay session, it is possible that some of our test cases
could be rendered obsolete. To address this issue, our implementa-
tion accepts a URL whose HTTP request is established before ex-
ecuting the prefix events. This feature can be used to invoke other
initialization tasks that need to be performed prior to running any
subset of events during Delta Debugging. For example, in Study 3,
where our object programs utilize databases, we use this feature to
allow the web application server to rollback to its initial database
state and user session state prior to running any event sequence;
otherwise, replay results could be adversely affected.

To construct our implementation of Delta Debugging we utilized
code made available by Zeller,3 that is based on the algorithm pub-
lished in [53].4 Since the algorithm does not guarantee that each
subset is tested only once, it may test the same subset multiple
times. We use a cache to store test outcomes to improve efficiency.

2.2 Simplifying Assumptions and Limitations
To function correctly, our algorithm depends on the ability of

Selenium to deterministically reproduce a web application’s be-
havior. Javascript itself is a single-threaded language [30, 46], but
Javascript programs can indeed face sources of non-determinism.
While Selenium can often control for such non-determinism, par-
ticularly when the application being debugged is under the control
of the programmer doing the debugging, this may not always be the
case. In such cases, we would need to resort instead to the use of
deterministic record/replay techniques [12], which, as noted in Sec-
tion 1, include approaches that capture entire executions by addi-
tionally controlling sources of nondeterminism. One such approach
– also noted in Section 1 and described in greater detail in Section 6,
is that of Burg et al. [7]. As infrastructures such as these mature,
they should allow applications of reduction algorithms such as ours
in scenarios where tools like Selenium do not suffice.

The Delta Debugging algorithm that we utilize relies on trial and
error rather than precise tracking of runtime data dependencies to
decide which inputs to discard. Data dependencies between tasks
are treated as black boxes; with better data dependency tracking,
more inputs could be safely discarded. Tools such as the WhyLine
for Java [21] have had great success in leveraging dynamic slicing
algorithms to identify a minimal causal chain of events leading up
to a specific output or program state. Still, as our subsequent studies
show, the algorithm we have presented can be quite effective at
reducing recording sizes.

Failure oracles are also critical to the efficacy of our approach.
For example, a naive “diff” oracle might compare the outputs of R

3http://www.whyprogramsfail.com/resources.php
4Zeller’s implementation omits one efficiency-improving step (“re-
duce to subset”) of the algorithm published in Reference [53], that
does not impact its effectiveness but increases its efficiency, and we
omit this step as well.

and R′ and detect that their outputs differ. However, the difference
in outputs may have nothing to do with the failure’s manifestation.
As noted earlier, in this work we depend on engineers to insert as-
sertions that can indicate whether a particular, known failure recurs.
However, given the varied modalities of web application failures,
we expect many types of oracles to be applicable in this context.
Prior work has focused on text- and JavaScript-centric oracles [36],
but interactivity oracles [22] and visual oracles [51] may also be
useful. In particular, oracles that can identify transition instants—
the statement or event where a failure manifests—are helpful for
isolating failures to specific intervals of a recording. Transition-
revealing oracles depend on the capabilities of the underlying re-
play tool or execution environment. Arya et al. [5] discuss practi-
cal issues in detecting such transitions, such as non-monotonicity
of transition instants and integration with breakpoint debuggers.

Finally, Delta Debugging has certain inherent limitations that our
implementation of it shares. When a program contains multiple
faults, it may be difficult to correctly assess whether a particular
failure is being reproduced by a subset of a recording, as opposed
to a failure prompted by some other cause. Somewhat similarly,
an attempt to assess whether a failure reoccurs given a subset of a
recording may suffer from what we might call “coincidental incor-
rectness”: a case in which an oracle incorrectly deduces that a given
output is incorrect and does represent the recurrence of a failure. In
our empirical studies, we were able to determine that the second
limitation did not surface in the cases that we considered, but in the
general case they remain possible.

3. STUDY 1: FEASIBILITY
Our first study examines the following research question:5

RQ1: To what extent can Delta Debugging reduce recordings of
web applications?

3.1 Objects of Analysis
We chose Stack Overflow as a source for objects of analysis in

this study. In part this choice was made due to the popularity of this
forum among web application developers. As of March 2015, Stack
Overflow contained 388,394 questions related to HTML, 797,254
questions related to JavaScript and 286,167 questions related to
CSS. We randomly selected 30 objects of analysis from those that
developers had posted within Stack Overflow, restricting our se-
lection to cases in which the developers had made both code, and
replicable descriptions of failures in that code, available. Table 1
provides basic data on the objects of analysis, along with their func-
tionality, size and type of faults contained, and citations that indi-
cate where they can be found.

In this study, our objects of study consist of client side code
embedding faults at the level of HTML, JavaScript and CSS. One
might argue that these objects of study are relatively short code ex-
tracts that do not reflect the complexity of typical web applications.
Nevertheless, these code extracts were initially posted by develop-
ers on Stack Overflow, which indicates that their developers indeed
had difficulties locating and correcting the faults by themselves.
Further, our objects of study had generated an average of five re-
sponses by Stack Overflow administrators, which also attests to the
non-trivial nature of the faults under consideration. In addition, the
objects of study were all developed by different programmers, and
were diverse in the types of functionality they provide.

5Experiment data (including Selenium recordings, transformed test
scripts and delta-debugging logs) for Studies 1 and 3 is publicly
available at https://sites.google.com/site/fsewebdd.

335

Table 1: Objects of Analysis
Functionality LOC Fault Type
1 Host travellers [57] 136 Invalid input

2 Applicant survey [68] 144 Checking more
checkboxes than allowed

3 Apply for a passport [79] 78 Missing textbox

4 Create an account [82] 86
Inappropriate dialog
box output when the
user clicks "submit"

5 Calculate age in days/hours/min [83] 114 Invalid formula for
calculation

6 Create an account [84] 115 Inappropriate error
message

7 Play with numbers [85] 64 Invalid input

8 Shopping cart [86] 30 Cannot add to
items in cart

9 Game: Reorder letters in word [87] 68 Faulty button click

10 Pool tournament [58] 36 Unable to delete
player from team

11 Filling complaint form [59] 49 Unresponsive to button
click

12 Submit a form to win a prize [60] 50 Header not scrollable
13 Schedule an appointment online [61] 134 Weekends not disabled
14 Prepare for a concert [62] 56 Unresponsive page

15 Book a trip [63] 105 Incorrect values listed
in dropdown menu

16 Gather ingredients for a cooking
workshop [64] 42 Incorrect behavior

17 Best used cars in town [65] 38 Invalid Input
18 Course listings [66] 150 Invalid form layout

19 Borrow a book from a library’s
website [67] 115 Invalid input

20 Airport pickup information [69] 44

Allowed form submission
even if the user
enters a phone number in
the email text field

21 Rent a car [70] 125 Unresponsive DatePicker

22 Veterinary form [71] 130 Inverted disable/enable
input fields

23 Dentist form [72] 86 Invalid email address
24 Waiting list for classes [73] 92 Invalid input

25 Playing with numbers [74] 118 Wrong value output
due to incorrect calculation

26 Phone company customer survey [75] 117 Invalid form layout

27 Patient form [76] 93 Form submitted with
empty fields

28 Insurance account creation [77] 93 Two fields left blank
29 Financial aid form [78] 99 Inappropriate dialog box
30 Online shopping [80] 99 Invalid amount input

3.2 Variables
Our independent variable consists of the type of recording uti-

lized (reduced or unreduced).
As dependent variables, we measured the sizes of full and re-

duced recordings in terms of the numbers of events, and the time
required to replay the full and reduced recordings.

3.3 Study Setup and Design
To obtain unreduced recordings for each web application, we

found a sequence of events which, when applied to that web appli-
cation, reproduced the failure that had been reported for it. Usually,
such a sequence had been reported on Stack Overflow as part of the
failure report. For example, one person reported: “The following
code is supposed to display a confirmation box. If the user clicks
the ok button, the current time is supposed to be displayed. But
for some reason when I test the button by clicking on it nothing
happens. I need a fresh pair of eyes to tell me what I’m missing as
to why this code isn’t working.” We then applied that sequence of
events with Selenium operating to capture the unreduced recording.
Next, we inserted assertions into the applications (as described in
Section 2) to allow the failures to be observed, and we applied our

Delta Debugging implementation to the unreduced recordings. To
obtain recording replay time we reran Selenium on both the origi-
nal and reduced recordings. We executed this experiment, as well
as those reported for Study 3, on an OS X 10.10 MacBook Pro with
2.6 GHz Intel Core i5 and 16GB of RAM memory.

3.4 Threats to Validity
The primary threat to external validity for this study involves

our reliance on relatively small client side web pages rather than
more complex web applications. Through Stack Overflow we had
access to open source code and failure reports only for web pages
extracted from web applications. Thus, our study does not take into
consideration all of the complexities of modern web applications (a
limitation that our third study seeks to address). However, all of the
pages that we consider are derived from real applications, with ac-
tual reported faults, albeit, with only a single fault per application.
A threat to internal validity involves the possibility of faults exist-
ing in our Delta Debugging implementation, but this is mitigated to
some extent by the fact that we confirmed that both our unreduced
and reduced recordings did in fact reveal the same failures.

3.5 Results and Analysis
Table 2 addresses RQ1. The table quantifies the differences in

size and replay time observed before and after reduction. As the
data shows, each recording was reduced to 50% or less of its origi-
nal size. The average size of full recordings was 13.1 events while
the average size of reduced recordings was 1.9 events (i.e., on aver-
age recording sizes were reduced to 17.1% of the sizes of unre-
duced recordings). The average replay time for full recordings
was 6.1 seconds, while the average replay time for reduced record-
ings was 1.8 seconds (i.e., on average replay times were reduced to
34.6% of the replay times of unreduced recordings).

To determine whether Delta Debugging produced statistically
significant reductions in recording size and replay time, we con-
ducted two-tailed Mann-Whitney U-tests [24] at significance level
α = 0.05. Our null hypotheses were “Recording reduction does
not reduce recording size” and “Recording reduction does not re-
duce replay time”. The tests indicated that the reductions in size
and replay time were both statistically significant, with p-values
0.000002 and 0.000002, respectively.

3.6 Discussion
The data obtained in our study demonstrates the potential effec-

tiveness of our Delta Debugging algorithm applied to web appli-
cations – at least, of the class considered in our objects of study.
The approach was able to substantially (and statistically signifi-
cantly) reduce recording size and replay time. Potentially, such
reduced recordings can help programmers debug web applications
more cost-effectively.

4. STUDY 2
Our second study considers the following research question:

RQ2: To what extent does a reduced recording assist program-
mers in the debugging process given a faulty web application?

4.1 Participants
We recruited 20 participants from the population of graduate and

undergraduate students enrolled in the Department of Computer
Science and Engineering at the University of Nebraska-Lincoln, by
sending an email request to all such students. From those who re-
sponded, we excluded persons who lacked experience with HTML,
JavaScript and CSS, and then we selected the first 20 respondents

336

Table 2: Recording Size, Replay Time Before/After Reduction
Size (events) Replay Time (seconds)

Full
Recording

Reduced
Recording Pct. Full

Recording
Reduced
Recording Pct.

1 13 2 15.4 5.2 2.2 42.3
2 9 2 22.2 3.5 1.4 40.0
3 10 1 10.0 4.9 1.4 28.6
4 18 2 11.1 6.4 1.6 25.0
5 9 3 33.3 7.6 5.9 77.6
6 50 1 2.0 19.1 1.1 5.8
7 11 2 18.2 4.0 1.7 42.5
8 14 1 7.1 12.0 1.7 14.2
9 14 1 7.1 4.9 1.3 26.5

10 8 1 12.5 2.7 1.2 44.4
11 13 2 15.4 7.0 1.8 25.7
12 11 1 9.1 4.3 1.2 27.9
13 30 6 20.0 12.9 6.7 51.9
14 8 2 25.0 3.7 1.6 43.2
15 17 2 11.8 6.9 2.0 29.0
16 30 1 3.3 22.2 1.6 7.2
17 4 2 50.0 2.1 1.5 71.4
18 10 1 10.0 4.6 1.1 23.9
19 14 2 14.3 5.9 1.4 23.7
20 6 2 33.3 3.3 1.8 54.5
21 11 3 27.3 4.2 1.5 35.7
22 13 2 15.4 4.9 1.4 28.6
23 7 1 14.3 3.2 1.3 40.6
24 9 1 11.1 3.7 1.1 29.7
25 8 2 25.0 4.2 1.5 35.7
26 11 1 9.1 4.1 1.1 26.8
27 9 2 22.2 3.7 1.2 32.4
28 10 2 20.0 5.0 1.9 38.0
29 6 1 16.7 3.6 1.2 33.3
30 10 2 20.0 4.0 1.3 32.5

from those who remained eligible. Participants were each offered
$20 in compensation for their time.

We used a survey to obtain demographic information about par-
ticipants. Thirteen participants were graduate students and seven
were undergraduates; all were male. On a 5-point Likert scale,
six participants rated their experience with web programming as
“average”, seven as “good”, six as “very good” and one as “excel-
lent”. Participants had a mean of 3.05 years and standard devia-
tion of 2.4 years experience programming web applications using
HTML, JavaScript and CSS. 11 participants had learned web pro-
gramming by themselves, four through courses and five through in-
ternships. Seven participants were familiar with record and replay
infrastructures, but only four had used Selenium. The mean num-
ber of web applications participants had developed was 5.8 with
a standard deviation of 1.7. 12 participants rated their debugging
skills as “good”, six as “very good” and two as “excellent”.

4.2 Variables
Our independent variable consists of the type of recording uti-

lized (reduced or unreduced).
We considered two dependent variables. Our first dependent

variable relates to efficiency, and measures the wall clock time re-
quired by each participant for a given faulty web application to (1)
detect the failure, (2) locate the fault responsible for the failure,
and (3) correct the fault. Note that in some cases, participants were
unable to locate and/or correct faults, and in those cases, times re-
quired to achieve these goals are not considered. The second vari-
able relates to effectiveness, and measures whether or not each par-
ticipant succeeded, for a given faulty web application, in doing each
of these three things.

4.3 Study Setup and Design
We selected four web applications. These included a tic tac toe

game application of 707 LOC in which the fault involved omitted

code [81], and the applications numbered 4, 20 and 21 in Table 1.
Here, we refer to these as Applications A, B, C, and D, respec-
tively. We chose these applications because they were of varying
sizes ranging from relatively small (44 LOC) to much larger (707
LOC), and each involved different types of failures. We used unre-
duced Selenium recordings, along with reduced recordings derived
by the Delta Debugging algorithm used in Study 1, with assertions
removed.

We conducted the study in the Usability lab at the University of
Nebraska-Lincoln. We organized twenty individual sessions of 90
minutes in order to observe each participant individually.

We began each session with a tutorial about Selenium. Next, we
gave the participant a faulty web application with a statement of
how it was expected to work, and a recording of the application’s
behavior in a case where it fails. We used this to illustrate the pro-
cess of (1) replaying the recording, (2) identifying and recording
information on the failure, (3) attempting to locate the underlying
fault in the application, and (4) attempting to correct that fault. Dur-
ing this process we worked with the participant and answered ques-
tions, but we did not inform them about the purpose of the study or
make any statements related to recording types or lengths.

When each participant was confident enough to proceed, we gave
them the four faulty web applications, two with reduced and two
with unreduced recordings. We counterbalanced the assignment
of web applications across all 20 participants such that all possi-
ble combinations of web applications and recordings were utilized
and distributed as evenly as possible. We also varied the orders
in which participant considered web applications to lessen the im-
pact of learning effects. With 20 participants each considering two
unreduced and two reduced recordings, we were able to obtain 10
sets of results relative to each of the two reduced and unreduced
recordings of the four web applications.

We asked each participant to run the recording for each web ap-
plication, attempt to detect the failure within that application, and
if successful at that, to attempt to locate the fault responsible for it
and correct it. During this portion of the study we captured screen
recordings using the usability testing software “Morae”; this en-
abled us to later revisit the debugging process conducted by each
participant. We did not utilize a think-aloud methodology, because
we wished to measure the time taken to perform tasks, and a think-
aloud methodology would render these measurements problematic.

We limited the time allowed for each of the four applications
to 15 minutes each, to keep the overall task manageable and limit
possible fatigue effects. As the participants proceeded, we recorded
the times at which they found failures, noted faults, and concluded
that faults had been corrected. These times provide our data on
efficiency. We also asked each participant to write a brief descrip-
tion of each failure located and each fault they were able to locate.
Finally, we asked each participant to complete an exit survey to
obtain further feedback and comments.

When all sessions were finished, we reviewed the participants’
notes about failures and faults found, together with (when avail-
able) the version of the web application they pronounced correct, to
determine whether they had correctly noted the failures and faults
and applied an appropriate correction. The first author, together
with a staff programmer not involved with this research, each per-
formed this assessment individually, and met to compare notes and
come to a consensus as to which results were indeed correct. This
provided our data on effectiveness.

4.4 Threats to Validity
The primary threat to external validity for this study involves

the objects of study utilized. We studied only four such objects,

337

(a) Failure Detection Time (b) Fault Localization Time (c) Fault Correction Time

Figure 1: Timing Results

all of which were client-side web pages. Still, all four objects of
study are actual web applications containing actual faults which
their original creators had difficulty correcting, so they do repre-
sent at least one sub-class of actual applications of interest. A
second threat to external validity concerns our participants, all of
whom were students, not practicing professional web application
engineers. However, this group of participants does represent one
actual, non-trivial class of persons who program web applications,
and they are interesting in that respect. Threats to internal validity
may involve learning effects; we guarded against these by counter-
balancing and varying the orders of web applications and record-
ings. Threats to construct validity involve the use of a 15 minute
time limit for debugging tasks; times longer than 15 minutes might
have allowed participants to locate and correct additional faults.
However, a limit needed to be chosen and as discussed in Sec-
tion 4.6 it affected only five instances of fault localization (all on
unreduced recordings) and 10 of fault correction (five on unreduced
and five on reduced recordings). It seems likely that while longer
limits might have affected differences in effectiveness, they would
only have accentuated differences in efficiency.

4.5 Results
4.5.1 Efficiency

Figures 1.(a), 1.(b) and 1.(c) use boxplots to present the amount
of time required by participants to detect failures, locate the under-
lying faults, and correct those faults for each web application, using
both unreduced (“.long”) and reduced (“.short”) recordings. The
horizontal axes list the web applications and recording types and
the vertical axes indicate time required. The boxes thus indicate the
distributions of times participants required to detect failures, locate
faults, and correct faults, across the three graphs respectively. In
the figures we use cumulative numbers to report the times required
to locate a fault and correct it, because these provide a more appro-
priate understanding of the total times required to reach the various
debugging task checkpoints. For example, for C.long, the mean
time required to detect the failure was 296.4 seconds, the mean
time to detect the failure and locate the fault that caused it was 626
seconds, and the mean time to detect the failure, locate the fault and
correct it was 880 seconds. Also, as noted earlier, we report times
only for cases in which participants were able to complete tasks.
For example, the boxplot for D.long presents data for only the four
participants who corrected the fault in that case.

Overall, using unreduced recordings, participants required longer
times to detect failures, locate faults, and correct them. Considering
failure detection, this is evident in the boxplots for all four appli-
cations. Across all four applications, unreduced recordings led to a
mean failure detection time of 282.4 seconds with a standard devi-

Table 3: Statistical Results: Confidence Intervals

Obj Detect
Failure

Locate
Fault
Cumul.

Fix
Fault
Cumul.

Locate
Fault
non-Cumul.

Fix
Fault
non-Cumul.

A [244,315] [596, 638] [287, 289] [297, 376] [165, 285]
B [71, 129] [484, 626] [695, 805] [372, 520] [132, 246]
C [187, 254] [542, 644] [723, 828] [384, 482] [109 218]
D [263, 342] [167, 332] [264, 465] [271, 473] [132, 203]

ation of 68.8. In contrast, reduced recordings led to a mean time of
142.9 seconds with a standard deviation of 31.2.

When the cost of fault localization is added to that of failure
identification, using unreduced recordings, participants again re-
quired more time (in cases where they succeeded) than when using
reduced recordings, on all four applications. Across all four appli-
cations, unreduced recordings led to a mean time of 603.2 seconds
with a standard deviation of 84.5, whereas reduced recordings led
to a mean time of 308.6 seconds with a standard deviation of 80.4.

When the cost of correcting faults is added on, unreduced record-
ings led to a mean time of 787.6 seconds with a standard deviation
of 85.6. In contrast, reduced recordings led to a mean time of 471.4
seconds with a standard deviation of 102.1. Hence, the time re-
quired to repair faults was higher for unreduced recordings than re-
duced ones. However, the standard deviation was higher at the level
of reduced recordings compared to unreduced ones: the amounts of
time needed to repair faults were spread out over a larger range of
values with reduced recordings than with unreduced ones.

To determine whether the differences in times were statistically
significant, we conducted bootstrap tests [24] on the data obtained
for each program’s unreduced and reduced recordings. (We chose
this test because it is applicable to non-normal data distributions
and can be utilized on data sets of unequal sizes such as we have
for most of our object web applications where fault localization and
fault correction are concerned). Our null hypotheses were “Record-
ing reduction does not increase programmer efficiency with respect
to [failure detection | fault localization | fault correction] efficiency,”
and we tested these hypotheses for each of the four applications at
a confidence level of 95%. In addition, for fault localization and
fault correction, we examined this hypothesis on both cumulative
times, and on the times required just for the specific tasks.

Table 3 presents the confidence intervals returned by the boot-
strap tests. In all cases these confidence intervals do not cover 0
(and in all cases p-values were 0.04), allowing us to reject the null
hypotheses in all cases.

Overall, reduced recordings statistically significantly increased
programmers’ efficiency in failure detection, fault localization and
fault correction, considering time cumulatively or non-cumulatively.

338

(a) Failure Detection Correctness (b) Fault Localization Correctness (c) Fault Correction Correctness

Figure 2: Correctness Results

4.5.2 Effectiveness
Figures 2.(a), 2.(b) and 2.(c) present the numbers of failures de-

tected, faults located and faults corrected by the participants, re-
spectively, for each of the web applications, using both unreduced
(“.long”) and reduced (“.short”) recordings. The horizontal axes
list the web applications and recording types, and the vertical axes
indicate numbers of faults/failures. The heights of bars indicate, for
each application, the numbers of participants who detected failures,
located faults, and repaired faults correctly, across the three graphs.

As Figure 2.(a) shows, all of the participants were able to detect
each of the failures embedded within the applications they consid-
ered, regardless of recording size.

As Figure 2.(b) shows, all participants were able to locate the
fault embedded within Application A. Applications B, C and D fol-
low a different pattern: on these applications, participants were not
always able to correctly locate the faults. However, they were cor-
rect more often when using the reduced recordings.

As Figure 2.(c) shows, where fault correction is concerned, dif-
ferences in results across recording sizes were even more apparent.
However, keep in mind that only participants who located the faults
could correct them. On Application B, all participants who located
the fault were able to correct it with both reduced and unreduced
recordings, and on Application D, two participants who located the
fault were not able to correct it with reduced or unreduced record-
ings. On the other hand, for A.long, five participants who located
the fault were unable to correct it, while for A.short, only two who
located the fault were unable to correct it, and for C.long, two par-
ticipants who located the fault were unable to correct it, while for
C.short, only one who located the fault could not correct it. This
suggests that programmers’ abilities to correct faults may be en-
hanced by reduced recordings.

Since our effectiveness data is categorical, and in two cases in-
volves fewer than five data points, we used Fisher’s exact test [24]
to assess whether the differences in effectiveness, comparing unre-
duced and reduced recordings in the different tasks, were statisti-
cally significant. Our null hypotheses were “Recording reduction
does not increase programmer effectiveness with respect to [failure
detection | fault localization | fault correction] efficiency,” and we
tested these hypotheses for each of the four applications at a con-
fidence level of 95%. In no case was statistical significance found.
Thus, we cannot conclude that the numerical differences observed
in effectiveness were necessarily caused by reductions in record-
ing size. We can conclude, however, that programmers using short
recordings were no less effective than those using long ones.

4.6 Discussion
We asked our participants to complete exit surveys to help us

gain insights into their perceptions of the experience. 16 partici-

pants considered their background sufficient given the applications
they used, while only four felt that their background was not suf-
ficient. 11 students considered the overall level of difficulty of the
web applications “average”, five rated it “easy” and three consid-
ered it “difficult”. Regarding the students’ ratings of their overall
experience locating faults and fixing bugs, 14 considered the task
to be of “average” difficulty, three rated it as “easy” and three con-
sidered it “difficult”. These numbers lead us to conclude that our
participants and the web applications that we selected were, over-
all, appropriate for the study.

As previously noted, the task of correcting faults involved a higher
standard deviation in efficiency results for reduced recordings than
for unreduced ones. Figure 2.(c) reveals that participants tended
to locate larger numbers of faults correctly when using reduced
recordings. The data corresponds, however, only to correct re-
pair efforts. Thus, the data represent larger numbers of values for
reduced recordings than for unreduced recordings, increasing the
chances for observing variance in that data.

We also noted previously that all the participants were able to
locate the fault in Application A regardless of recording type (re-
duced or unreduced). However, participants were not all able to
correctly locate the faults embedded in applications B, C and D.
The fault embedded in Application A is related to a code omission
that could easily be visible to the participants. However, the faults
in Applications B, C and D were related to existing code that was
incorrect in a manner that was not necessarily obvious. Therefore,
locating faults in the latter applications was more challenging for
participants.

Even though participants were all able to locate the fault in Ap-
plication A, they were not all able to repair it, particularly when
relying on Application A’s unreduced recording. Due to the omis-
sion of code in A, the participants had to rewrite the omitted lines
of code, which was a more error-prone operation than correcting
lines of code that were already present but erroneous.

Participants required less time to locate faults when using re-
duced recordings, giving them more time to make progress towards
comprehending and fixing the fault. Table 4 illustrates the number
of participants who reached the 15 minute time limit allotted for
the fault localization and fault correction stages of tasks. A com-
parison of Figure 2.(b) with Table 4 reveals that no participants ran
out of time while attempting to locate faults given reduced record-
ings, though some were incorrect in their assessments of the faults.
In contrast, several participants ran out of time when attempting to
locate faults using unreduced recordings.

4.7 Analysis of Screen Recordings
The results of our second study show that Delta Debugging can

substantially facilitate the debugging process by decreasing the time

339

Table 4: Current Activity as Task Time Limits Were Reached.
A.L A.S B.L B.S C.L C.S D.L D.S

Fault Localization 0 0 1 0 2 0 2 0
Fault Correction 3 2 0 0 1 1 2 2

needed to locate and correct faults, with no reduction in effective-
ness. However, these results do not tell us why these effects were
achieved. To attempt to answer this question, we analyzed the
screen recordings made during the user study.

4.7.1 Unreduced Recordings
On viewing the screen recordings obtained during the study, we

noticed that none of the participants provided with unreduced record-
ings appeared to have a clear idea, initially, about the input fields
or the lines of code responsible for the failure. They focused on
the structure of the code as a whole and used that as a starting
point for locating the fault and fixing it. We were able to enu-
merate three overall patterns adopted by participants for tackling
unreduced recordings.

Approach 1: Undirected Search. Several participants, given
unreduced recordings, spent most of their time scrolling through
the code looking for the code responsible for the fault. Some par-
ticipants spent all available time doing this, never actually locating
the fault. For instance, one participant given an unreduced record-
ing of the tic tac toe game (Application A), that was unresponsive
when the user clicks on squares within the user interface, could not
locate the code related to this unresponsiveness. Ultimately, he ran
out of time.

Some participants combined the scrolling process with Google
searches. They would scroll up and down considering code, and
each time they suspected that a portion of code might be incor-
rect they would perform a Google search to verify their specula-
tion. Provided with unreduced recordings, however, all such partic-
ipants conducted Google searches related to non-faulty code. For
instance, Application B contained a failure related to an inappro-
priate dialog box. Faced with this failure, one participant using an
unreduced recording performed Google searches that were related
to other non-faulty and fully functional dialog boxes.

Approach 2: Code-Understanding-Based Search. A second
group of participants adopted an approach that consisted of try-
ing to understand the code as a whole and determining its structure
prior to locating the fault. First, they attempted to partition the code
into a set of blocks differentiating different roles. One common be-
havior involved successively selecting specific areas of the code
with the mouse. Other participants divided the code into blocks by
adding new lines before and after each block in order to differenti-
ate it from the rest of the code. Still others indented blocks of code
in a certain manner and some inserted comments clearly separating
the code into distinct parts.

We further divide these participants into those who, after parti-
tioning code in some fashion, used one of two code-understanding
processes: (a) incremental search and (b) directed search. The in-
cremental search approach involves using Google searches to verify
that each block of code is correct. Once the participants encoun-
tered a block of code that they believed was incorrect they focused
on that block and attempted to correct it. For instance, Application
C involves a company arranging pickup information at the airport
for a hotel’s clients. The failure is that the user can submit a request
even if a phone number is input in the email text field. One par-
ticipant partitioned the code for this application into three distinct
parts, HTML, CSS and JavaScript. Then, he inserted comments in
order to differentiate each block of code from the others. He fur-
ther subdivided the JavaScript portion of the code into three parts,

namely, catching the exception, throwing it and sending a confir-
mation message to the user. The participant conducted Google
searches to ensure that the HTML and CSS blocks of code satis-
fied syntax requirements. He did not detect any inconsistencies in
those blocks, so he focused his attention on the JavaScript portion
of the code and conducted Google searches about the JavaScript
that is responsible for catching errors. Again, the participant did
not detect any inconsistencies, so he conducted Google searches
about the second subpart of the JavaScript block that plays the role
of throwing errors. After checking the rules for catching and throw-
ing errors, the participant judged that one error was not caught ap-
propriately, which he correctly concluded was the fault.

In contrast, the directed search approach consists of focusing the
search effort directly on one specific block of code, considering
each line. For example, Application D includes a form for renting
cars, in which one button is unresponsive to the user’s mouse clicks.
After one participant replayed the recording, he examined the code
and divided it into three parts: input manipulation, button clicks and
error handling. The participant designated the button click portion
of the code as being faulty and focused his attention on that block
of code, ignoring other parts of the code. All the Google searches
made by the participant were related to the block of code designated
as faulty. After performing one search over one line of the faulty
block, the participant indicated (correctly) that line as being faulty
and attempted to correct the fault.

Approach 3: Exhaustive Inspection. A final group of partici-
pants adopted a different approach with unreduced recordings. In-
stead of directing their attention towards specific parts of the code,
they inspected each line of code individually to attempt to judge its
correctness. These participants performed many Google searches
regarding lines of code, most of which were completely unrelated
to the fault under consideration. For instance, on Application B
(the application in which the failure involved an inappropriate di-
alog box output after a user clicked on the “Submit” button), one
participant inspected every line of code even though some were
completely unrelated to the submit button behavior. Furthermore,
the participant conducted a Google search about each line of code
and ended up running out of time.

4.7.2 Reduced Recordings
When using reduced recordings, participants appeared to have

much clearer notions about which region of code to focus on. They
did not spend much time scrolling through the code and viewing
its structure; instead, they directed their attention towards a spe-
cific area of the code and worked on that. Some participants also
retained keywords after viewing the reduced recordings and per-
formed code searches in order to locate lines embedding those key-
words – an approach not observed for participants given unreduced
recordings. Also, participants used Google searches that were more
directly focused on the occurrence of the fault and the failure.

For instance, consider Application A, the tic tac toe game that
was unresponsive to user clicks on squares. One participant who
was given a reduced recording revealing the associated failure di-
rectly focused on the area of code embedding the fault. The partic-
ipant concluded that the unresponsiveness of clicks was caused by
an incorrect calculation at the code level. Also, since the incorrect
calculation was related to the variable “Square”, the participant fur-
ther narrowed his field of vision by searching the code for the key-
word “Square”. This participant was able to retain the name of the
input field whose manipulation seemed to be causing the failure,
then searched for that keyword at the level of the application.

Overall, it appears that, as postulated in the first paragraph of
Section 2.1, participants who were given reduced recordings were

340

Table 5: Study 3 Objects
App Downloads User

Rating
Size
(LOC) Language Description and functionalities

Faq Forge
[88] 17,716 4.0 1206 PHP, CSS, SQL, JavaScript Document Management Create FAQS, manual guides and

HOWTOs in a hierarchical structure
Time Clock
[89] 16,733 5.0 6787 PHP, SQL, JavaScript Time Management -Track employee schedule-Track upcoming

vacations -Manage sign in sheets

School Mate
[90] 77,158 4.6 19418 PHP, CSS, JavaScript, SQL

School Management -Admin: Manage classes/users
-Teachers: Manage grades/assignments -Students: Access
grades/submit homework -Parent: Check student progress

better able to focus on code and relevant keywords than those given
unreduced recordings. It further appears that this is primarily due
to the reduction in extraneous information provided by the reduced
recordings, and the more easily observed connections between in-
puts that lead to failures and those failures themselves.

5. STUDY 3: SCALABILITY
Our third study considers the following research question:
RQ3: To what extent is Delta Debugging scalable to large and

complex web applications?

5.1 Objects of Analysis
As objects of study, we chose three non-trivial applications that

had been utilized in prior studies of techniques for testing web ap-
plications [4,56]. Table 5 provides details on the applications, illus-
trating the numbers of time they have been downloaded, their user
ratings (on a scale of 1 to 5), their sizes in non-comment lines of
code (measured using CLOC-Count Lines of Code),6 the languages
they utilize, and the functionalities they provide. The downloads
and user ratings attest to the popularity of the objects.

We did not have access to actual faults for the web applications
we selected, so we asked an experienced web application program-
mer who was not involved in this work, and had no information
about our intended study, to place faults in each of the web ap-
plications that were representative of actual faults he had found in
practice, and that resulted in detectable failures in the applications.
During the fault seeding process, this programmer did uncover one
actual fault in the first of the programs, Faq Forge. This seed-
ing process resulted in the provision of six faults for Faq Forge,
five faults for School Mate, and three faults for Time Clock.
Details on the specific faults are shown in Table 6.

5.2 Variables
Our independent and dependent variables, and our process for

obtaining values for them, are the same as those reported in Section
4.2 for Study 1.

5.3 Threats to Validity
The threats to validity for this study are also similar to those for

Study 1, with the added external threat to validity posed by our
use of seeded faults. However, our use of much larger and more
complex web applications does help address the threat to validity
posed by our use of smaller applications in the earlier studies.

5.4 Results and Analysis
Table 7 shows the differences in size and replay time observed

for each recording before and after reduction. As the data shows,
reduced recordings were all less than 28% the size of full record-
ings. The average size of full recordings was 48.4 elements while
the average size of reduced recordings was 6.9 elements (overall,

6http://cloc.sourceforge.net/

Table 6: Study 3 Faults
App Fault Description

Faq
Forge

1 Adding a 2nd page to an existing one causes both
pages to display the content from the 2nd page

2

From an existing topic with 3 pages, deleting
page #2 and adding a new page #1 corrupts the
page numbering currently displayed: Page#1
is labelled Page#3.

3
Deleting a topic does not result in an actual
deletion although the user receives a message
confirming the deletion

4
Creating a 3rd level child page is correctly shown
on the current page but results into a file
duplication in main

5
Creating a document followed by clicking on the
view document link results into showing the page
number as -1 of 1.

School
Mate

1 Dysfunctional "Change student association"
functionality

2 The page number is not displayed on one of the
web pages

3 The page generates an error when adding a new term

4 The student cannot register for a class although
there are seats available

5 An announcement is not deleted even if the user
clicks on "Delete"

Time
Clock

1 The "Hours Worked" report only provides hours
rounded down without any decimal portion

2 The note entered on login/logout/ is not displayed
under the notes column on the page

3 The date is not being displayed in the top right
corner of the timeclock.php page

14.0% the size of full recordings). The average replay time for full
recordings was 35.6 seconds, while the average replay time for re-
duced recordings was 7.9 seconds (overall, 22.2% smaller than for
full recordings). The table also shows the total amount of time re-
quired by our implementation of Delta Debugging itself; this time
ranged from 31 seconds to 1,483 seconds (about 25 minutes), with
an average of 461.8 seconds (about eight minutes).

To determine whether Delta Debugging produced statistically
significant reductions in size and replay time, we conducted two-
tailed Mann-Whitney U-tests [24] at significance level α = 0.05.
Our null hypotheses were “Recording reduction does not reduce
recording size” and “Recording reduction does not reduce replay
time”. The tests indicated that the reductions in size and replay
time were both statistically significant, with p-values of 4.981e-8
in both cases.

5.5 Discussion
The reductions in size and replay time observed in this study

are actually larger than those observed in the first study on smaller
applications. Reduced recordings do contain, on average, more ele-
ments than those used in the first study, particularly on FaqForge,
but they still do eliminate large numbers of elements. Of course,
we cannot claim without further study that this reduction will en-

341

Table 7: Recording Size and Replay Time Before and After Re-
duction for Large, Complex Applications

App Fault Total
DD

Time

Size
(elements)

Replay
Time (sec)

Full
Rec.

Red.
Rec. Pct. Full

Rec.
Red
Rec. Pct.

Faq
Forge

1 613 41 9 22 34 11 32
2 1,135 79 12 15 62 14 23
3 760 58 9 16 44 11 25
4 1,483 47 13 28 36 10 28
5 471 38 10 26 38 12 32
6 101 28 5 18 22 9 36

School
Mate

1 220 134 5 4 89 6 7
2 47 36 1 3 23 3 13
3 133 39 6 15 25 6 24
4 429 42 6 14 37 5 14
5 172 34 6 18 27 7 26

Time
Clock

1 631 42 9 21 20 7 35
2 239 30 5 17 20 7 35
3 31 30 1 3 22 3 14

able programmers to detect and correct faults more quickly, but in
view of our second study we are hopeful that it will. The time re-
quired to run Delta Debugging itself is likely inflated by the fact
that our implementation is a prototype, and we have not focused
on performance in creating it; however, the execution is fully auto-
mated, and if it does enable developers to detect and correct faults
more efficiently and effectively, it is most likely worth it.

6. RELATED WORK
Many techniques (e.g., [6,13,23,50]) attempt to detect failures at

runtime using static or dynamic analyses. Many techniques rely on
testing-based approaches to detect failures, and several such tech-
niques have been explored in relation to web applications (e.g.,
[31, 33–36]). There has also been work on approaches for repro-
ducing failures (e.g., [16, 18]). Such techniques focus on detecting
and reproducing failures, whereas in this work we focus on helping
debuggers localize faults from failures that are already known.

Numerous approaches attempt to help developers localize faults
in non-web-based applications, using a wide variety of tactics (e.g.,
[1, 15, 17, 25, 27, 29, 43, 45, 54]). Recent work has also consid-
ered fault localization for web application software. For exam-
ple, Ocariza et al. [39] provide an automated method for localiz-
ing DOM-related JavaScript faults through dynamic analysis, and
tracing and slicing of JavaScript code, and Artzi et al. [3] provide a
technique for performing fault localization on dynamic PHP web
applications. The primary difference between these approaches
and the approach we present here involves our focus on behavioral
recordings and recording reduction.

There has also been work on facilitating the debugging process
from the human standpoint. Whyline [20] facilitates debugging by
presenting the programmer with an interface that allows them to
formulate questions about a program’s behavior. Vejovis [40] helps
debuggers by suggesting fixes for DOM-related JavaScript faults.
Our work shares their goal of helping debuggers in their tasks.

Strategies closely related to ours are those that attempt to mini-
mize program input, program state, or test cases that produce fail-
ures. Regehr et al. [44] use test case reduction to detect C compiler
bugs, and Lei and Andrews [26] minimize randomly generated fail-
ing tests. Most closely related to this work, given that we draw
on its algorithm, is Delta Debugging, which has been utilized in
several different scenarios. Zeller and Hildebrandt [53] use Delta
Debugging to simplify and isolate input that reproduces failures.
Zeller [52] also adapts Delta Debugging to narrow down failure

causes involving program state. Cleve and Zeller [11] use Delta De-
bugging to create minimal test cases that produce failures. Burger
and Zeller [8] minimize Java programs focusing on object inter-
actions. None of these approaches considers web applications, or
involves recording, replaying, and reducing recordings at the level
of program behavior that we consider; in this work we show how
Delta Debugging can be used to reduce recordings of web applica-
tions.

There has been considerable research on record-replay approaches.
Many such approaches have been explored in the context of non-
web software (e.g., [9,19,37,38,41,49]), without considering record-
ing reduction or targeting web applications. Clause and Orso [10]
present a technique for recording and replaying program executions
that does perform reduction, with the aim of helping replicate and
correct code that fails in the field. This technique focuses on com-
piled code in non-web applications, and on tracking interactions in
the code by intercepting various I/O streams. In contrast, we focus
on user interactions with web applications, captured by tools that
monitor information related to events and DOM trees.

There has been some research on record/replay infrastructures
for web-based software. Sen et al. [48] present Jalangi, a program
analysis framework for JavaScript that incorporates record/replay.
Andrica and Candea [2] present WaRR, a tool that records and re-
plays the interaction between users and web applications. Mickens
et al. [32] present Mugshot, which allows deterministic replay of
JavaScript programs. Burg et al. [7] present Dolos, a deterministic
record/replay infrastructure for web applications that captures not
only user inputs but also network callbacks. During playback, cap-
tured inputs are re-delivered to the browser engine but new “live”
inputs are suppressed. Asynchronous events such as animation
timers and futures are captured and replayed using hooks inside the
browser engine. Return values of nondeterministic functions that
provide JavaScript with access to persistent state (browser cookies,
local storage, etc.) and environmental data (current time, screen
size, etc.) are memoized. None of this work, however, has consid-
ered recording reduction.

7. CONCLUSIONS AND FUTURE WORK
We have presented an approach for recording reduction based

on Delta Debugging that operates on recordings of web applica-
tions. We presented empirical evidence that our approach can sig-
nificantly reduce the size and replay time of recordings, that re-
duced recordings help programmers debug more cost-effectively,
and that the approach itself can scale to larger, more complex ap-
plications.

Given the results of our studies, we intend to next explore the ap-
plication of the approach in conjunction with deterministic record/re-
play infrastructures and with alternative oracle types. We also in-
tend to study reduction algorithms that analyze dependencies or
incorporate such analyses into the Delta Debugging approach. Fi-
nally, we plan to extend the scope of our empirical studies.

8. ACKNOWLEDGEMENTS
This work has been partially supported by the National Science

Foundation through award IIS-1314365. We thank Wayne Moty-
cka for his assistance with study infrastructure and data analysis,
and we thank Cyrille Nzouda of the Department of Statistics at the
University of Nebraska - Lincoln for assistance with statistical ap-
proaches. We also thank our study participants.

342

9. REFERENCES
[1] M. A. Alipour and A. Groce. Extended program invariants:

Applications in testing and fault localization. In WODA,
pages 7–11, 2012.

[2] S. Andrica and G. Candea. WaRR: A tool for high-fidelity
web application record and replay. In DSN, pages 403–410,
June 2011.

[3] S. Artzi, J. Dolby, F. Tip, and M. Pistoia. Practical fault
localization for dynamic web applications. In ICSE, pages
265–274, 2010.

[4] S. Artzi, A. Kiezun, J. Dolby, F. Tip, D. Dig, A. Paradkar,
and M. D. Ernst. Finding bugs in dynamic web applications.
In ISSTA, pages 261–272, July 2008.

[5] K. Arya, T. Denniston, A.-M. Visan, and G. Cooperman.
Semi-automated debugging via binary search through a
process lifetime. In PLOS, November 2013.

[6] Y. Brun. Software fault identification via dynamic analysis
and machine learning. Master’s thesis, Massachusetts
Institute of Technology, August 2003.

[7] B. Burg, R. Bailey, A. J. Ko, and M. D. Ernst. Interactive
record/replay for web application debugging. In UIST, pages
473–484, 2013.

[8] M. Burger and A. Zeller. Minimizing reproduction of
software failures. In ISSTA, pages 221–231, July 2011.

[9] S.-K. Chen, W. K. Fuchs, and J.-Y. Chung. Reversible
debugging using program instrumentation. TSE,
27(8):715–727, August 2001.

[10] J. Clause and A. Orso. A technique for enabling and
supporting debugging of field failures. In ICSE, pages
261–270, May 2007.

[11] H. Cleve and A. Zeller. Finding failure causes through
automated testing. In WAD, August 2000.

[12] F. Cornelis, A. Georges, M. Christiaens, M. Ronsse,
T. Ghesquiere, and K. de Bosschere. A taxonomy of
execution replay systems. In MTI, 2003.

[13] C. Csallner, Y. Smaragdakis, and T. Xie. DSD-Crasher: A
hybrid analysis tool for bug finding. TOSEM, 17(2):1–37,
April 2008.

[14] K. Glerum, K. Kinshumann, S. Greenberg, G. Aul,
V. Orgovan, G. Nichols, D. Grant, G. Loihle, and G. Hunt.
Debugging in the (very) large: Ten years of implementation
and experience. In OSP, Oct 2009.

[15] Peifeng H., Zhenyu Z., W. K. Chan, and T. H. Tse. Fault
localization with non-parametric program behavior model. In
CQS, pages 385–395, Aug 2008.

[16] J. Huang, C. Zhang, and J. Dolby. CLAP: Recording local
executions to reproduce concurrency failures. SIGPLAN
Notices, 48(6):141–152, June 2013.

[17] J. Jones, M. J. Harrold, and J. Stasko. Visualization of test
information to assist fault localization. In ICSE, pages
467–477, 2002.

[18] F. M. Kifetew, W. Jin, R. Tiella, A. Orso, and P. Tonella.
Reproducing field failures for programs with complex
grammar-based input. In ICST, pages 163–172, March 2014.

[19] S. T. King, G. W. Dunlap, and P. M. Chen. Debugging
operating systems with time-traveling virtual machines. In
USENIX, pages 1–1, 2005.

[20] A. J. Ko and B. A. Myers. Chi. In CHI, pages 151–158, 2004.
[21] A. J. Ko and B. A. Myers. Extracting and answering why and

why not questions about Java program output. TOSEM,
20(2):1–34, August 2010.

[22] A. J. Ko and X. Zhang. FeedLack detects missing feedback
in web applications. In CHI, 2011.

[23] A. Koesnandar, S. Elbaum, G. Rothermel, L. Hochstein,
C. Scaffidi, and K. T. Stolee. Using assertions to help
end-user programmers create dependable web macros. In
FSE, pages 124–134, 2008.

[24] O. Koresteleva. Nonparametric Methods in Statistics with
SAS Applications. CRC Press, Boca Raton, FL, 2004.

[25] F.-C. Kuo, T. Y. Chen, H. Liu, and W. K. Chan. Enhancing
adaptive random testing for programs with high dimensional
input domains or failure-unrelated parameters. SQC,
16(3):303–327, September 2008.

[26] Y. Lei and J. H. Andrews. Minimization of randomized unit
test cases. In ISSRE, pages 267–276, 2005.

[27] A. Leitner, M. Oriol, A. Zeller, I. Ciupa, and B. Meyer.
Efficient unit test case minimization. In ASE, pages 417–420,
November 2007.

[28] G. Leshed, E. M. Haber, T. Matthews, and T. Lau.
Coscripter: Automating & sharing how-to knowledge in the
enterprise. In HFCS, pages 1719–1728, 2008.

[29] B. Liblit, M. Naik, A. Zheng, A. Aiken, and M. I. Jordan.
Scalable statistical bug isolation. In PLDI, pages 15–26, June
2005.

[30] A. Marron, G. Weiss, and G. Wiener. A decentralized
approach for programming interactive applications with
JavaScript and blockly? In PSLA, pages 59–70, 2012.

[31] A Mesbah, A van Deursen, and D. Roest. Invariant-based
automatic testing of modern web applications. TSE,
38(1):35–53, Jan 2012.

[32] J. Mickens, J. Elson, and J. Howell. Mugshot: Deterministic
capture and replay for JavaScript applications. In USENIX,
2010.

[33] A. Milani Fard, M. Mirzaaghaei, and A. Mesbah. Leveraging
existing tests in automated test generation for web
applications. In ASE, 2014.

[34] S. Mirshokraie and A. Mesbah. JSART: JavaScript
assertion-based regression testing. In WE, pages 238–252,
2012.

[35] S. Mirshokraie, A Mesbah, and K. Pattabiraman. Efficient
JavaScript mutation testing. In ICST, pages 74–83, March
2013.

[36] S. Mirshokraie, A. Mesbah, and K. Pattabiraman. PYTHIA:
Generating test cases with oracles for JavaScript
applications. In ASE, pages 610–615, 2013.

[37] S. Narayanasamy, G. Pokam, and B. Calder. BugNet:
Continuously recording program execution for deterministic
replay debugging. CAN, 33(2):284–295, May 2005.

[38] R. H. B. Netzer and M. H. Weaver. Optimal tracing and
incremental reexecution for debugging long-running
programs. In PLDI, pages 313–325, 1994.

[39] F. Ocariza, K. Pattabiraman, and A Mesbah. AutoFLox: An
automatic fault localizer for client-side JavaScript. In ICST,
pages 31–40, April 2012.

[40] F. Ocariza, K. Pattabiraman, and A. Mesbah. Vejovis:
Suggesting fixes for JavaScript faults. In ICSE, 2014.

[41] A. Orso and B. Kennedy. Selective capture and replay of
program executions. SEN, 30(4):1–7, May 2005.

[42] Chris Parnin and Alessandro Orso. Are automated debugging
techniques actually helping programmers? In ISSTA, pages
199–209, July 2011.

[43] B. Pytlik, M. Renieris, S. Krishnamurthi, and S. P. Reiss.

343

Automated fault localization using potential invariants. In
AAD, pages 273–276, September 8–10, 2003.

[44] J. Regehr, Y. Chen, P. Cuoq, E. Eide, C. Ellison, and
X. Yang. Test-case reduction for C compiler bugs. SIGPLAN
Notices, 47(6):335–346, June 2012.

[45] M. Renieris and S. P. Reiss. Fault localization with nearest
neighbor queries. In ASE, pages 30–39, 2003.

[46] G. Richards, A. Gal, B. Eich, and J. Vitek. Automated
construction of JavaScript benchmarks. In OOPSLA, pages
677–694, 2011.

[47] The Selenium Project, Selenium WebDriverDocumentation,
2012. http://seleniumhq.org/docs/03_webdriver.html/.

[48] K. Sen, S. Kalasapur, T. Brutch, and S. Gibbs. Jalangi: A
selective record-replay and dynamic analysis framework for
JavaScript. In FSE, pages 488–498, 2013.

[49] S. M. Srinivasan, S. Kandula, C. R. Andrews, and Y. Zhou.
Flashback: A lightweight extension for rollback and
deterministic replay for software debugging. In USENIX,
2004.

[50] A. Tomb, G. Brat, and W. Visser. Variably interprocedural
program analysis for runtime error detection. In ISSTA, pages
97–107, 2007.

[51] T. Yeh, T.-H. Chang, and R. C. Miller. Sikuli: Using GUI
screenshots for search and automation. In UIST, pages
183–192, 2009.

[52] A. Zeller. Isolating cause-effect chains from computer
programs. In FSE, pages 1–10, October 2002.

[53] A. Zeller and R. Hildebrandt. Simplifying and isolating
failure-inducing input. TSE, 28(2):183–200, February 2002.

[54] Z. Zhang, W. K. Chan, T. H. Tse, B. Jiang, and X. Wang.
Capturing propagation of infected program states. In FSE,
pages 43–52, September 2009.

[55] T. Zimmermann, R. Premraj, N. Bettenburg, S. Just,
A. Schröter, and C Weiss. What makes a good bug report?
TSE, 36(5):618–643, 2010.

[56] Y. Zou, Z. Chen, Y. Zheng, X. Zhang, and Z. Gao. Virtual
DOM coverage for effective testing of dynamic web
applications. In ISSTA, pages 60–70, July 2014.

[57] http://stackoverflow.com/questions/3101402/the-travel-
tickets-problem.

[58] http://stackoverflow.com/questions/16266704/how-can-i-
integrate-javascript-onclick-function-with-php.

[59] http://stackoverflow.com/questions/25037819/watin-submit-
button-remain-disabled-after-filling-form.

[60] http://stackoverflow.com/questions/8487506/how-to-
structure-a-click-to-win-type-comptetition-with-a-set-
amount-of-random.

[61] http://stackoverflow.com/questions/16810769/how-to-make-
datepicker-disabled-on-public-holiday-disabled-on-sunday-
and-disabl.

[62] http://stackoverflow.com/questions/24284859/jquery-
selectors.

[63] http://stackoverflow.com/questions/17445722/javascript-
based-on-value-in-one-drop-down-bow-changes-values-in-2-
other-drop-do.

[64] http://stackoverflow.com/questions/23225556/add-new-

recipe-with-ajax-pop-up-for-ingredients.
[65] http://stackoverflow.com/questions/22841981/car-loan-

calculator-in-javascript-displays-nothing.
[66] http://stackoverflow.com/questions/15855790/javascript-

validation-is-not-working-in-html-registration-form.
[67] http://stackoverflow.com/questions/2157361/how-to-get-a-

select-options-list-if-i-dont-have-a-form-in-the-dom.
[68] http://stackoverflow.com/questions/14297463/recognize-

visitors-with-javascript-cookie-for-survey.
[69] http://stackoverflow.com/questions/22194655/jquery-code-

is-not-working.
[70] http://stackoverflow.com/questions/11895387/monkey-with-

rental-cars-integration-into-third-party-websites.
[71] http://stackoverflow.com/questions/597769/how-do-i-create-

an-abstract-base-class-in-javascript/597872#597872.
[72] http://stackoverflow.com/questions/20726565/dynamic-

dropdown-select-option-first-option-from-the-service-and-
the-second-opti.

[73] http://stackoverflow.com/questions/18432116/student-
average-no-response-in-javascript.

[74] https://stackoverflow.com/questions/15166552/javascript-
lottery-game-using-random-numbers-what-is-wrong-with-
my-logic.

[75] http://stackoverflow.com/questions/26101573/editing-drop-
down-options-based-on-previous-drop-down-options.

[76] http://stackoverflow.com/questions/8350551/javascript-
checking-if-form-is-null.

[77] http://stackoverflow.com/questions/25056856/getting-a-
javascript-validation-error-on-signup-page-when-clicking-
create-accou.

[78] http://stackoverflow.com/questions/15508772/using-jquery-
to-hide-show-links-based-on-checkbox.

[79] http://stackoverflow.com/questions/28096735/how-do-i-
access-passports-req-user-variable-in-client-side-javascript.

[80] http://stackoverflow.com/questions/20436140/javascript-
shopping-cart-calculator.

[81] http://stackoverflow.com/questions/15152494/tic-tac-toe-
with-javascript.

[82] http://stackoverflow.com/questions/9543203/javascript-form-
validation-for-user-account.

[83] http://stackoverflow.com/questions/12434066/calculate-age-
javascript-in-adobe-acrobat.

[84] http://stackoverflow.com/questions/2841898/how-to-
validate-username-using-javascript.

[85] http://stackoverflow.com/questions/17122516/writing-
numbers-1-80-in-javascript-and-writing-text-for-certain-
multiples.

[86] http://stackoverflow.com/questions/5939474/php-add-to-
shopping-cart-problem.

[87] http://stackoverflow.com/questions/8269445/javascript-drag-
and-drop-removing-dragged-element-following-successful-
drop.

[88] http://sourceforge.net/projects/faqforge/.
[89] https://sourceforge.net/projects/schoolmate/.
[90] https://sourceforge.net/projects/timeclock/.

344

