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ABSTRACT
The structure of preferences for modern highly-configurable soft-
ware systems has become extremely complex, usually consisting
of multiple layers of access that go from the user interface down to
the lowest levels of the source code. This complexity can lead to
inconsistencies between layers, especially during software evolu-
tion. For example, there may be preferences that users can change
through the GUI, but that have no effect on the actual behavior of
the system because the related source code is not present or has
been removed going from one version to the next. These inconsis-
tencies may result in unexpected program behaviors, which range
in severity from mild annoyances to more critical security or per-
formance problems. To address this problem, we present SCIC
(Software Configuration Inconsistency Checker), a static analysis
technique that can automatically detect these kinds of inconsisten-
cies. Unlike other configuration analysis tools, SCIC can handle
software that (1) is written in multiple programming languages and
(2) has a complex preference structure. In an empirical evalua-
tion that we performed on 10 years worth of versions of both the
widely used Mozilla Core and Firefox, SCIC was able to find 40
real inconsistencies (some determined as severe), whose lifetime
spanned multiple versions, and whose detection required the anal-
ysis of code written in multiple languages.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance, and
Enhancement

General Terms
Verification

Keywords
Configurable systems, software evolution

1. INTRODUCTION
Many modern software systems are highly customizable, pro-

viding a flexible environment for adding, removing and modifying
functionality. In these systems, users typically have access to hun-
dreds or even thousands of preferences that they can modify to form

an individual configuration (or instance) of the application.1 The
mechanisms for the manipulation of preferences consist of multi-
ple layers of access. These mechanisms can include (1) the user-
interface menu, which normally gives access to only a subset of
the available preferences, (2) the actual application’s code, which
usually has complete control over the existing configurations, and
(3) direct access to a persistent database (often based on plain files)
that contains the configurations and can be directly modified. At the
user interface level, some systems also provide access to a fuller set
of preferences reflecting all of those within the underlying database
(e.g., Firefox, through the about:config mechanism [23]). In
addition, at the source code level, preferences are often set and ma-
nipulated using more than one programming language [23].

This multi-layered approach for specifying preferences has the
potential to introduce inconsistencies between layers. This is es-
pecially true during software evolution, where modifications made
in one layer might not be suitably reflected in the other layers in-
volved. For example, a preference may be modifiable in the ex-
ternal user view, but the corresponding source code may not be
present—either because it was never implemented or because it has
been removed going from one version to the next. In this scenario,
which was first described by Rabkin [32], users might believe that
they are modifying the application’s behavior, yet no changes will
occur. To make things worse, this could all happen silently, without
clearly observable failures occurring.

Although some of these inconsistencies may result in nothing
more than mild annoyances for the users, some of them may also
cause more serious security or performance problems. Consider,
for instance, a security preference in Firefox that we discovered
in our empirical evaluation. In earlier versions of Firefox, a user
had the ability to set for how long the website passwords repository
remained unlocked after the users entered their master password;
that is, if a user had visited a website for which a password was
stored in Firefox’s repository within n minutes from entering the
master password, Firefox would have automatically populated the
password entry without asking the user to re-enter it. This prefer-
ence was removed from the code of Version 4.0 of Firefox, yet the
option was modifiable, with no effect, using the about:config
mechanism until Version 34.0. Users accustomed to using this set-
ting in Firefox, were therefore led to falsely believe that they were
adding a level of security to their browser, whereas they were not.

Despite a large body of recent research on testing (and specifi-
cally regression testing) of configurable systems, most of the pre-
vious work focuses on the problem of better functional fault de-
tection and assumes that the preference model is known (e.g., [21,

1In this paper, we use the term preference to indicate a specific
configuration option. A set of preferences and the value assigned
to them therefore identifies and corresponds to a configuration.
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25, 29, 30, 33, 41]). Some researchers have begun to extract or dy-
namically track configuration options from the source code (e.g.,
[26, 27, 32, 36, 43]). However, most of these analyses are limited to
single-language programs with a flat (i.e., name-value) preference
structure and have been evaluated on programs with a limited num-
ber of options. Therefore, they cannot be straightforwardly applied
to the highly-configurable, complex programs that we target, which
typically have an extremely large configuration space (e.g., Firefox
has about 2,000 options, without considering plug-ins) with a hi-
erarchical (i.e., tree-based) preference structure system and which
tend to be written in multiple languages.

To address some of the limitations of these existing approaches,
we propose SCIC (Software Configuration Inconsistency Checker),
a technique and tool for finding configuration inconsistencies in
modern, complex, highly-configurable, multi-language software sys-
tems. More precisely, SCIC’s goal is to detect inconsistencies be-
tween the way configurations are handled in different layers (e.g.,
user interface and code), with a focus on program evolution—but
the technique can also be used for a single version of a program.

SCIC uses a custom analysis for each individual programming
language and merges the results before identifying mismatches. To
assess whether a mismatch is related to changes performed during
evolution, SCIC also checks its current results against its results
for prior versions of the system. This approach allows us to plug-in
different analyses (e.g., for additional languages) and identify the
lifespan of inconsistency occurrences. SCIC’s analyses work both
on flat and on tree-based preference structures. We have identified
this latter type of structure in several modern systems, including
both the Mozilla [9] and the OpenOffice [28] application suites.

To assess the effectiveness of SCIC, we applied it to a 10-year
version history of the open-source Mozilla Core modules, which
form the basis for the entire family of Mozilla applications; that
is, any inconsistencies within this core will propagate to all ap-
plications. We also applied SCIC to the 35 Firefox versions that
were released during the same time period. In this empirical eval-
uation, SCIC was able to find 40 real inconsistencies, whose life-
time spanned multiple versions, and whose detection actually re-
quired the analysis of code written in multiple languages. We found
unique inconsistencies in both Mozilla Core and Firefox and re-
ported them to the Mozilla team, which acknowledged some of the
issues and is currently investigating them. In our evaluation, we
also classified the preferences involved in these inconsistencies and
found that they are of different types, ranging from performance to
security, and can cause non-negligible issues.

The contributions of this work are:
• A technique for extracting configuration options and finding con-

figuration inconsistencies in evolving, highly-configurable, multi-
language, modern software systems. The technique is able to
handle systems with a hierarchical preferences structure.
• An implementation of the technique that can handle complex

preference structures and systems written using multiple lan-
guages (i.e., C, C++, JavaScript, and various markup languages).
• An empirical study performed on numerous versions of a large,

widely used code base that shows that our technique can find real
configuration inconsistencies that can have problematic conse-
quences for users. Our experimental data is available at http:
//www.cc.gatech.edu/~orso/software/scic-data.
The rest of this paper is structured as follows. We next present

some background on preference systems. Section 3 motivates in-
consistency checking. We present our technique in Section 4 and
discuss its implementation in Section 5. We then present our empir-
ical evaluation, in Section 6, and related work, in Section 7. Finally,
we conclude and discuss future work in Section 8.

2. BACKGROUND
Most modern highly-configurable applications have different lev-

els of user interfaces (UIs), through which users can modify ap-
plication preferences. In these applications, the top level UI is
typically the menu system. However, as previous studies show
(e.g., [23]), for many of these applications the menu options only
account for a subset of the whole preference set. For instance,
these studies reported that the Firefox menu provides only 126 out
of more than 1900 available preferences—the versions of Firefox
that we analyzed have more than 2,000 preferences. Other pref-
erences that are not readily available to the users through menu
options are typically accessible through an intermediate level UI.
The Google Chrome browser, Firefox, and the Opera browser, for
instance, all provide a settings page that is accessible by typing
about:flags, about:config, and opera:config into the
address bar, respectively. Users can search for a particular option
on the resulting page, and once they find it, they can modify the cur-
rent value, which will update the current application configuration
as well as write the value to the persistent preference files.

At the lowest level, the preferences are mapped to source code
variables that turn on or off particular pieces of code and control
the specific preference behavior. The lowest level holds the truth
for the application when it comes to system behavior, but most sys-
tems do not provide a direct mapping between the UI levels and the
code level. Initialization modules in the application set the prefer-
ence values at application startup and store these in memory (e.g.,
in a hash table or some other database) during runtime [23]. Many
applications also provide a dynamic API (the previously mentioned
about:config uses this API) to manipulate preferences at run-
time. These APIs interact with the source code preference vari-
ables.

In order to identify mismatches between the preferences in dif-
ferent levels of UIs and source code, we first need to obtain a com-
plete set of preferences from both the source code and the UIs and
then map the different levels to one another. Rabkin and Katz [32]
studied seven open-source Java programs and concluded that us-
ing key-value configuration APIs is a common and widespread ap-
proach for programmers to interact with configuration options. Each
configuration API takes the name of a configuration and an optional
default value as its parameter. In [23], however, Jin and colleagues
noted that this convention does not hold for some classes of highly-
configurable applications, such as those we target in this work. An
alternative way to handle preferences is to create a map from option
names to values, but these options may be grouped in a hierarchy
as a tree structure. Applications that use the Windows Registry,
open source office suites such as OpenOffice and LibreOffice, and
Mozilla-based applications are examples of systems that use this
type of preference structure [23, 28, 32]. Figure 1 shows an exam-
ple of a hierarchical tree structure in which related configurations
share the same prefix. At the highest level, there is the browser
prefix, to which we can append either chrome or chromeURL. The
browser.chrome preference name can then be the prefix for either
favicons or site_icons.

In a tree structured preference system, the argument that is passed
as a preference name to a configuration API is not necessarily the
exact configuration name. When the API interacts with the pref-
erence tree, there is a possibility that such interaction occurs on
branches other than at the root. In this case, the configuration name
is divided into two parts: (1) the branch where the interaction oc-
curs and (2) the argument that is passed to the API.

To illustrate, consider the code snippet in Figure 2, which we
extracted from Firefox Version 34.0. (Other tree-structured pref-
erence systems behave in a similar way, but may be implemented
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+-- browser
| |
| +-- chrome
| | |
| | +-- favicons (browser.chrome.favicons)
| | |
| | +--site_icons (browser.chrome.site_icons)
| |
| +--chromeURL (browser.chromeURL)

Figure 1: Example of tree structured configuration.

1451 #define NS_BRANCH_DOWNLOAD "browser.download."
...

1453 #define NS_PREF_DIR "dir"
...

1467 nsCOMPtr<nsIPrefBranch> prefBranch;
1468 rv = prefService->GetBranch(NS_BRANCH_DOWNLOAD,
1469 getter_AddRefs(prefBranch));

...
1497 prefBranch->GetComplexValue(NS_PREF_DIR,
1498 NS_GET_IID(nsIFile),
1499 getter_AddRefs(customDirectory));

Figure 2: Example of tree structure configuration in the code.

differently.) In this code, the configuration API is GetComplex-
Value (line #1497). If we use the existing analyses to extract the
preference from this code, the first parameter would be the con-
figuration name, which is dir (line #1453). However, the correct
configuration name consists of two parts: browser.download (line
#1451), as the branch name, and dir, as the configuration API ar-
gument. We need to identify and concatenate these two parts to
return the correct configuration name. This is a common way of
implementing configurations because, when developers want to in-
teract (read/write) with a group of preferences that share the same
branches in the tree, they can retrieve the shared branch once, and
use that to traverse the rest of the tree. In the context of the code
shown above, preference browser.download.folderlist shares prefix
browser.download with preference browser.download.dir. In our
analysis, we support both flat and tree structured preference sys-
tems.

3. MOTIVATING EXAMPLE
Our motivating example is derived from a real bug report in

the Bugzilla database. The report [3] is for the core modules of
Mozilla, which means that the issue with the preference code is
shared across the entire family of Mozilla applications and im-
pacts more than just Firefox (the application mentioned by the user
in this report). In the report, a user complains about preference
(browser.history_expire_sites), which was (intentionally) removed
from the source code during software evolution but still existed in
the UI. This preference can be used to limit the number of URLs
kept in a browser history. The user indicated in the bug report that,
although he set the value of this preference to 40,000 in Firefox, he
still had more than 61,000 sites in his history. This bug was later
marked by the developers as invalid since the preference, having
been removed, did not exist anymore, which triggered the follow-
ing followup comment by the reporting user:

"It’s hard to guess if something is a bug or an intended change.
If this preference is no longer used:

• it should be removed automatically (just like
browser.history_expire_days)

• all relevant information should be updated

• you should make sure that users are aware of this change. E.g.
by mentioning it in the release notes."

Note that this particular issue might have impacted the privacy of
users who were unaware that browser.history_expire_sites was no
longer a valid preference and used it to limit the amount of history
maintained. We investigated the cause of this issue and found the
following code segment, extracted from Firefox Version 3.0 (file
nsNavHistory.cpp), where preference browser.history_expire_sites
was introduced.

114 #define PREF_BROWSER_HISTORY_EXPIRE_SITES
"history_expire_sites"
...

484 pbi->AddObserver(
PREF_BROWSER_HISTORY_EXPIRE_SITES,this,false);
...

1916 if(NS_FAILED(mPrefBranch->GetIntPref(
PREF_BROWSER_HISTORY_EXPIRE_SITES,

1917 &mExpireSites)))
1918 mExpireSites = EXPIRATION_CAP_SITES;

This code was removed in Version 4.0. Before removing the
code, the History component itself was responsible for expiration
management. However, due to drawbacks such as a lag in navi-
gation and other performance issues, a new JavaScript (JS) com-
ponent with an adaptive algorithm was introduced instead. This
change resulted in the replacement of three history related prefere-
nces-browser.history_expire_days, browser.history_expire_days_m-
in, and browser.history_expire_sites—with the single preference
places.history.enabled. When these three preferences were replaced
with the new preference, one would expect them to also be removed
from the UIs. However, whereas browser.history_expire_days and
browser.history_expire_days_min were correctly removed from the
UI in the next release, history_expire_sites was not. This prefer-
ence was actually removed from the UI later on, in Version 8.0 of
the Mozilla core, and no longer exists in the Mozilla preference in-
terface, which shows that it was indeed an inconsistency and was
recognized as such by the developers.

With thousands of preferences, and multiple layers that have to
be kept synchronized, providing and maintaining consistency be-
tween the different levels at which preferences are accessed is not
a trivial task. During software evolution, in particular, new prefer-
ences might be added to a version, and some old preferences might
be removed. If any inconsistency is introduced between the actual
and available functional preferences, this is likely to affect the users
of the system, or at least the ones that rely on those preferences. To
make things worse, these inconsistencies are often hard to detect,
especially when their effect is not immediately observable, which is
often the case for performance or security related preferences. The
browser-history inconsistency we just described is a typical exam-
ple, as it may not be easy to catch without specifically checking the
number of entries kept in the history.

4. OUR TECHNIQUE: SCIC
Figure 3 shows an overview of SCIC. For each new application

version, SCIC first performs a static analysis to extract the prefer-
ences from the source code. This is done independently for each
of the different programming languages contained in the applica-
tion (leftmost part of the figure). Using language-dependent analy-
ses allows us to (1) handle different combinations of programming
languages in different systems and (2) add new language-specific
analyses (or modify and improve individual ones) based on the tar-
get application.
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Figure 3: Overview of SCIC.

Algorithm 1 Strategy to match preferences at different levels dur-
ing software evolution.

matchingPrefs()
1: highLevelPrefs← extractHighLevelPrefs()
2: sourceCodePrefs← extractSourceCodePrefs()
3: inconsistentPrefs← newList < Pair < pref, version >>
4: for each version in availableSoftwareV ersions do
5: for each pref in highLevelPrefs do
6: if sourceCodePrefs contains pref then
7: continue
8: else
9: inconsistentPrefs.Add(Pair(pref, version))

10: end if
11: end for
12: end for

After performing these analyses, SCIC merges their results to
form a single set of unique preferences and compares these merged
results against the preferences that are available to users through
higher level APIs. The UI preferences can be obtained either through
static analysis (our approach) or using dynamic API methods that
some applications provide. SCIC then reports inconsistent prefer-
ences, that is, preferences that are not in the source code, but are in
the API. Finally, SCIC compares this report with those it produced
for the prior (1, ..., N-1) versions of the system. This last step
provides the inconsistencies’ lifespan and allows for distinguishing
new inconsistencies from inconsistencies that have already been
identified. Algorithm 1 shows SCIC’s approach to matching pref-
erences.

As the algorithm shows, SCIC starts by extracting the high level
preferences from the UI layer (line #1) and then extracts the pref-
erences from the source code modules (line #2). On Line #3, it
finds inconsistencies by checking whether each preference in the
higher-level UI matches a preference in the source code using reg-
ular expression matching. If not, SCIC reports an inconsistency. As
we just discussed, SCIC also identifies inconsistencies from all of
the available prior versions of the software (Lines #4-12 ). The two
main methods used in this algorithm are extractHighLevelPrefs and
extractSourceCodePrefs. Method extractHighLevelPrefs extracts
the UI preferences statically from the preference and configuration
files.

Algorithm 2 Algorithm to extract configuration options.
Auxiliary functions:
constructCallGraph(): returns call graph
getPref (c): returns the preference argument from method c
getBranch(pref ): returns the branch of configuration API
concatenate(prefValues, branchValues): returns list of strings
from joining two arguments

extractSourceCodePrefs()
1: c← constructCallGraph()
2: confAPIs← newMap <Method,ArgumentIndex>
3: confAPIs← identifyConfAPIs()
4: for each c in confAPIs do
5: pref ← getPref(c)
6: prefV alues← findPrefV alues(pref)
7: branch← getBranch(pref)
8: branchV alues← newList <branchV alue>
9: trackBranch(branch, branchV alues)

10: prefNames← concatenate(prefV alues, branchV alues)
11: end for

4.1 Analysis Framework
Algorithm 2 describes the general analysis performed by method

extractSourceCodePrefs(), which is called from Algorithm 1. This
analysis builds on the work of Rabkin and Katz [32] by adding to
it the ability to handle tree-structured preferences. The first step
of the analysis is to identify the methods that read or write pref-
erences (we call these methods configuration APIs). To achieve
this, the analysis first constructs the static call graph (line #1), and
then identifies the configuration APIs (lines #2-3). For many highly
configurable systems, configuration APIs are used to interact with
preferences. These are either stand-alone, documented APIs or are
provided via specific classes that expose a set of methods to the
rest of the program to enable interaction with configurations. There
may also be other APIs that act as wrappers around explicit APIs.
In order to extract all possible configurations, method identifyCon-
fAPIs (line #3) accounts for both types of APIs. It examines each
method in the call graph and checks if any of its arguments are
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Algorithm 3 Algorithm to track branches.
Auxiliary functions:

getBranchDecl(branch): returns declaration of branch
getBranchArgument(c): returns branch argument in call site c
Add(branchValues, branchValue): adds an element to list

trackBranch(branch, branchValues)
1: branchDecl← getBranchDecl(branch)
2: if branchDecl is an argument of method m then
3: for each call site c of method m do
4: branchArgument← getBranchArgument(c)
5: trackBranch(branchArgument, branchV alues)
6: end for
7: else
8: branchV alue← findBranchV alue(branch)
9: branchV alues.add(branchV alue)

10: end if

passed to a configuration API. If so, it considers that method to be
a configuration API as well.

Once it has collected all of the configuration APIs, SCIC pro-
ceeds as follows. For each API, it first retrieves the configuration
argument, which is of type string (line #5). On line #6, method
findPrefValues is responsible for finding the possible values of the
configuration argument. Most of the configuration arguments are
built as constants at compile-time. If the argument is passed ex-
plicitly as a string literal to the API, the method returns the string
as the value of the configuration. Otherwise, it uses a points-to
analysis to find possible values of the configuration. Sometimes
parts of the configurations are built dynamically. For instance, if
the branch name is browser.contentHandlers.types. + nums[i]

+ ".", where the value of nums[i] is decided at runtime, SCIC uses
regular expression .*, instead of nums[i], to match any string at that
point.

So far, SCIC has found the value of the API’s configuration
argument. However, as shown earlier, this does not necessarily
mean that it has found the exact name of the configuration. There-
fore, SCIC needs to check whether the retrieved configuration name
starts from the root of the tree. If not, the algorithm has to find the
corresponding branch with which the configuration API interacts
(line #7). For instance, at line 1497 in the example of figure 2,
the branch for GetComplexValue configuration API is prefBranch.
Branches do not always get generated or modified at the call site
of their corresponding configuration API, as it happens in the ex-
ample in figure 2. It is possible for them to be passed as an argu-
ment as well. Method trackBrach on line #9, which is shown in
Algorithm 3 (see below), tracks the branch at different call sites
until it finds the earliest point in the program where the branch
gets generated or modified. Then, the value of the branch is found
on those particular call sites. This approach allows the analysis to
use context-sensitivity on demand, only for the relevant call sites,
rather than for the whole program. After finding the possible values
of the branch, since SCIC already has the possible values of config-
uration arguments, the algorithm calls method concatenate to find
the configuration names (line #10).

Algorithm 3 illustrates the general technique used by SCIC to
find branches and their values. For every branch, it first finds the
declaration of the branch (line #1). Then, it checks whether the
declaration is an argument of its method. If so, for every call site of
the method it recursively calls itself until it finds the call site where
the value of the branch is generated (lines #2-7). This is the point
where method findBranchValue is called to find the value of the

Algorithm 4 Strategy to find branches.
Auxiliary functions:
getBranchDecl(branch): returns declaration of branch
findArg(m, N): finds Nth argument of method m
findBranchValue(branch)

1: DefUse← constructDefUseChains()
2: branchDecl← getBranchDecl(branch)
3: if CPP then
4: branchIsRoot← true
5: uses← DefUse(branchDecl)
6: for each use in uses do
7: if use is an argument of GetBranch then
8: branchArg ← findArg(GetBranch, 1)
9: values← findV aluesUsingPointsTo(branchArg)

10: branchIsRoot← false
11: end if
12: end for
13: if branchIsRoot then
14: values← null
15: end if
16: else if JS and branchDecl points to getBranch then
17: branchArg ← findArg(getBranch, 1)
18: values← findV aluesUsingPointsTo(branchArg)
19: else
20: values← null
21: end if

branch in the call site (line #8). This value is then stored in the list
of possible branch values (line #9). The list is passed by reference
to this method initially. Depending on how branches are stored and
used in a preference system, method findBranchValue could be im-
plemented differently. In the next section, we discuss how we can
instantiate this method for the preference system of one family of
modern, highly-configurable software-system, the Mozilla family
of applications.

4.2 Example Instances
In this subsection, we show how we can implement method find-

BranchValue for Mozilla-based applications. We then discuss an
instantiation of the approach for analyzing markup languages.

4.2.1 Calculating Branch Values
For calculating branch values, we first determine if the branch is

at the root. If so, the branch value is null. Otherwise, we have to
find where branch was initiated and what are its possible values.

Algorithm 4 shows an instance of method findBranchValue (Line
#8 of Algorithm 3). Note that we want to find the possible values
of a branch that is an argument of a method (possibly a config-
uration API) at a particular call site. As we mentioned earlier,
Mozilla-based applications are written in multiple programming
languages, the two most used of which are C++ and JavaScript.
The preference system uses XPCOM (Cross Platform Component
Object Model) interfaces, in which each language provides its own
APIs to access these interfaces (we discuss this in more detail in
Section 5). In C++, branch values are passed around by method
GetBranch(const char *aPrefRoot, nsIPrefBranch **_retval),
where the first argument is the branch value, and the second ar-
gument is the branch itself. However, in JavaScript, branch ac-
cess is provided by method getBranch(in string aPrefRoot), in
which the argument is the branch value. Based on these two dif-
ferent APIs, we separated some parts of the strategy for C++ and
JavaScript.
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1 <preferences>
2 <preference id="xulschoolhello-message-count-pref"
3 name="extensions.xulschoolhello.message.count"
4 type="int" />
5 <!-- More preference elements. -->
6 </preferences>
7
8 <textbox
9 preference="xulschoolhello-message-count-pref"
10 type="number"/>

Figure 4: Example of how preferences are handled in XUL.

First, the algorithm constructs def-use chains (line #1), which
consist of all the uses for each definition. On line #2, it finds the
declaration of the branch. In the case of C++, we need to find
the uses of the declaration and check whether the branch ever gets
passed to the branch API. If so, the algorithm gets the correspond-
ing argument and finds its value by using points-to information
(line #5-11). Otherwise, it means that the branch has not been
changed and is at the root. In case of JavaScript, we need to know
whether the result of the getBranch method ever gets assigned to
the branch. In other words, we need to know if the branch declara-
tion points to the getBranch method. If this happens, the algorithm
uses point-to information to find the possible values of the branch.
If not, also in this case, it means that the branch is at the root.

4.2.2 Extracting Configurations from Markup Lan-
guages

In order to enable users to modify some of the preferences at the
menu level, developers use markup languages, such as XML and
XUL, to build the UIs.

Preference handling in XUL is facilitated by using prefwindow,
which acts as a container. It lists the preferences that are going
to be used later in the code. After being defined in the prefwin-
dow, the preferences can be associated with form elements in the
window, such as a text box. Figure 4 shows an example of prefer-
ence handling in XUL. Lines #1-6 define the preferences, and lines
#8-10 associate a preference to a text box. To extract the prefer-
ences from XUL files, our technique parses them and gathers the
elements from the preference tags.

In XML documents, there is a section called CDATA, which is
marked for the parser to interpret those elements as only character
data, rather than markup. Preferences are handled as part of the
CDATA section, in which the content is written in JavaScript. Fig-
ure 5 shows an example of preference handling in XML where, in
the CDATA tag, a configuration API (getIntPref ) is called. Our ap-
proach for extracting preferences from XML documents is to parse
the corresponding file and retrieve the content from the CDATA
tags. Then, we use the same strategy that we used to extract prefer-
ences from JavaScript.

5. IMPLEMENTATION
Our implementation of SCIC supports the family of Mozilla-

based applications. We chose this set of software systems because
they are implemented in multiple programming languages and use a
preference system based on a hierarchical tree structure, neither of
which has been studied before in the context of finding preference
inconsistencies. The family of Mozilla-based applications is built
using a set of core modules, which are used by all of the programs
in the family. (Therefore, any problems within the core will affect
all programs in the family.) Each individual application builds on
this core and has its own modules to implement its specific unique

<field name="mMenuAccessKey"><![CDATA[
Components.classes
["@mozilla.org/preferences-service;1"]
.getService(Components.interfaces.nsIPrefBranch)
.getIntPref("ui.key.menuAccessKey");

]]></field>

Figure 5: Example of preference handling in XML.

functionality. These applications include the Firefox web browser,
are actively developed and maintained, and are widely used. In
2014 alone, for instance, Firefox had eight major releases. Given
the wide user base of these applications, it is clearly important to
make sure that preferences are suitably maintained and consistent.

As we mentioned above, Mozilla applications are written in mul-
tiple programming languages that include C, C++, JavaScript, Java,
Python, and some markup languages, such as XML, XUL, and XH-
TML. To expose its preference system, Mozilla uses XPCOM inter-
faces, where XPCOM is a cross platform component object model
that has multiple language bindings. These language bindings act
as a bridge between XPCOM and different languages by providing
access to XPCOM objects in each language. In addition, languages
for which there are XPCOM bindings can use modules that are writ-
ten in other languages as XPCOM objects. Therefore, XPCOM
components can be used and implemented in JavaScript, Java, and
Python, in addition to C++. Interfaces in XPCOM are defined in
XPIDL, which is an Interface Description Language [16].

Two commonly used interfaces in the Mozilla preference system
are nsIPrefService and nsIPrefBranch. nsIPrefService is the pref-
erence system that is the main entry point to the management of
preference files. It provides access to the preference branch object
through methods such as getBranch(prefroot), which allows the di-
rect manipulation of preferences [12]. nsIPrefBranch can be ob-
tained either directly or from the nsIPrefService. nsIPrefBranch is
created with a root value, which describes the base point in the
preference tree from which this branch stems. Preferences can
be accessed starting from this root by simply using the final por-
tion of the preference. If nsIPrefBranch is created with the root
browser.startup., for instance, preferences browser.startup.page, b-
rowser.startup.homepage, and browser.startup.homepage_override
can be accessed by simply passing page, homepage, or homepage_-
override to configuration APIs. To enable manipulation of prefer-
ence data, nsIPrefBranch provides two set of methods—one set for
reading the preference value, such as getTypePref or getComplex-
Value, and another set for writing its value, such as setTypePref or
setComplexValue. In both cases, Type should be replaced by one of
the three types Int, Char, or Bool [11]. Each language imple-
ments its own interfaces to interact with these configuration APIs.

To implement the analysis for the C++ side of applications, we
used the LLVM compiler infrastructure [8] and Clang [6]. We used
them to generate the call graph and points-to information, as well
as the data flow information in Algorithm 4. As mentioned earlier,
C++ implements its own interface to interact with XPCOM objects
in the preference system. Instead of getTypePref or getComplex-
Value configuration APIs, it uses GetTypePref or GetComplexValue
with different arguments.

To implement the analysis for the JavaScript side of the appli-
cations, we used the WALA framework [15] to generate the call
graph and points-to information. However, the recent versions of
Mozilla follows the ECMAScript [7] 6 standard, which is not sup-
ported by most JavaScript analysis frameworks. Therefore, we used
Traceur [14], a compiler that takes ECMAScript 6 and compiles it
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Figure 6: Number of source-UI inconsistencies appearing for the first time in each version.

down to regular ECMAScript 5 JavaScript, to generate source code
that the current analysis framework is able to parse. Using this
approach, we were able to analyze most of the files in the code-
base we considered in our experiments. For about 15% of the code,
however, we had to perform part of the analysis manually.

To analyze the XUL files, we used an XUL parser written in
Python and provided by the Mozilla developers [17]. It parses
XUL and builds a list of all the XUL elements and their attributes,
from which we extracted preference elements. For XML, we used
SAX (Simple API for XML [13]), a java-based parser. After pars-
ing, we analyzed the content from the CDATA section (written in
JavaScript).

6. EMPIRICAL EVALUATION
To evaluate how effective and useful is SCIC in detecting pref-

erence inconsistencies, we performed an empirical evaluation and
investigated three research questions. The first question assesses
whether SCIC can correctly identify inconsistencies that exist in
an application. The second question focuses on the second part
of our analysis, which is to understand how prevalent inconsisten-
cies are, and how long they persist in the history of a system. The
last question focuses on the categories of inconsistencies found by
SCIC to understand if they are actually problematic and relevant
for the users of the applications being analyzed. More specifically,
we investigated the following three questions:

1. RQ1: How accurate is SCIC in identifying inconsistencies?
2. RQ2: What is the lifespan of inconsistent configuration options?
3. RQ3: To what classes do the inconsistent preferences belong?

Are these inconsistencies potentially harmful?

6.1 Evaluation Method
We selected a 10-year period (from February 2004 to Decem-

ber 2014) of the Mozilla core modules, which are shared between
most of the Mozilla applications, such as Firefox, Bugzilla, Thun-
derbird, and SeaMonkey. We also examined all Firefox versions
(12 million lines of code on average) from the same time period,
as this is one of the largest applications in the Mozilla family. This
corresponds to 35 major releases of Firefox, from version 0.8 to
version 34.0. Since the core modules are also used within Firefox,
and the release schedules for these two may be different, we used
the Firefox versions as our baseline for evolution and studied the
versions of the core modules that corresponded to those versions
of Firefox. This allowed us to examine and differentiate inconsis-
tencies across the two sets of modules using a single timeline. We

Table 1: Number of inconsistencies.

Modules # source-UI
inconsistency

Programming
Languages

CPP JS Markup
Core 17 17 0 0

Firefox 23 11 8 4
Total 40 28 8 4

Percent - 70% 20% 10%

compared our analysis result against the configuration options that
are exposed through about:config. If there was any prefer-
ence in about:config in a particular version that did not exist
in the source code of the same version, we marked that as an incon-
sistency. For each version of each application, we ran SCIC and
identified both the new inconsistencies and those which persisted
from earlier versions. For each of the inconsistencies found, we
confirmed that the source code was missing through manual exam-
ination.

6.2 RQ1: Finding Inconsistencies Accurately
Across the 35 major releases that we studied, we found 40 in-

consistent preferences. Table 1 provides some statistics about these
preferences. The first column lists the modules that we studied and
shows the totals for both applications. The next column (#source-
UI inconsistency) shows the number of inconsistencies found in
each module between the source code and the about:config
list. The next group of columns shows the distribution across dif-
ferent programming languages.

As Table 1 shows, of the 40 preferences, 17 belong to the core
modules and 23 to the Firefox modules. Although Firefox also uses
the Mozilla core modules, the 23 inconsistencies reported for Fire-
fox are in addition to those found in the shared modules (which
affect any Mozilla-based application, including Firefox, SeaMon-
key, and Thunderbird). The table also shows that 70% of the incon-
sistencies exist in C++ code, most of which are in the core mod-
ules. The remaining 30% is shared between JavaScript (20%) and
markup languages, such as XML and XUL (10%).

Our manual check for false positives found none, so to the best
of our knowledge, SCIC correctly identified the inconsistent pref-
erences. Although we do not have a complete list of preference
inconsistencies in the analyzed code, and therefore we cannot as-

301



0	  

2	  

4	  

6	  

8	  

10	  

12	  

14	  

<	  1	   1	   2	   3	   4	   5	   6	   	  	  	  7	  -‐8	   9	   	  	  10	  -‐	  18	   19	   20	   	  21	  -‐	  23	   24	   25	  -‐	  26	   27	   28	   29	   30	   31	   32	  -‐	  33	   34	  

fr
eq

ue
nc
y	  

versions	  

Figure 7: Number of source-UI inconsistencies in each version.

sess the recall of SCIC, we can nevertheless provide some initial,
promising evidence: all the inconsistencies reported by users (i.e.,
all the inconsistencies described in bug reports for the Mozilla core
modules and Firefox) were detected by SCIC. We can therefore
conclude that, at least for the known inconsistencies in the analyzed
code, SCIC produced no false negatives.
Summary of RQ1. SCIC was able to accurately identify 40 incon-
sistencies distributed between the core modules and Firefox. The
inconsistencies involve multiple programming languages, which
indicates that single-language analyses would not be able to detect
them.

6.3 RQ2: Life Span of Inconsistent Configu-
rations

Since we studied the evolution of Mozilla-based applications for
35 major releases during 10 years, we also wanted to identify when
the inconsistencies happened, how long they existed, and when they
got removed (if ever). This data provides information on the po-
tential impact and difficulty of detection of these inconsistencies.
We therefore studied the lifespan of each inconsistency detected by
SCIC.

Figure 6 shows how many inconsistencies appeared for the first
time in each version. Versions without inconsistencies are not shown.
Of the 35 versions that we studied, 22 did not have any new in-
consistencies. 9 inconsistencies appeared for the first time in 9
versions, where they were individual instances. In one version
(Version 24), 3 inconsistencies newly appeared. Interestingly, the
largest portion of inconsistencies (65%) happened in two versions
(Versions 3 and 4), each newly introducing about half of these in-
consistencies.

The inconsistency that appeared in Version 27 for the first time
has never been defined in the source code of major releases, nei-
ther in version 27 nor in the previous or later versions. (We only
analyzed major releases, so it might exist in some Beta versions.)
This was an interesting case, so we searched for any history related
to this preference. We found a bug report from 2013 [5] where
there was a discussion about introducing this preference. In the
comments, the name toolkit.asyncshutdown.timeout.crash was ini-
tially chosen for the preference. However, someone later suggested
to use toolkit.asyncshutdown.crash_timeout instead. Developers
therefore changed the name in the source code, whereas the name
in the intermediate UI was never changed. In fact, it still exists in
the latest version we studied.

Figure 7 shows how many inconsistencies exist in each version,
and how many of them were removed from each version. There are

only two versions where the inconsistencies were removed. Two of
the removals occur in Version 4, and one in Version 8 (which was
our motivating example). The number of remaining inconsisten-
cies in version 34 (the last version we studied) is 37, instead of 40,
because of the removed inconsistencies.
Summary of RQ2. Our evaluation shows that the lifespan of in-
consistencies can be long. Very few (only 3) of the inconsistencies
that we found were removed.

6.4 RQ3: Type and Relevance of Inconsistent
Preferences

We identified several classes of inconsistent preferences. Table 2
lists these classes, their description, and the number of (inconsis-
tent) preferences that belong to each of the classes. In total, there
are 10 classes and an additional class, Others, which contains those
preferences that do not belong to any of the other classes.

Class Performance is the largest one, with six preferences. These
are preferences that help users do tasks more efficiently. For exam-
ple, preference layout.frame_rate.precise provides smoother scroll-
ing for the users, and preference application.use_ns_plugin_finder
enables the automatic plugin finder if a plugin is not found.

Class Profile is the next largest one, with five preferences. Brow-
sers store user personal data, such as history, bookmarks, and ex-
tensions, in a profile, and a user can have multiple profiles. Pro-
file related preferences allows customization of such profiles. For
example, preference profile.confirm_automigration enables migra-
tion of other browser bookmarks when creating a new profile, and
preference profile.seconds_until_defunct allows for specifying af-
ter how long an unused profile should be removed.

Classes Accessibility, User interface, and Security have four pref-
erences each. Accessibility preferences provide services for people
with disabilities. Preferences accessibility.usebrailledisplay and
accessibility.usetexttospeech, for instance, are designed to accom-
modate alternate devices with enhanced accessibility features. User
interface preferences enable customization of the user interface.
Preference browser.chrome.toolbar_style, for instance, determines
how the navigation toolbar buttons (e.g., back, forward, reload) are
displayed, either as text or icon. Security preferences are related to
security features, and we discuss them in more detail later in this
section.

Classes DOM and Printer contain three inconsistent preferences
each. The former relates to the manipulation of the Document Ob-
ject Model (e.g., dom.workers.maxPerDomain, which specifies the
maximum number of workers), whereas the latter is used to cus-
tomize printing settings (e.g., print.print_extra_margin, which al-
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Table 2: Classification of inconsistent preferences.

Class name Description frequency
Accessibility provide services for people with disabilities 4

DOM related to Document Object Model (DOM) which is a programming interface 3
Encoding allows different character encoding 2
History related to browser history 2
Network related to networking 1

Performance enables users to perform tasks faster 6
Printer enables users to configure printer 3
Profile allows customization of browser profiles 5

Security provides secure way of doing tasks 4
User Interface related to users interaction with interface 4

Others anything that does not fit into any of the above classes 6

lows for specifying an extra gap or margin around the content of
the page). Classes History and Encoding contain two inconsistent
preferences each. History related preferences are used to customize
the browser history settings, whereas class Encoding refers to char-
acter encoding.

Finally, there is only one inconsistent preference of class Net-
work, whereas we put all remaining inconsistent preferences in
class Others. Some examples from this class are browser.EULA.ver-
sion, which specifies the version of End User License Agreement
that has been viewed and accepted by the user, and capability.polic-
y.default.SOAPCall.invokeVerifySourceHeader, which permits users
to make verified SOAP (Simple Object Access Protocol) calls by
default.

Among the above classes, the security related preferences seem
to be particularly important, as they might affect the overall se-
curity of the system. We therefore discuss the four inconsistent
preferences in this class in greater detail. Security.checkloaduri
forbids external sites to link to files that are stored locally, and
security.xpconnect.plugin.unrestricted allows plugins to access XP-
COM methods that would normally be unaccessible. When modi-
fying these preferences in the UI, users would assume that they op-
erate as expected, which they do not, and would therefore use the
browser under wrong security assumptions. Preferences security.a-
sk_for_password and security.password_lifetime define whether the
browser should ask to remember passwords when logging into a
web page and for how long. In this case, we found both a bug
report [4] and a complaint [10] in which users were considerably
annoyed by the fact that these preferences did not work as expected.

Other inconsistencies, although not related to security, may cre-
ate issues too. Inconsistencies in the printer category may result in
annoyances for the user, for instance, and those in the history cate-
gory may impact privacy. To provide an example, consider prefer-
ence browser.history.grouping, which defines how to group history
URLs, which SCIC identified as inconsistent, and for which we
found a bug report complaining about it [2].
Summary of RQ3. We found 10 distinct classes of inconsisten-
cies in the applications studied. Although we do not have strong
evidence that all classes are harmful, we found several examples of
issues that are clearly problematic. In particular, security related
preferences, when inconsistent, are likely to provide a false sense
of security to users, who may use the browser in a way that makes
them more vulnerable to attacks.

6.5 Lessons Learned
We now summarize the key lessons learned for this evaluation.
Inconsistencies do exist, and we should test for them. When we

started this work, we were not sure of whether we could find real

inconsistencies and whether they would be relevant. Based on our
initial results, we believe that inconsistent preferences exist and are
potentially problematic for the users.

Multi-language analysis is needed. We found inconsistencies
that involved different parts of the system written in different lan-
guages. This means that an inconsistency analysis could not be
performed without using a multi-language approach.

Doing individual analyses and merging their results seems to
be a promising approach. An alternative approach to SCIC is to
build a single analysis that works across multiple languages at once.
The approach we have used, to merge individual analysis results is
considerably simpler and seems to be effective in this context.

As a user, do not trust preferences. It appears that the layered
approach for setting and using preferences can lead to inconsisten-
cies, so users should not trust preference settings without making
sure that they behave as expected (at least for the critical ones).

6.6 Reporting Our Findings to Developers
We submitted a bug report about the inconsistencies that we

found to the Mozilla developers, who told us that some features
were indeed left in the UI due to negligence, whereas others were
left because in use in other applications of the Mozilla family (and
having only one version of the UI was convenient). However, they
recognized that some users found this to be annoying, and that such
issues should be further investigated and fixed [1].

6.7 Threats to Validity
The primary threat to external validity of this work concerns

whether or not our results will generalize. To mitigate this threat,
we used the core modules from a large family of applications, as
well as one of the most widely used applications in this family.
Although we need to perform more studies on different systems
before being able to claim that our approach works in general, con-
sidering the body of related work (e.g., [23, 32]), we believe that
our results can generalize to other families of application that have
a tree-structured preference system and are multi-lingual (e.g., the
OpenOffice applications, industrial systems, and other applications
that rely on the Windows registry). In future work, we plan to in-
stantiate our approach for these systems, as we did for the applica-
tions that we targeted in this paper.

To address possible threats to internal validity, we manually eval-
uated the inconsistencies found by SCIC and did not find any prob-
lem with the results. Although this is not a guarantee of correctness,
it excludes the presence of obvious issues with our implementation
of SCIC.

Finally, with respect to construct validity, we might have used
different metrics to answer our research questions, which is true
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for every empirical study. However, we believe that the ones we
chose are appropriate for the questions that we were investigating.

7. RELATED WORK
There has been a large body of research on testing of highly con-

figurable systems [21, 25, 29, 30, 33, 41], as well as on extracting
feature models, configurations, and constraints from both source
code [26, 27, 36] and intermediate representations (e.g., KConfig
for Linux [20,35]). This line of research uses only a single view of
the configuration space and does not measure inconsistencies be-
tween code and other representations. In prior work, we used a
model of the Firefox configuration space to perform failure avoid-
ance [37]. However, we used only the about:config informa-
tion to build the model. Interestingly, upon examining that model
retrospectively, we have found multiple instances of preferences
that SCIC identified as inconsistent. In fact, we discovered that in
that work we might have been manipulating preferences that had
no associated code and no behavioral impact. We focus the rest
of the discussion on the work that is most closely related to SCIC;
that is, work on identifying mismatches between source code and
other components of the software and on diagnosis and debugging
of configuration errors.

7.1 Identifying Mismatches
Most of the work on identifying mismatches between source

code and other components of software focuses on documenta-
tion. Rubio-González and Liblit [34] examined mismatches be-
tween documented and actual error codes returned by system calls.
Tan and colleagues [38] presented a technique that detects incon-
sistencies between comments and source code to identify both bugs
and low-quality comments. The closest work to SCIC is that of
Rabkin and Katz [32]. Their approach statically extracts the list
of configuration options from source code and compares those op-
tions with those listed in the documentation. Although our analy-
sis is inspired by their work, we are looking into a different type
of preference systems, that is, those that have a hierarchical tree
structure, which requires a more complex analysis. In addition,
we focus on the user interface preference system, rather than on
the documentation. Furthermore, the systems we are studying are
written in multiple programming languages and are highly config-
urable. Their work, conversely, was limited to Java programs with a
relatively low total number of configurations—less than 700 across
seven programs, in their evaluation. (For comparison, each version
of the Mozilla-based applications we studied have more than 2,000
configurations.) Finally, we studied the application along a long
history or versions (10 years), rather than focusing on individual
versions, which adds a longitudinal dimension to the analysis.

7.2 Error Diagnosis and Debugging
There has also been a good deal of research on configuration

error diagnosis and debugging [18, 19, 23, 24, 31, 39, 40, 42–44],
much of which has been empirical in nature. Jin and colleagues
studied several highly configurable software systems to identify the
challenges that configurability adds to testing and debugging [23].
In follow-up work, they built a system for helping identify pref-
erences at the user interface level [22]. Yin and colleagues [42]
conducted an empirical study on configuration errors in commer-
cial and open source systems. Rabkin and Katz [31] defined a tech-
nique that precompute program points where there is a possibility
that some configurations cause an error at those points to aid debug-
ging. Zhang and Ernst [43] proposed a technique for identifying the
root cause of crashing and non-crashing configuration errors. They
also proposed a technique for debugging configuration errors that

are caused by software evolution [44]. However these approaches
require some form of user traces and are limited to a single pro-
gramming language. Attariyan and Flinn [18, 19] proposed several
techniques to diagnose and troubleshoot configuration faults, while
Keller and colleagues [24] presented a tool for assessing resilience
of software systems to human configuration errors. Finally, Wang
and colleagues [39] presented a technique for diagnosing the root
cause of misconfiguration.

SCIC differs from these techniques in its primary goal, which is
to find inconsistencies between source code and high-level user in-
terface preferences (with particular emphasis on those introduced
during evolution). SCIC does not need to identify changed behav-
ior ahead of time and can handle systems written in multiple pro-
gramming languages and using complex, hierarchical preference
structures. The inconsistencies that SCIC finds may be eventually
classified as configuration errors that affect the usability of the soft-
ware systems, but they may also point to preferences that simply
need to be removed from the interface.

8. CONCLUSIONS AND FUTURE WORK
In this paper, we presented SCIC, our static analysis based Soft-

ware Configuration Inconsistency Checker. SCIC can identify pref-
erence inconsistencies on highly-configurable, complex applica-
tions. SCIC can handle applications that are written in multiple
programming languages and that use complex (e.g., tree-structured)
configuration systems, which are both common characteristics in
modern software (e.g., Mozilla applications, open source office sui-
tes, and applications that use the Windows Registry).

We have empirically evaluated SCIC on 10 years of releases of
the core modules from the Mozilla family, as well as on the 35
releases of the Firefox application that appeared during the same
timeframe. SCIC was able to find 40 inconsistencies across these
versions and both within the core modules and in application spe-
cific code. The inconsistencies found were not isolated to a single
language, but rather involved code written in C++, JavaScript, and
various markup languages (e.g., XUL and XML). In addition, their
lifetime spanned multiple versions.

We were able to classify the inconsistencies found by SCIC into
ten categories, where each category contains from one to six prefer-
ence inconsistencies, and whose potential severity varies from mild
annoyances to more serious security or performance problems. We
also found postings in various forums with user complaints and
bug reports that are related to some of the inconsistencies that SCIC
found. Finally, the Mozilla developers confirmed some of the issues
we reported to them, which are currently being investigated. These
reports, complaints, and confirmations provide clear evidence that
at least some of these inconsistencies are perceived as problematic
and harmful by the users and are thus worth discovering.

In future work, we plan to extend SCIC to additional applica-
tions, including the LibreOffice application family. We also intend
to package and release SCIC as a tool that can be readily used and
provides a way to plug-in new individual analyses into the frame-
work (e.g., to add analysis for new languages). Finally, we will
investigate techniques for either automatically repairing the incon-
sistencies found by our approach or at least modify the codebase so
that users are warned when trying to use an inconsistent preference.
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