Test Report Prioritization to Assist Crowdsourced Testing

Yang Feng'?, Zhenyu Chen', James A. Jones?, Chunrong Fang', Baowen Xu!
!State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China
2Department of Informatics, University of California, Irvine, USA
zychen@software.nju.edu.cn

{yang.feng, jajones}@uci.edu

ABSTRACT

In crowdsourced testing, users can be incentivized to per-
form testing tasks and report their results, and because
crowdsourced workers are often paid per task, there is a fi-
nancial incentive to complete tasks quickly rather than well.
These reports of the crowdsourced testing tasks are called
“test reports” and are composed of simple natural language
and screenshots. Back at the software-development organi-
zation, developers must manually inspect the test reports
to judge their value for revealing faults. Due to the nature
of crowdsourced work, the number of test reports are often
difficult to comprehensively inspect and process. In order to
help with this daunting task, we created the first technique
of its kind, to the best of our knowledge, to prioritize test re-
ports for manual inspection. Our technique utilizes two key
strategies: (1) a diversity strategy to help developers in-
spect a wide variety of test reports and to avoid duplicates
and wasted effort on falsely classified faulty behavior, and
(2) a risk strategy to help developers identify test reports
that may be more likely to be fault-revealing based on past
observations. Together, these strategies form our DivRisk
strategy to prioritize test reports in crowdsourced testing.
Three industrial projects have been used to evaluate the ef-
fectiveness of these methods. The results of the empirical
study show that: (1) DivRisk can significantly outperform
random prioritization; (2) DivRisk can approximate the
best theoretical result for a real-world industrial mobile ap-
plication. In addition, we provide some practical guidelines
of test report prioritization for crowdsourced testing based
on the empirical study and our experiences.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging

Keywords

Crowdsourcing testing, test report prioritization, natural
language processing, test diversity

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions @acm.org.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ESEC/FSE’15, August 30 — September 4, 2015, Bergamo, Italy

ACM. 978-1-4503-3675-8/15/08...$15.00
http://dx.doi.org/10.1145/2786805.2786862

225

1. INTRODUCTION

The idea of crowdsourced testing has gained recent at-
tention in the software-engineering community (e.g., [7,23,
29,37]). In crowdsourced testing, crowdsourced workers are
given testing tasks to perform, and the workers choose their
tasks, perform them, and submit a test report of the behav-
ior of the system. In this way, the crowdsourced workers help
the centralized developers reveal faults. In order to attract
workers, testing tasks are often encoded in interesting tasks
(such as games [4]), or testing tasks can be financially com-
pensated. In this paradigm, the workers perform the tasks
and then submit their test reports, which are simple and in-
formal descriptions of the behavior of the software system.
These test reports are composed of natural-language descrip-
tions, sometimes accompanied with screenshots, and an as-
sessment as to whether the worker believes that the software
behaved correctly (i.e., “passed” in testing parlance) or be-
haved incorrectly (i.e., “failed”) In the latter case, the test
report can serve as an informal bug report.

At the software-development organization, developers and
testers receive the crowdsourced test reports, and subse-
quently judge their merit, attempt to recreate failures, and
debug any true faults. Naturally, this task can be time-
consuming and tedious even in traditional testing scenarios,
but moreover, in a crowdsourced setting the number test
reports can be prohibitive. Further, crowdsourced work-
ers may choose to perform many smaller and less-impactful
tasks. In practice, it is often impossible to manually inspect
all test reports in a limited time.

Past research has produced test-case prioritization tech-
niques (e.g., [10,12, 14, 18,22, 27, 33,39-42]) in which test
cases from a regression test suite are prioritized so that
they execute in an order that reveals faults earlier. Al-
though such techniques do not address the concept of prior-
itizing test reports, these techniques’ motivating principles
provide inspiration for our approach to prioritizing test re-
ports: namely, diversification of test behavior to help iden-
tify multiple faults.

Another body of existing research attempts to automati-
cally classify bug reports in a bug-reporting system by their
level of severity (e.g., [2,9, 24,30, 35, 38]). Although such
techniques do not address the concept of prioritizing test re-
ports, which are less structured and report both passing and
failing behavior, they inspire another motivating principle of
our approach: namely, recognizing patterns of risk factors
that may foretell reports that reveal faults.

In this paper, we propose a strategy to prioritize test re-
ports for use in crowdsourced testing. We adopt natural

language processing (NLP) techniques, word segmentation,
and synonym replacement, to extract keywords from test
reports. These keywords are used to predict failure risks of
tests and calculate distances of test reports. We design two
single prioritization strategies: the risk strategy (Risk) and
the diversity strategy (Div). The risk strategy is designed to
dynamically select the most risky test report for inspection
in each iteration. As such, its purpose is to prioritize test
reports most likely to reveal faults. The diversity strategy is
designed to select the diversified test reports for inspection
by maximizing the distances to already inspected test re-
ports. As such, its purpose is to prioritize test reports most
unlike already inspected reports to avoid redundant work
and reveal different faults. Finally, in order to reveal as
many faults as possible as early as possible, we combine the
two strategies to a hybrid prioritization strategy (DivRisk).

In 2013, we conducted three projects that used crowd-
sourced testing with our industry partner, Baidu® [7]. The
three projects were used to evaluate the effectiveness of test-
report prioritization methods. The average percentage of
faults detected (APFD) [34] and the fault-detection rate
were introduced to compare four test-report prioritization
methods: Random, Risk, Div and DivRisk. The Best
and the Worst theoretical results of test-report prioritiza-
tion were computed to discover the room for improvement
of our prioritization methods. The results of empirical study
indicate that: (1) DivRisk can outperform the random pri-
oritization technique significantly (14.29%-34.52% improve-
ment in terms of the APFD metric); (2) DivRisk can ap-
proximate the Best theoretical result (the gap is only 7.07%
in terms of APFD) of crowdsourced testing for the mobile
application testing.

The main contributions of this paper are as follows.

(1) To the best of our knowledge, this is the first work
to identify the problem of test report prioritization
for crowdsourced testing. Our practical experiences
lead us to believe that this is an important problem in
crowdsourced testing.

A novel feature of our test report prioritization method
DivRisk is to combine the risk strategy and the di-
versity strategy.

Three industrial projects of crowdsourced testing are
used to evaluate test report prioritization methods.
Some practical guidelines of test report prioritization
in crowdsourced testing are summarized.

2. BACKGROUND & MOTIVATION

In this section, we describe some background of crowd-
sourced testing to motivate the prioritization of test reports
and describe our experience that motivates our prioritiza-
tion strategies. We also introduce an example test report,
which is used to demonstrate how our prioritization tech-
niques work in next section.

Crowdsourced Testing Study. In 2013, we conducted
three projects of crowdsourced testing with Baidu [7]. Fig-
ure 1 shows the procedure of crowdsourced testing in our
projects. Testers in Baidu prepared packages for crowd-
sourced testing: software under test and testing tasks. Test-
ing tasks were divided into some sub-tasks. The packages
were distributed online, and workers bid on testing tasks.

'Baidu is the largest Chinese search service provider.

226

Crowdsource .

i

Tester Crowd Workers

- J

Figure 1: The procedure of crowdsourced testing

Release

:

i

Software
Under Test

Testing Tasks

Report< EI, O. D>

E: Environment

I: Input

O: Output

D: Description
_a

~

0]

Reports Bucket N

Workers were required to complete tasks in a limited time
(3-5 days in our projects). Then workers submitted test re-
ports online. Workers submitted thousands of test reports
due to financial incentive and other motivations. These test
reports had many false positive results (32%-80% in our
projects), i.e., a test report marked as “failed” that actu-
ally described correct behavior. Test reports also contained
many redundant behaviors, because workers preferred to re-
veal simple faults instead of complex faults. Testers man-
ually inspected all test reports to judge the workers’ per-
formance, i.e., their values for revealing faults. This was a
time-consuming and tedious process (nearly 12 days in our
projects). Hence, it motivated us to prioritize test reports
to improve the effectiveness of inspection in crowdsourced
testing.

The three software systems on which we conducted crowd-
sourced testing are as follows:

P1: The first project is Baidu-Input? on Android, which
can support several input methods. Testers in Baidu
provide 10 functionality sets. One crowd worker can
select one functionality set, and each functionality set
can be selected by at most two crowd workers, who
use different mobile phones and different versions of
Android.

The second project is Baidu-Browser®, which is a web
browser. Testers in Baidu provide seven functionality
sets for regression testing. One crowd worker can select
three functionality sets.

The third project is Baidu-Player?, which is a multime-
dia player. Testers in Baidu provide three performance
testing scenarios. One crowd worker should cover all
of these three scenarios.

P2:

P3:

Workers can report other problems, such as usability and
compatibility problems, in test reports.

Example Test Report. Figure 2 shows a test report com-
mitted by a worker in P2°. Workers are required to commit
test reports in a same format to facilitate processing them by
testers. A test report is a four tuple {E, 1,0, D}, in which
E,I,0 and D are as follows.

e F is test environment, including hardware and soft-
ware configuration, etc.

?http://shurufa.baidu.com/
3http://liulangi.baidu.com/
“http://player.baidu.com/

Test reports are written in Chinese in our projects. In
Figure 2, we translate them into English to facilitate under-
standing.

System Language: Chinese
Screen Resolution: 1920x1080

Environment (E) Input (1) Output (O) Description (D)
Operating System: Windows 7-64-SP1| Select menu—options in the | Screenshots: When the blocking mode
OS Version No: MS Windows 6.1.7601| browser , set “ad block” closed gy - is switched, the number of

in the Security page, open the
link “http://www.qidian.com/
Default.aspx”, and floating ads
or ads around the edge of the
web page are found; select
menu—options in the browser,
set “ad block” enhanced in the
security page, open the link to
check; switch the browser mode,
refresh the page to check again.

blocked ads is not consistent
with the previous one.

Figure 2: Example test report from P2

e [is test input, including input data and operation
steps.

e O is test output, some screenshots.

e D is test result description, any information for under-
standing faults.

Experience and Lessons. The crowdsourced workers sub-
mitted over 2000 test reports. Of these submitted test re-
ports, 757 were labeled as “failed” and as such were gathered
for manual inspection. Upon manual inspection of all test
reports that were labeled as failed, 462 of the 757 failed test
reports were false positives. In other words, 462 out of 757
test reports described behavior that was either correct be-
havior or behavior that was considered outside the behavior
of the studied software system (e.g., external problems such
as advertisements).

As an example, the test report in Figure 2 provides an
example of an actual submitted test report from the study.
The test report describes the problem of some inconsistent
advertisements in different modes. The test report is false
positive, because it is not a fault of Baidu-Browser, but in-
stead of the advertisement host site.

Through informal and extensive discussions with profes-
sional test engineers at Baidu, a number of observations and
lessons were learned:

1. The number of test reports submitted by crowdsourced
workers quickly became challenging to manually in-
spect. A larger crowdsourced testing session would
have produced prohibitively many reports to manually
inspect.

. The number of false positives were more numerous
than would have been expected, and presented chal-
lenges for inspection.

. Many of the true positives and false positives were du-
plicates of the same underlying behavior.

. Many crowdsourced workers performed many easy tasks
and reported shallow bugs, presumably due to the in-
centive structures that reward quantity of submitted
reports.

. The word choice among the true positive and false pos-
itive test reports were sufficiently consistent, when ac-
counting for word variations and synonyms.

Based on these observations by test engineers at Baidu
and informed by our discussions with them, we attempted to
assist with the processing and inspection of test reports, par-
ticularly for the scenario of crowdsourced testing for which
the plethora of reports would be even greater. Lessons 1 and
2 simply motivate the need for some automated assistance.
Lessons 3 and 4 motivate the need for looking for diversity
in test reports — test reports that are duplicate (whether

227

true positives or false positives) present the opportunity for
wasted inspection effort and delayed identification of new
true faults. Lesson 5 motivates the use of natural-language
techniques to categorize test reports in an effort to automat-
ically infer duplicate test reports.

As such, our experiences and interactions with our indus-
trial partners motivate us to use natural language techniques
(i.e., NLP) to cluster test reports. Lessons 3 and 4 have
motivated the need to prioritize these clusters to account
for diversity (i.e., our Div strategy).

However, because the goal of such prioritization is to re-
veal as many faults as early as possible, we have incorporated
an additional strategy that we are calling Risk. The Risk
strategy learns from already inspected test reports that were
manually assessed as true positive, i.e., true failures that re-
vealed true faults in the software system under test. As
such, the Risk strategy guides the prioritization order to-
ward other test report clusters that include similar words.

Finally, we note and recognize that the motivations for
Div and Risk are, in a way, at odds — Div seeks to find the
next test-report cluster most dissimilar from the already in-
spected ones, whereas Risk seeks to find the next test-report
cluster most similar to already-inspected true positives. To
account for these contrasting motivations, we created a hy-
brid strategy, DivRisk, that incorporates both Div and
Risk to both maximize the distance from inspected test re-
ports (and thus reduce inspection of duplicates and false
positives) and guide the search toward riskier software be-
havior (and thus increase discovery of new true positives).

3. METHODOLOGY

In this section, we present our test report prioritization
methods in detail. Figure 3 shows the framework of test
report prioritization, which mainly contains four steps: (1)
test report collection, (2) test report processing, (3) keyword
vector modeling, and (4) prioritizing test reports.

3.1 Test Report Collection

In our crowdsourcing projects, all test reports were com-
mitted online by workers in Fzcel files. We predefined the
format of Fxcel files, such that these test reports strictly
contained four parts E, 1,0, and D. I and D were used to
inform keywords for use by the NLP techniques. E and O
were additionally used to assist testers in test report inspec-
tion.

Running Example. In order to demonstrate our meth-
ods, we sample seven test reports (I and D) in P2 as
shown in Table 1. TR1, TR5, TR6 and TR7 are false pos-
itive test reports. That is, workers mark them as failed
test reports, but testers inspect them and judge that they

—
Synonym
Dictionary

_>| Test s Wor;j . . Sylnonym
Reports egmentation eplacement
Crowdsourced
Workers

Words

Cleaned Words

Build
Keyword
Dictionary

Build A %
Keyword Pn%nnze Test
eports
Vector

Developer

Keyword
Dictionary

Keyword
Vector Model

Figure 3: The framework of test report prioritization

are not. TR2 and TR4 reveal the same fault, denoted by
“Faultl”. TR3 reveals another fault, denoted by “Fault2”.
TRY is the example in Figure 2. Please note that all test
reports are written in Chinese, and our implementation is
written to handle Chinese test reports. In order to facili-
tate understanding, we translate them into English in the
paper, as shown in Table 1.

3.2 Test Report Processing

As shown in Figure 3, test report processing contains two
steps: word segmentation and synonym replacement.

Word Segmentation. Word segmentation is a basic NLP
task. There are many efficient tools of word segmentation for
different languages [16,20]. We adopted ICTCLAS® for word
segmentation, which is a widely used Chinese NLP platform.
I and D of test reports were segmented into words marked
with their Part-Of-Speech (POS) in the context, and then
the POS tagging was applied. Hidden Markov models were
used in the POS tagging [1]. Finally, the bi-gram model [3]
was introduced to count the classes of words.

Synonym Replacement. In crowdsourced testing, test re-
ports are committed by part-time workers or self-identified
volunteers, who are often from different workplaces. Work-
ers have different preferences of words and different habits of
expression. Some words in test reports are meaningless for
revealing faults. Hence, we filtered out these useless words
(often referred to as “stop words” in the NLP literature).
Prior studies show that verbs and nouns are most impor-
tant to reflect the content of a document [31,43]. Hence,
we retained only verbs and nouns as candidate keywords of
test reports and filtered out other words. Also, workers of-
ten use different words to express the same concept. For
example, “thumb keyboard” and “nine-grids keyboard” refer
to the same layout of keyboard in Chinese. We introduced
the synonym replacement technique in NLP to alleviate this
problem. In our method, we adopted the synonym library of
Language Technology Platform (LTP) [6], which is largely
considered as one of the best cloud-based Chinese NLP plat-
forms.
Example. In our example, keywords are extracted from
test reports, shown in Table 2. For example, “compatibil-
ity” indicates that TR1, TR2 and TR4 may report some
compatibility problems; “menu” indicates that TR6 and
TR7 may report some problems related to menu options.

3.3 Keyword Vector Modeling

The next step is to build the keyword vector model K'V'.
We then create the risk vector RV and the distance matrix
DM based on KV.

Shttp://ictclas.org/

228

Keyword Dictionary. Keywords extracted from test re-
ports play an important role in test report prioritization.
In order to summarize the information contained within the
keywords, we count the frequencies (.e., the number of oc-
currence) of keywords. In practice, we set a threshold ¢ to
remove some keywords with low frequency to improve the
effectiveness. As a result, a keyword dictionary is built.

Example. Table 3 shows the keyword dictionary of the 7
test reports. In the example, € = 2, i.e., all keywords with
frequency < 2 in Table 2 are removed to produce Table 3.

Keyword Vector. Based on the keyword dictionary, we
construct a keyword vector for each test report tr; = (e; 1,
€i,2," "+ ,€im), in which m is the number of keywords in
keyword dictionary. We compute that e; ; = 1 if the ith test
report contains the jth keyword in keyword dictionary; and
e;,j = 0 otherwise.

Example. Table 4 shows the keyword vector model KV of
the seven test reports, in which the ith row is the keyword
vector of TR, i.e., KV (i,*) = tr;. KV is an n X m matrix
for n test reports and m keywords in keyword dictionary.

Risk Vector. Keywords in a test report reflect their values
of revealing faults to some extent. For example, the most
frequent word is “click” in Table 3. However, we cannot claim
that “click” is the most important one for revealing faults,
because “click” is a common operation in a browser. We can
simply count the number of “1”s in the keyword vector as
the risk value of test report, denoted by RV (i) = """,
RV is an n x 1 vector for n test reports, as shown in Table
5.

€i,j-

Distance Matrix. Based on the keyword vector matrix
KV, we can calculate the distances of each pair of test re-
ports. In this work, we adopt the Hamming distance. That
is, for two keyword vectors tr; and try, we count the number
of different e;,; and eg,; in the corresponding position j, as
the distance D(¢r;,trr). The inverse distance indicates the
similarity of test reports.

Example. As a result, we construct an n x n distance
matrix for n test reports. For example, the distance
matrix of the seven test reports is shown in Table 5.
D(tri,tr2) = 3, for TR1 and TR2 have 3 different key-
words; D(tr1,tr7) = 20, for TR1 and TR7 have 20 different
keywords in the keyword dictionary.

3.4 Prioritization Strategy

In this subsection, we present three prioritization strate-
gies: Risk, Div and DivRisk, based on the risk vector RV
and the distance matrix DM, which are calculated based on
the keyword vector model K'V'.

Table 4: Keyword Vector Model: KV

No. T [23] 4[5 [6 7 [8 910 1t 12 13 14 [15 [16 [17 [18 [19 [20 [21 [22 | 23 | 24 | 25 | 26
TRI [1 |0 | 1[0 |t]o]o]|¢t]|o 1 0 1 1 0 0 0 1 0 0 0 0 0 0 1 1 1
TR2 | 1 |0 | L [0t]o]o]|1t]|o 1 0 1 1 0 0 0 1 0 1 0 0 0 1 1 0 1
TR3 | 0 |0 |0 [1|0 o][1]|]o]1 0 0 0 0 1 1 0 0 1 0 0 1 1 0 1 0 0
TR4 | 1 |0 |0 [1|0]o]o0o]o0]oO 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 1 1
TR5 |0 |0 |00 |01 [1]o0]oO 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0
TR6 | 0 | L [0 [0 |0 o[t]|]o0]1 0 1 0 0 1 1 1 1 1 1 1 1 0 T T 0 0
TR7 | L | L [0 [0 o0t][1t]o]1 0 1 0 1 1 1 1 1 1 0 1 1 T T T 0 0

Table 1: Seven test reports from P2 Table 2: Keywords from 7 test reports

No. I D Result No. Keywords

TR1 Login renren.com in compatibility The page content Non- NG B g
mode, click on “Personal Home- is not consistent fault TR1 compatlblh‘ty/n, mOd?/n’ logm/v, Clle/V, person/n, home-
page” or “Send a Gift”(to friends), | before clicking the page/n, friend/n, gift/n, back/v, button/n, forwad/v,
then after clicking the back but- | back button with page/n, content/n
ton, click the forward button. the content after TR HH I Tom Tick

clicking the forward enter/v, compatibility/n, mode/n, login/v, click/v,
button. friend/n, link/n, person/n, homepage/n, button/n, load/v,

TR2 | Enter compatibility mode, login | It can go back to | Faultl back/v, page/n
renren.com, click one of the friend | friend page only af- T I - -
links, then click the “Personal | ter clicking the back R3[| open/v, browser/n, tool/n, Op.tlons/n7 security/n, ads/n,
Homepage” button , click the back | button twice. block/v, select/v, address/n, input/v, page/n, corner/n,
button after loading. l’lOt/V

TR3 Open the browser, select Ads on the lower Fault2 NG 0 0
tools—options—security, set right of the page are TR4 compatlblhty/n, moqe/n’ IHPUt/V’ groupon/v, Cth/n7
“ad block” enhanced , input | not blocked success- search/v, button/n, icecream/n, redbull/n, back/v, for-
“http://soudu.org/” in the ad- | fully. ward /v, result/n
dress bar. — — -

TR4 | In the input box in Baidu home- | The page content | Faultl TR5| open/v, browser/n,.mammlze/v, C(?ndltlon/n, wait/v, pro-
page , search “group buying” in | is not consistent gram/n, load/v, finish/v, do/v, switch/v, fullscreen/n, ap-
compatibility mode. Next, search | before clicking the ear/v. system/n. task/n. miss/v. possibility /n. mouse/n
“jce cream” and the “red bull”, back button with ph /b’ 31’ /m, /n, /vy p y/n, /n,
double click the back button and | the content after thumbnail/n, restore/v
then click the forward button | clicking the forward TR6| browser/n, click/n, menu/n, options/n, security/n, page/n,
once. button . H

ads/n, block/v, close/v, open/v, link/n, load/v, find/v

TR5 Open the browser, in maximized Sometimes the Non- t / ,th {1 ’k f/l’ P / ’ / ’ / ’ / ’
mode, wait for the program to bug appears when Fault streng /I], chec /V, al /V
load and then switch the program, taskbar at the bot- TR7 browser/n, click/n, menu/n, options/n, security/n, page/n,
which means rapid and continual tom of the system ; _
full-screen switch. do not disappear, ?‘ds/n,]‘JIOCk/V, closed/v, OP?D(V, llnk/n, appear/v, f‘ioat

especially when ing/v, strength/n, check/v, switch/v, mode/n, refresh/v,
open other browser button/n, select/v, change/v, number/n
simultaneously

When the system . 4

is busy, the bug is Table 3: Keyword Dictionary

more likely to occur. No. Word Freq.[No. Word Freq
Move the cursor onto

some task and after K1 button 4 K2 strength 2
the appearance of K3 homepage 2 K4 input 2
the task, the system K5 person 2 K6 switch 2
operates correctly. :

TRG | Select menu—options in the | Ads blocking failed. Non- K7 browser 4 K8 friend 2
browser, set “ad block” closed in Fault K9 options 3 K10 login 2
the security page, open the link K11 check 2 K12 back 3
“http://www.narutom.com/” and
pop-up ads are found while load- K13 m.ode 4 K14 block 3
ing; select menu—options in the K17 click 5 K18 ads 3
browser, set “ad block” enhanced K19 load 3 K20 menu 2
in the Security page, open the .
link “http://www.narutom.com/” K21 lsecfjrlty 3 K22 select 2
to check again. K23 lin 3 K24 page 5

TRT Select menu—options in the When the blocking Non- K25 forward 2 K26 Compatibility 3
browser , set “ad block” closed | mode is switched, | Fault
in the Security page, open the link | the number of . i i m o
“http://www.qidian.com/Default.aspxBlocked ads is not That is, for each i, RV (i) = > """ | KV (4,7).
and floating ads or ads around the | consistent with the =
edge of the web page are found; | previous one. . . .
et mentreptiens 1 the Example. Because TR2 is determined to be a true fail-
browser, set “ad block” enhanced ure, the risk values of TR1, TR3, TR4 and TR5 are up-
in the security page, open the * * %
link to check; switch the browser dated to 13(1140.2*10), 9.2(9+0.2*%1), 8.0(7+0.2*5) and
mode, refres he page to chec . .
again, 4.2(440.2*1), respectively. That is, for TR1, TR3, TR4

Risk. I der & | fault I ble. it i and TR5, there are 10, 1, 5 and 1 same keywords as TR2,

1SX. ! 1L order hO reveal laults as early as EOSSI €, 1 kls respectively. In this way, we can get the final prioritiza-

natural to grve the top priority to 1.nspect the I.HOSt nsky tion result of test reports: QTR = {TR7, TR6, TR2, TR1,
test report, i.e., the test report TR: with the highest risk TR3, TR4, TR5}
b b .

value RV (¢). If multiple test reports share the highest risk
value, one of them is selected for inspection. Let QTR be
the ordered set of already inspected test reports.

Example. Based on the risk values in Table 5, TR7
(RV(7) = 17) is first selected for inspection. Then TR6
(RV(6) = 14) is selected for inspection, followed by TR2
(RV(2) = 12). At this point of processing, QTR = {TR7,
TR6 TR2}.

We adopt a dynamic prioritization strategy based on the
risk values and the inspection results. That is, if TRk is
inspected and determined to be a true failure, all keywords
of TRk in KV are increased by ¢ (§ = 0.2 in our projects).
The algorithm of updating KV is shown in Algorithm 1.
Based on the new KV, the risk values in RV are updated.

229

Div. The Div strategy is based on the diversity principle of
test selection [5,8,17,27]. We prefer to select the test report
tr; with the maximal distance to QTR. Without confusion,
QTR is also used to denote the set of keyword vectors {¢r;}
of already inspected test reports. The distance of tr and
QTR, denoted by D(tr, QTR), is defined by the maximum
distance between tr and each ¢r; in QTR, i.e. D(tr, QTR) =
Maxir,corr{D(tr,tr:)}.

Example. We use the seven test reports to demon-
strate Div based on the distance matrix in Table 5. Ini-
tially, the most risky test report TR7 is selected, thus
QTR = {TRT7}. For the next test report, since the maxi-
mum distance is D(tr1, QTR) = 20, TR1 is selected. Thus,

Table 5: Distance Matrix DM and Risk Vector RV
DM | TR1 | TR2 | TR3 | TR4 | TR5 | TR6 | TR7 || RV
TR1 0 3 18 6 15 21 20 11
TR2 3 0 19 9 14 18 19 12
TR3 | 18 19 0 14 9 9 10 9
TRA4 6 9 14 0 11 19 18 7
TR5 | 15 14 9 11 0 12 15 4
TR6 | 21 18 9 19 12 0 5 14
TR7 | 20 19 10 18 15 5 0 17

Algorithm 1 updateKV(KV, §, k)

1: for all j do

2: if KV (k,j) > 0 then

3: for all i do

4: KV (i,j):= KV (i,j) +6
5: end for

6: end if

7: end for

8: return KV

QTR = {TR7, TR1}. And then TR5 is selected, because
D(trs, QTR) = 15 is the maximum distance for the re-
mained test reports. In this way, we can get the final pri-
oritization result of test reports: QTR = {TR7, TR1, TR5,
TR3, TR4, TR6, TR2}.

DivRisk. In order to reveal faults as early as possible and
as many as possible, Risk and Div are combined to a hybrid
strategy DivRisk. The algorithm of DivRisk is shown in
Algorithm 2. The risk value vector RV and distance matrix
DM can be calculated based on KV (Line 1-2). Initially,
the most risky test report is selected for inspection (Line
4-6). Then, a candidate set CTR is constructed by select-
ing n. test reports with maximum distance(s) D(tr;, QTR)
(Line 8). The most risky test report in CTR is selected for
inspection (Line 9-11). If the inspected test report is a failed
one and ¢ > 0, the keyword vector KV will be updated by
Algorithm 1 and the risk value vector RV will also be up-
dated (Line 12-15). Finally, the prioritization result QTR
is returned.

Algorithm 2 DivRisk(KV, ne, §)

. For each i,j, DM (i,j) := D(KV (4,:), KV (j,:))

¢ For each i, RV (i) := 3°7"; KV (i, j)

TR{1,2---,n}: n is the number of rows in KV

QTR := {TRk}: TRk with the highest risk value RV (k) in TR

QTR:=QTRU {TRk}

TR:=TR — {TRk}

. while |TR| # 0 do

CTR:= Select n. reports TRi with the largest distances

D(tr;, QTR)

9: Select the test report TRk with the highest risk value in CTR
for inspection

10: QTR:=QTR U {TRk}

11: TR:=TR - {TRk}

12: if TRk is a failed test report by inspection AND § > 0 then

PP o

13: KV := updateKV (KV, 6, k)
14: For each i, RV (i) := 357" KV (i, j)
15: end if

16: end while
17: return QTR

Example. We use the seven test reports to demonstrate
DivRisk. Initially, TR7 is selected for inspection, for it
is most risky. QTR = {TRT7}. Since the number of test
reports is small in this example, we set n. = 2 to facilitate
demonstration. The candidate set CTR = {TR2, TR1},
for D(tre, QTR) = 20 and D(tr1, QTR) = 19 are the two

Table 6: Summary of Test Reports

Project P1 P2 P3
Report 274 231 252
F-Report 186 47 62
% F-Report | 67.88% | 20.35% | 24.60%
Fault 27 22 18

largest ones. TR2 is selected for inspection, for TR2 is
more risky than TR1, i.e. RV(2) =12 > RV (1) =11. In
this way, we can get the final prioritization result QTR =
{TR7, TR2, TR3, TR4, TR6, TR1, TR5}.

The hybrid strategy DivRisk will be reduced to the risk
strategy Risk if n. > |TR|, and it will be reduced to the
diversity strategy Div if n. = 1. Hence, we need to set a
modest number to n. (n. = 8 in our projects) for a reason-
able hybrid result.

4. EXPERIMENT DESIGN

In this study, we evaluated our test report prioritization
methods: Risk, Div and DivRisk with three crowdsourced
testing projects. In our projects, § = 0.2 and n. = 8 as
described above.

4.1 Comparison Baseline

In order to verify the effectiveness of our prioritization
methods, three baselines for comparison are selected. The
first baseline of comparison was the Random strategy, which
is widely used in software testing. Given a set of finite num-
ber of test reports, all possible orderings of test reports could
be enumerated in theory. Supposing that we know which
test reports are truly fault revealing in advance, the Best
and the Worst prioritization results could be determined.
For example, {TR2, TR3, TR4, TR1, TR5, TR6, TR7} is
one of the best prioritization results and {TR7, TR1, TRS5,
TR6, TR2, TR4, TR3} is one of the worst prioritization re-
sults. In order to fairly compare these prioritization meth-
ods, the experiment was repeated 50 times to collect exper-
imental data.

4.2 Test Report

In our projects, all test reports were manually inspected
by testers without any prioritization method. We carefully
checked the inspection results again and get the final inspec-
tion results, as summarized in Table 6.

In Table 6, “# Report” is the number of test reports
marked as failed by workers. These test reports were col-
lected in the test report bucket. Testers inspected these test
reports to judge whether they could reveal faults. “# F-
Report” and “% F-Report” are the number and the percent-
age of test reports judged as failed ones by testers, respec-
tively. In practice, some tests may reveal same faults. “#
Fault” is the number of faults revealed by these test reports.

4.3 Research Question

In the experiment, we investigated the following research
questions.

e RQ1: Can our prioritization methods improve the ef-
fectiveness of test report inspection?

If we have no prioritization method on-hand, testers will
inspect test reports in a random order. That means, testers
would be motivated to adopt a prioritization method only
if it can outperform the Random strategy. RQ1 evaluates

the effectiveness of our prioritization methods Risk, Div
and DivRisk.

e RQ2: How large is the gap between our prioritization
methods and Best?

In practice, it is difficult to design one method that can
work well in all cases. Hence, it is valuable to know the gap
between the on-hand methods and the best one in theory.
RQ2 evaluates the room for improvement of our prioritiza-
tion methods.

4.4 Evaluation Metric

In order to measure the effectiveness of prioritization meth-
ods, we adopt the APFD (Average Percentage of Fault De-
tected) [34], which is a widely used evaluation metric in test
case prioritization [22]. For each fault, we mark the index
of the first test report which reveals it. Based on the order
of the test reports and information about which test reports
revealed which faults, we can calculate the APFD values
to measure the effectiveness of the prioritization methods.
A higher APFD value indicates a better prioritization re-
sult. That is, it can reveal more faults earlier than the other
methods do. APFD is formalized as follows.

Tir+ T2+ oo + T 1 (1)
nx M 2xn

in which, n denotes the number of test reports and M de-
notes the total number of faults revealed by all test reports.
Ty, is the index of the first test report that reveals fault i.

APFD indicates the fault detection rate of all test reports.
However, testers cannot inspect a large number of test re-
ports in limited time. In practice, testers will stop inspect-
ing test reports when the limited resource is used up. At
that time, testers may only inspect 25% or 50% test re-
ports. Therefore, we should evaluate how APFD varies for
permutations of the same set of test reports [15]. We use
the linear interpolation [22] as follows.

APFD =1—

e M denotes the total number of faults revealed by all
test reports.

e p € {25%, 50%, 75%}, the percentage used in our ex-
periment.

e (Q = M X p, which is the number of faults correspond-
ing to a percentage. Let int(Q) and frac(Q) be the
integer part and fractional part of @, respectively. If
frac(Q) = 0, the linear interpolation is needed.

e i j are the indexes of reports that reveal at least @
and Q+1 faults respectively. The linear interpolation
is calculated as i + (j — i) X frac(Q)

The linear interpolation value indicates the cost of testing
to detect the given number of faults. Hence, a lower value of
linear interpolation indicates a better prioritization result.

S. RESULT ANALYSIS

In this section, we analyze the experimental results to an-
swer RQ1 and RQ2. The results of all prioritization methods
are shown in Figure 4. Figure 4 (a, ¢, and e) shows the box-
plots of APFD results of the three projects (P1-P3) for the
50 experimental runs. The prioritization methods are shown
on the horizontal axis, and the APFD values are shown on
the vertical axis. The blue horizontal line in Figure 4 (a,
¢, and e) denotes the Best APFD value, in theory, for that

231

Table 7: Bonferroni Means Separation Tests

Method | APFD | Improvement Gap
Means | Spapiom | Bes~
P1: F(3, 200) = 1549.27, p-value < 0.0001
DivRisk 0.8879 29.66% 7.07%
Div 0.8094 18.20% 17.46%
Risk 0.7639 11.55% 24.45%
Random | 0.6848 — 38.83%
Best 0.9507 38.83% —
P2: F(3, 200) = 474.15, p-value < 0.0001
DivRisk 0.8113 34.52% 17.39%
Div 0.7167 18.84% 32.89%
Risk 0.7158 18.69% 33.05%
Random | 0.6031 — 57.92%
Best 0.9524 57.92% —
P3: F(3, 200) = 90.42, p-value < 0.0001
DivRisk 0.7686 14.29% 25.46%
Risk 0.7165 6.54% 34.58%
Div 0.6962 3.52% 38.51%
Random | 0.6725 — 43.39%
Best 0.9643 43.39% —

subject. Figure 4 (b, d, and f) shows the average growth
curves of the three projects (P1-P3). The percentage of the
inspected test reports is shown on the horizontal axis, the
the percentage of revealed faults is shown on the vertical
axis.

5.1 Addressing RQ1

RQ1: Can our prioritization methods improve the effective-
ness of test report inspection?

Based on the results shown in Figure 4 (a, ¢, and e), we
can find that all of our prioritization methods outperform
Random. In particular, DivRisk can outperform Ran-
dom significantly. The hybrid strategy DivRisk can also
improve the single strategies Risk and Div. Moreover, the
box-plots show that our methods are substantially more sta-
ble than Random. Figure 4 (b, d, and f) show the average
growth curves. The line charts in Figure 4 (b and d) show
that DivRisk presents smooth curves to the top (Best).

In order to further investigate our test report prioritiza-
tion methods, we do Bonferroni means separation tests for
all results in Table 7. All F-values are very large and the all
p-values are much smaller than 0.001 in Table 7. Compared
with the Random strategy, the percentage of improvement
of DivRisk ranges 14.29%-34.52%. In summary, the ex-
perimental results are encouraging for the use of the hybrid
DivRisk strategy in practice.

In summary, we find that our prioritization methods can
improve the effectiveness of test report inspection.

5.2 Addressing RQ2

RQ2: How large is the gap between our prioritization meth-
ods and Best?

Figure 4 shows that the hybrid strategy DivRisk provides
the best approximation of the Best result in P1 and P2. For
P3, DivRisk provides one of the best results, but there is
a larger gap between its results and the Best result than
we found for P1 and P2. For more details, we can observe
the growth curves in Figure 4. The curves of Best grow
very fast. The curves of DivRisk reach the curves of Best
when we have inspected nearly 30% test reports in P1-P2
and nearly 60% test reports in P3.

Table 7 shows the gaps between our prioritization meth-
ods and Best. The gap between DivRisk and Best on P1
is small (7.07%). Please recall that the results of Best are

APFD

APFD

APFD

Best
0.95
0.90 4
$
0.85 4
050] —
0.75 4 #’
070+ Random
0654 Risk
i Div_
0.60 DivRisk
T T T T
Random Risk Div DivRisk
(a) APFD on P1
109 Best
0.9
0.8 $
}———'T [T]
0.7 T T
0.6 []Random
Risk
05 L_|Dv
DivRisk
0.4 T T T T
Random Risk Div DivRisk
(c) APFD on P2
Best
0.95 -
0.90 4
0.85 4
0.80
0.75 4 T
_
070 L ?‘
0.65 Random
Risk
060 _|piv
0.55 is DivRisk
0.50 T T T T
Random Risk Div DivRisk

(e) APFD on P3

Percentage of Detected Faults Percentage of Detected Faults

Percentage of Detected Faults

0.0

— Random

— Risk

H —— Div
—— DivRisk

I | ——worst

H — Best

T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
Percentage of Inspected Reports

(b) Average Fault Detection Rates on P1

—— Random
Risk

—— Div
DivRisk
Worst

— Best

T T T T T M
0.2 0.4 0.6 0.8 1.0
Percentage of Inspected Reports

(d) Average Fault Detection Rates on P2

——Random
—— Risk
—— Div
DivRisk
—— Worst
— Best

0?4 0?6 o{s 1.0
Percentage of Inspected Reports

(f) Average Fault Detection Rates on P3

Figure 4: Experimental Results (50 times)

232

Table 8: Linear Interpolation (the average number
of inspected test reports)

Pro. | Tech. 25% 50% 75% 100%
Random 35.34 75.83 | 116.96 196.6
Risk 21.12 51.64 94.19 190.7
P1 Div 22.39 46.80 81.27 123.5
DivRisk 8.885 | 20.38 43.09 | 99.20
Best 6.750 13.50 20.25 27.00
Random 33.37 74.86 138.3 217.5
Risk 8.780 56.22 106.4 201.2
P2 Div 9.200 47.46 121.2 170.1
DivRisk 21.97 | 36.24 66.93 | 98.30
Best 5.500 11.00 16.50 22.00
Random 22.25 61.72 122.2 226.8
Risk 32.90 57.14 83.01 230.2
P3 Div 23.88 61.16 104.4 246.4
DivRisk 14.90 | 42.44 95.94 | 145.3
Best 4.500 9.000 13.50 18.00

purely hypothetical and based on an unrealistically omni-
scient best-case analysis. Hence the result of DivRisk may
be, or at least approximate, the best one in practice. The
gaps on P2 and P3 may be, thus, acceptable (17.79% and
25.49%) in practice, and moreover, do improve the ordering
of unordered or random ordering.

In order to explain the results more clearly, we calculate
the linear interpolations shown in Table 8. Table 8 shows
the average numbers of inspected test reports in the cases of
detecting 25%, 50%, 75% and 100% faults. If we need to re-
veal 25% or 50% faults, DivRisk is near to Best. However,
if we need to reveal more faults, there may be room for ad-
ditional improvement. A strange phenomenon is worthy of
attention: Risk outperforms DivRisk for the 25% level of
inspected faults faults for P2 and the 75% level of inspected
faults for P3. This result may be due to the heuristic na-
ture of these methods and will be a subject of additional
investigation in the future.

In summary, we find that our prioritization methods can
provide a reasonable approrimation for the theoretical Best
result for some software subjects, and for other subjects pro-
vide some of the smallest gaps. In all cases that we studied,
it provided better than the unordered or random ordered test
reports.

5.3 Discussion

Method Selection. The idea of prioritization is widely
used in software engineering, especially in software testing.
Crowdsourced testing is usually conducted in rapidly iter-
ative software development. In this situation, we can only
inspect a subset of test reports for revealing and fixing faults
before software release. Hence, test report prioritization
plays a key role for a cost-effective result of crowdsourced
testing. Our prioritization methods contain two key parts:
the risk strategy (Risk) and the diversity strategy (Div).
In software development, we need to reveal as many faults
as possible, i.e., Div. In contrast, we need to inspect the
most probable “true failure” test reports early, i.e., Risk.
These two requirements of crowdsourced testing drive us to
design a hybrid prioritization method DivRisk by combin-
ing Risk and Div. Therefore, it is not surprising that Di-
vRisk can outperform the random prioritization technique
significantly.

Mobile Application Testing. DivRisk shows different
effectiveness in different crowdsourcing projects. The P1
project involves mobile application testing. The effective-
ness of DivRisk in P1 was very encouraging and approxi-

233

mated Best. We reviewed the test reports in P1 and dis-
cussed with testers in Baidu. Since workers used different
mobile phones and different versions of Android, they re-
ported many compatibility problems of the application un-
der test. The compatibility problems were easier to iden-
tified than other problems for mobile applications. More-
over, part-time workers (crowd workers here) preferred to
select testing tasks of mobile applications, because it could
be done anywhere and any time. Therefore, it is not surpris-
ing that the prioritization results of P1, as shown in Table
6, were more effective than on P2 and P3. Workers commit-
ted more test reports and revealed more faults on P1 than
on P2 and P3. The percentage of useful test reports (i.e.,
F-report) is 67.88%, which was better than P2 (20.35%) and
P3 (24.60%). The high quality test reports can help our test
report prioritization methods, because our methods rely on
keywords from test reports. As such, such crowdsourced
testing and prioritization methods may be a good fit for
mobile application testing.

Cost and Scalability. The total cost of test report pro-
cessing in our projects is less than 10 minutes. Please note
that our prioritization algorithms only involve numerical cal-
culation on KV, RV and DM . Hence, the cost of test report
prioritization methods may be negligible. The DivRisk al-
gorithm is flexible. For example, we can set 6 = 0 in Algo-
rithm 2, and as a result, the dynamic prioritization strategy
are reduced to a static prioritization strategy. The static
prioritization strategy does not rely on inspection. Hence,
it can be fully automated and be more efficient, although
the results may be worse. Moreover, DivRisk does not rely
on the languages of test reports. DivRisk can also be used
for test reports written in other languages by using other
NLP tools for other natural languages. For example, we can
adopt Stanford CoreNLP” for word segmentation [19] and
WordNet® for synonym replacement [26] to process English
test reports, and build keyword vector model KV. Based
on KV, we can use the DivRisk algorithm for English test
report prioritization.

5.4 Threats to Validity

There are some general threats to validity in our empirical
study. For example, we need more projects and different
parameter values to reduce the threat to validity.

Subject selection bias. These three crowdsourced test-
ing projects are from industry. The software products are
widely used on the Internet, and were not especially de-
signed for our study. Due to the limited cost, we only re-
quired the industry partner to provide crowdsourced testing
tasks that could be finished in 5 days. The cost of conduct-
ing our empirical study was very expensive (involving more
than 200 people), so we have only three projects in our em-
pirical study. This may threaten the generalization of our
conclusions. However, the software products used in our
crowdsourced testing projects are diverse. This may reduce
the threat to some extent.

Crowd worker relation. “Crowdsourcing” often requires
workers from a large pool of individuals that one has no di-
rect relationship with the others [21]. In our experiment,
the students play the roles of crowd worker [7], which means

"http://nlp.stanford.edu/software/corenlp.shtml
8http://wordnet.princeton.edu/wordnet/

our crowd workers have certain social relations, and we have
only nearly 230 crowd workers. The results may be differ-
ent if the crowd workers are from Internet with open calls.
However, Salman et al. [36] found that that if a technique is
new to both students and professionals, similar performance
can be expected to be observed. As such, we believe that
this may not be a key point for our test report prioritization
techniques.

Data quality. The materials of crowdsourced testing are
prepared and distributed by the industrial testers. All test
reports are committed by workers online directly. We checked
all data and participated in the discussions of the final in-
spection results. In summary, all data used in this paper
are from industry and the results were checked carefully by
professional testers of Baidu. This may reduce the threat to
the validity of data quality.

6. RELATED WORK

In this section, we discuss three areas related to our work:

test case prioritization, failure report classification, and crowd-

sourced testing.

Test Case Prioritization. Test case prioritization has
been intensively studied in the past decades [41]. We only
discuss some test case prioritization techniques using dis-
tance. W. Dickinson et al. [10] studied cluster filtering tech-
niques and proposed an adaptive sampling strategy to select
all tests in a cluster when a failed test is inspected. Yan et
al. [40] proposed ESBS, inspired by the intuitions of fault
localization, that uses spectra information in clustered test
selection. Jiang et al. [18] studied test case prioritization in
regression testing and proposed a new family of coverage-
based adaptive random testing techniques to replace tradi-
tional random testing. Fang et al. [14] introduced ordered
sequences of program entities to improve the effectiveness of
test case prioritization and proposed several novel similarity-
based test case prioritization techniques based on the edit
distances of ordered sequences. Ledru et al. [22] proposed
techniques to prioritize test cases based on the text of test
data rather than code or specifications and provided empir-
ical results on different distances. Yoo et al. [42] proposed
a cluster-based test case prioritization technique incorporat-
ing expert knowledge to reduce the cost of pair-wise com-
parisons.

Test case prioritization techniques rely on surrogates for
fault detection (such as statement coverage), and hope that
satisfying these surrogates earlier will lead to an increasing
fault detection rate [15,32]. Most of test case prioritization
techniques use execution profiles, whereas our prioritization
techniques use test reports in natural language. Test case
prioritization increases fault detection rate by executing test
cases. Test report prioritization increases fault detection
rate by inspecting test reports.

Failure Report Classification. Failure report classifica-
tion is also related to test report prioritization. Runeson et
al. [35] investigated using NLP techniques to support the
identification of duplicated failure reports. They took the
words in the failure reports in plain English, processed the
text, and then used the statistics on the occurrences of the
words to identify similar reports. Lo et al. [24] addressed
software reliability issues by proposing a method to classify
software behaviors based on past history or runs. Bowring

234

et al. [2] classified program behavior using execution data.
Dhaliwal et al. [9] reduced the bug fixing time by using the
stack traces and runtime information to group the crash re-
ports triggered in different usage scenarios. Wang et al. [38]
proposed a technique combining natural language and exe-
cution information to detect duplicate failure reports.
These techniques take some information (whether natural
language or runtime information) about failures and attempt
to classify them. Test report prioritization, in contrast, at-
tempts to not only find duplicates, but to order the test
cases in a way that facilitates faster inspection by testers.

Crowdsourced Testing. Crowdsourced testing is already
popular in industry, and it is a fairly new trend in soft-
ware engineering research community. Crowdsourcing is the
act of taking a job traditionally performed by a designated
agent (usually an employee) and outsourcing it to an un-
defined, generally large group of people in the form of an
open call [13,25]. Liu et al. [23] applied crowdsourced test-
ing in usability testing. They studied both methodological
differences for crowdsourcing usability testing and empirical
contrasts to results from more traditional, face-to-face us-
ability testing. Pastore et al. [29] studied whether it is pos-
sible to exploit crowdsourcing to solve the oracle problem:
generated test input depends on a test that oracle requires
human input in one form or another. Dolstra et al. [11] used
crowdsourced testing to accomplish the expensive tasks on
GUI testing. They use virtual machines to run the system
under test and enable semi-automated GUI testing by crowd
workers. Nebeling et al. [28] evaluated the usability of web
sites and web-based services with crowdsourcing data, where
they showed that crowdsourcing data could provide an effi-
ciently and effective testing method to the web interfaces.

All the studies above use crowdsourced testing to solve
some problems in traditional software testing activities. How-
ever, we propose test report prioritization methods to solve
the problem of crowdsourced testing.

7. CONCLUSIONS

In this paper, we proposed a novel test report prioriti-
zation method DivRisk to reduce the cost of inspection
in crowdsourced testing. The keywords are extracted from
test reports by using NLP techniques. These keywords con-
struct a keyword vector model K'V. We calculate the risk
vector RV based on KV to predict failure risk of tests.
We construct the distance matrix DM based on KV to
design the diversity strategy for prioritization. The risk
strategy and the diversity strategy are combined to a hy-
brid strategy DivRisk to fulfill effective test report priori-
tization. Three crowdsourced testing projects from industry
have been used to evaluate the effectiveness of test report
prioritization methods. The results of empirical study en-
courage us to use DivRisk for test report prioritization in
practice, especially for mobile application testing. We also
provide guidelines to extend our prioritization methods to
deal with test reports written in other languages.

Acknowledgments.
the National Basic Research Program of China (973 Program
2014CB340702), the National Natural Science Foundation of China
(61170067, 61373013), and the National Science Foundation un-
der awards CAREER CCF-1350837 and CCF-1116943. The au-
thors would like to thank the testers in Baidu for their great
efforts in supporting the three crowdsourced testing projects.

This work is partially supported by

8.
[

[13]

[14]

[15]

REFERENCES

P. Awasthi, D. Rao, and B. Ravindran. Part of speech
tagging and chunking with hmm and crf. Proceedings
of NLP Association of India Machine Learning
Contest, 2006.

J. F. Bowring, J. M. Rehg, and M. J. Harrold. Active
learning for automatic classification of software
behavior. ACM SIGSOFT Software Engineering
Notes, 29(4):195-205, 2004.

P. F. Brown, P. V. Desouza, R. L. Mercer, V. J. D.
Pietra, and J. C. Lai. Class-based n-gram models of
natural language. Computational Linguistics,
18(4):467-479, 1992.

N. Chen and S. Kim. Puzzle-based automatic testing:
bringing humans into the loop by solving puzzles. In
Proceedings of the 27th IEEE/ACM International
Conference on Automated Software Engineering, pages
140-149. ACM, 2012.

T. Y. Chen, F.-C. Kuo, R. G. Merkel, and T. Tse.
Adaptive random testing: The art of test case
diversity. Journal of Systems and Software,
83(1):60-66, 2010.

W. Chen, Z. Li, and T. Liu. Ltp: A chinese language
technology platform. In Proceedings of the 23rd
International Conference on Computational
Linguistics: Demonstrations, pages 13—16. Association
for Computational Linguistics, 2010.

Z. Chen and B. Luo. Quasi-crowdsourcing testing for
educational projects. In Proceedings of the 36th
International Conference on Software Engineering,
ICSE Companion, pages 272-275. ACM, 2014.

Z. Chen, J. Zhang, and B. Luo. Teaching software
testing methods based on diversity principles. In
Proceedings of the 24th IEEE-CS Conference on
Software Engineering Education and Training, pages
391-395. IEEE Computer Society, 2011.

T. Dhaliwal, F. Khomh, and Y. Zou. Classifying field
crash reports for fixing bugs: A case study of mozilla
firefox. In Proceeding of the 2011 IEEE International
Conference on Software Maintenance, pages 333-342.
IEEE, 2011.

W. Dickinson, D. Leon, and A. Podgurski. Pursuing
failure: the distribution of program failures in a profile
space. 26(5):246-255, 2001.

E. Dolstra, R. Vliegendhart, and J. Pouwelse.
Crowdsourcing GUI tests. In Proceedings of the IEEE
6th International Conference on Software Testing,
Verification and Validation, pages 332-341. IEEE,
2013.

S. Elbaum, A. G. Malishevsky, and G. Rothermel.
Test case prioritization: A family of empirical studies.
Software Engineering, IEEE Transactions on,
28(2):159-182, 2002.

E. Estellés-Arolas and F. Gonzélez-Ladrén-de
Guevara. Towards an integrated crowdsourcing
definition. Journal of Information science,
38(2):189-200, 2012.

C. Fang, Z. Chen, K. Wu, and Z. Zhao.
Similarity-based test case prioritization using ordered
sequences of program entities. Software Quality
Journal, 22(2):335-361, 2014.

C. Fang, Z. Chen, and B. Xu. Comparing logic

235

(16]

(17]

(18]

(19]

20]

21]

(22]

23]

(24]

(25]

[26]

27]

(28]

29]

30]

coverage criteria on test case prioritization. SCIENCE
CHINA Information Sciences, 55(12):2826-2840, 2012.
S. Foo and H. Li. Chinese word segmentation and its
effect on information retrieval. Information processing
& management, 40(1):161-190, 2004.

H. Hemmati, A. Arcuri, and L. Briand. Achieving
scalable model-based testing through test case
diversity. ACM Transactions on Software Engineering
and Methodology (TOSEM), 22(1):6, 2013.

B. Jiang, Z. Zhang, W. K. Chan, and T. Tse.
Adaptive random test case prioritization. In
Proceedings of the 24th IEEE/ACM International
Conference on Automated Software Engineering, pages
233-244. IEEE, 2009.

D. Jurafsky and H. James. Speech and language
processing an introduction to natural language
processing, computational linguistics, and speech.
Pearson Education, 2000.

A. Kao and S. R. Poteet. Natural language processing
and text mining. Springer, 2007.

M. Lease and E. Yilmaz. Crowdsourcing for
information retrieval. In ACM SIGIR Forum,

volume 45, pages 66—75. ACM, 2012.

Y. Ledru, A. Petrenko, and S. Boroday. Using string
distances for test case prioritisation. In Proceedings of
the 24th IEEE/ACM International Conference on
Automated Software Engineering, pages 510-514.
IEEE, 2009.

D. Liu, R. G. Bias, M. Lease, and R. Kuipers.
Crowdsourcing for usability testing. American Society
for Information Science and Technology, 49(1):1-10,
2012.

D. Lo, H. Cheng, J. Han, S.-C. Khoo, and C. Sun.
Classification of software behaviors for failure
detection: a discriminative pattern mining approach.
In Proceedings of the 15th ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, pages 557-566. ACM, 2009.

K. Mao, Y. Yang, M. Li, and M. Harman. Pricing
crowdsourcing-based software development tasks. In
Proceedings of the 35th International Conference on
Software Engineering, pages 1205-1208, 2013.

G. A. Miller. Wordnet: a lexical database for english.
Communications of the ACM, 38(11):39-41, 1995.

D. Mondal, H. Hemmati, and S. Durocher. Exploring
test suite diversification and code coverage in
multi-objective test case selection. In Software Testing,
Verification and Validation (ICST), 2015 IEEE 8th
International Conference on, pages 1-10. IEEE, 2015.
M. Nebeling, M. Speicher, M. Grossniklaus, and M. C.
Norrie. Crowdsourced web site evaluation with
crowdstudy. Springer, 2012.

F. Pastore, L. Mariani, and G. Fraser. Crowdoracles:
Can the crowd solve the oracle problem? In
Proceedings of the IEEE 6th International Conference
on Software Testing, Verificationand Validation, pages
342-351. IEEE, 2013.

A. Podgurski, D. Leon, P. Francis, W. Masri,

M. Minch, J. Sun, and B. Wang. Automated support
for classifying software failure reports. In Proceedings
of the 25th International Conference on Software
Engineering, pages 465-475. IEEE, 2003.

31]

[32]

A.-M. Popescu and O. Etzioni. Extracting product
features and opinions from reviews. In Natural
language processing and text mining, pages 9-28.
Springer, 2007.

G. Rothermel, M. J. Harrold, J. Ostrin, and C. Hong.
An empirical study of the effects of minimization on
the fault detection capabilities of test suites. In
Proceedings of the 1998 International Conference on
Software Maintenance, pages 34—43. IEEE, 1998.

G. Rothermel, R. Untch, C. Chu, and M. Harrold.
Test case prioritization: an empirical study. In
Proceedings of the International Conference on
Software Maintenance, pages 179-188, Aug 1999.

G. Rothermel, R. H. Untch, C. Chu, and M. J.
Harrold. Prioritizing test cases for regression testing.
IEEE Transactions on Software Engineering,
27(10):929-948, 2001.

P. Runeson, M. Alexandersson, and O. Nyholm.
Detection of duplicate defect reports using natural
language processing. In Proceedings of the 29th
International Conference on Software Engineering,
pages 499-510. IEEE, 2007.

I. Salman, A. T. Misirli, and N. Juristo. Are students
representatives of professionals in software engineering
experiments? In Proceedings of the 37th International
Conference on Software Engineering. ACM, 2015.
Y.-H. Tung and S.-S. Tseng. A novel approach to
collaborative testing in a crowdsourcing environment.
Journal of Systems and Software, 86(8):2143-2153,
2013.

236

(38]

(39]

(40]

41]

42]

(43]

X. Wang, L. Zhang, T. Xie, J. Anvik, and J. Sun. An
approach to detecting duplicate bug reports using
natural language and execution information. In
Proceedings of the 30th international conference on
Software engineering, pages 461-470. ACM, 2008.

W. Wong, J. Horgan, S. London, and H. Agrawal. A
study of effective regression testing in practice. In
Proceedings of the International Symposium on
Software Reliability Engineering, pages 264274, Nov
1997.

S. Yan, Z. Chen, Z. Zhao, C. Zhang, and Y. Zhou. A
dynamic test cluster sampling strategy by leveraging
execution spectra information. In Proceedings of the
8rd International Conference on Software Testing,
Verification and Validation, pages 147-154. IEEE,
2010.

S. Yoo and M. Harman. Regression testing
minimization, selection and prioritization: a survey.
Software Testing, Verification and Reliability,
22(2):67-120, 2012.

S. Yoo, M. Harman, P. Tonella, and A. Susi.
Clustering test cases to achieve effective and scalable
prioritisation incorporating expert knowledge. In
Proceedings of the eighteenth international symposium
on Software testing and analysis, pages 201-212.
ACM, 2009.

K. Zhang, H. Xu, J. Tang, and J. Li. Keyword
extraction using support vector machine. In Advances
in Web-Age Information Management, pages 85-96.
Springer, 2006.

	Introduction
	Background & Motivation
	Methodology
	Test Report Collection
	Test Report Processing
	Keyword Vector Modeling
	Prioritization Strategy

	Experiment Design
	Comparison Baseline
	Test Report
	Research Question
	Evaluation Metric

	Result Analysis
	Addressing RQ1
	Addressing RQ2
	Discussion
	Threats to Validity

	Related Work
	Conclusions
	References

