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ABSTRACT
What are software developers doing during a change task?
While an answer to this question opens countless opportuni-
ties to support developers in their work, only little is known
about developers’ detailed navigation behavior for realistic
change tasks. Most empirical studies on developers perform-
ing change tasks are limited to very small code snippets or are
limited by the granularity or the detail of the data collected
for the study. In our research, we try to overcome these
limitations by combining user interaction monitoring with
very fine granular eye-tracking data that is automatically
linked to the underlying source code entities in the IDE.

In a study with 12 professional and 10 student developers
working on three change tasks from an open source system,
we used our approach to investigate the detailed navigation
of developers for realistic change tasks. The results of our
study show, amongst others, that the eye-tracking data does
indeed capture different aspects than user interaction data
and that developers focus on only small parts of methods
that are often related by data flow. We discuss our findings
and their implications for better developer tool support.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement

General Terms
Human Factors, Experimentation

Keywords
eye-tracking, gaze, change task, user study

1. INTRODUCTION
Software developers spend a majority of their time working

on change tasks, such as bug fixes or feature additions [25].
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In order to successfully complete these tasks, they have to
read, navigate and edit the relevant pieces of code [22, 16].
Since the inception of software development, researchers have
been studying how developers read and navigate code, and
what kind of knowledge they acquire (e.g., [43, 5, 22]). The
more we know about a developer’s work, the better we are
able to support her, for instance, by reducing information
overload [21], improving defect prediction [24], or providing
automatic navigation recommendations [13, 29].

Yet relatively few studies have been undertaken to investi-
gate detailed navigation behavior of developers for realistic
change tasks. The lack of realistic studies is due to the
significant challenges and effort of acquiring the time of
professional software developers to participate as well as of
capturing, transcribing and coding longer sessions of devel-
opers’ work on change tasks. More recently, approaches have
been developed to automatically capture more data from
a developer’s interactions with source code elements in an
integrated development environment (IDE) [2, 21]. These
approaches capture source code elements mostly on the class
and method level and are based on explicit user interactions
with the mouse or keyboard.

Recent advances in technology afford new opportunities
to collect a wide variety of more detailed information on a
software developer and her work. Studies with sensors for
tracking biometric features, such as eye gaze, have generated
new insights on developers’ work on small code tasks, such as
perceptions of difficulty [15], brain activation patterns [42],
the scanning patterns of code [36] or the ease of compre-
hending different representations of code [40, 6]. Most of
these studies focus on very small code comprehension tasks
with a single method or class, in particular, since they re-
quire manual linking between the gaze data collected with an
eye-tracker and the source code elements a developer looked
at.

While these studies provide valuable first insights, the
advances in technology open up the opportunity to address
further important research questions, such as, what is a de-
veloper’s fine-grained navigation behavior for realistic change
tasks, what is the difference in the data captured through
eye-tracking and interaction logging and how can we use
eye-tracking data to support developers. Answering these
questions will allow us to better understand developers’ com-
prehension of large code bases and to develop better and
more fine-granular tool support for developers.
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In our research, we take advantage of the opportunities
that eye-tracking provides, and extend previous research
by addressing some of these questions by focusing on more
realistic change tasks to investigate how developers read
and navigate through code while working. In particular, we
are examining how eye-tracking data differs from the data
captured by monitoring user interactions in an IDE, how
developers’ eyes move within and between methods, and how
these newly gained insights can be used to better support
developers in their work on change tasks. We developed
an approach to automatically link eye-tracking data to the
source code elements in the IDE, which combines the ease
of automatically collecting data in an IDE with the finer
granularity of eye-tracking data. Our approach also supports
the scrolling and switching of code editor windows by de-
velopers and thus allows for change task investigations on
a realistic-sized code base and is not limited to very small
tasks as most previous studies are. This new approach for
conducting user studies in software development provides
the potential to reduce the cost of generating detailed, rich
user data and valuable insights in developers’ navigation
behavior.

We conducted a study with 22 participants, 12 professional
developers and 10 students, working on three realistic change
tasks for a total of 60 minutes while automatically tracing
their eye gazes and their explicit user interactions in the code
editor of the Eclipse IDE. Our analysis of the gathered data
shows, amongst other results, that eye-tracking captures
substantially different data than a developer’s navigation
within the IDE, that developers only look at a few lines of a
method when working on a change task and that these lines
are often related to the data flow of variables within these
methods. These results also provide evidence for the value
of combining eye-tracking with interaction monitoring in an
IDE in the future.

This paper makes the following contributions:
● Study findings based on eye-tracking and user interac-

tion monitoring that provide insights into the detailed
navigation behavior of 22 developers working on realis-
tic change tasks.

● An approach to automatically and on-the-fly capture
the fine-grained source code elements a developer looks
at in an IDE while working with large files, thereby
significantly improving current state-of-the-art that
limits eye tracking studies to only single methods.

● A discussion on the value of the data gathered and the
opportunities the data and the findings offer for better
developer support.

2. RELATED WORK
Our work can be seen as an evolution of techniques to

empirically study software developers working on change
tasks. Therefore, we classify related work roughly along its
evolution into three categories: manual capturing, user inter-
action monitoring, and biometric sensing of developers’ work.

Manual Capturing.
Researchers have been conducting empirical studies of soft-

ware developers for a very long time. Many of the earlier
studies focused on capturing answers of participants after
performing small tasks to investigate code comprehension
and knowledge acquisition (e.g., [10, 41, 32]). Later on, re-
searchers started to manually capture more detailed data on

developers’ actions. Altmann, for instance, analyzed a ten
minute interval of an expert programmer performing a task
and used computational simulation to study the near-term
memory [5]. Perhaps one of the most well-known user studies
from this category is the study by Ko et al. [22]. In this study,
the authors screen captured ten developers’ desktops while
they worked on five tasks on a toy-sized program and then
hand-coded and analyzed each 70 minute session. In a study
on developers performing more realistic change tasks, Fritz
et al. [16] used a similar technique and manually transcribed
and coded the screen captured videos of all participants.
While all of these studies are a valuable source of learning
and led to interesting findings, the cost of hand-coding a
developers’ actions is very high, which led to only a limited
number of studies providing detailed insights on a developers’
behavior.

User Interaction Monitoring.
More recently, approaches have been developed to auto-

matically capture user interaction data within an IDE, such
as Mylyn [2, 20, 21]. Based on such automatically captured
interaction histories—logs of the code elements a developer
interacted with along with a timestamp—researchers have,
for instance, investigated how developers work in an IDE [27],
how they navigate through code [28, 29, 47], or how devel-
opers’ micro interaction patterns might be used for defect
prediction [24]. Even the Eclipse team themselves under-
took a major data collection project called the Usage Data
Collector that, at its peak, collected data from thousands
of developers using Eclipse. Overall, the automatic moni-
toring of user interactions was able to significantly reduce
the cost for certain empirical studies. However, these studies
are limited to the granularity and detail of the monitoring
approach. In case of user interaction monitoring, the gran-
ularity is predominately the method or class file level and
detailed information, such as the time a developer spends
reading a code element or when the developer is not looking
at the screen, is missing and makes it more difficult to fully
understand the developers’ traces.

Biometric Sensing.
In parallel to the IDE instrumentation efforts, researchers

in the software development domain have also started to
take advantage of the maturing of biometric sensors. Most
of this research focuses on eye-tracking [31, 19], while only
few studies have been conducted so far that also use other
signals, such as an fMRI to identify brain activation patterns
for small comprehension tasks [42], or a combination of
eye-tracking, EDA, and EEG sensors to measure aspects
such as task difficulty, developers’ emotions and progress, or
interruptibility [15, 26, 52].

By using eye-tracking and automatically capturing where a
developer is looking (eye gaze), researchers were able to gain
deeper insights into developers’ code comprehension. One
of the first eye-tracking studies in program comprehension
was conducted by Crosby et al., who found that experts and
novices differ in the way they looked at English and Pascal
versions of an algorithm [11]. Since then, several researchers
have used eye-tracking to evaluate the impact of developers’
eye gaze on comprehension for different kinds of representa-
tions and visualizations such as 3D visualizations [37], UML
diagrams [51, 12], design pattern layout [39], programming
languages [44], and identifier styles [40, 8]. Researchers have
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also used eye-tracking to investigate developers’ scan pat-
terns for very small code snippets, finding that participants
first read the entire code snippet to get an idea of the pro-
gram [45]. Other researchers examined different strategies
novice and expert developers employ in program compre-
hension and debugging [7, 6], as well as where developers
spend most time when reading a method to devise a better
method summarization technique [34]. Finally, researchers
have also used eye-tracking to evaluate its potential for de-
tecting software traceability links [38, 48, 49]. All of these
studies are limited to very small, toy applications or single
page code tasks. Furthermore, in many of these studies, the
link between the eye gaze (e.g. a developer looking at pixel
100,201 on the screen) to the elements in an IDE (e.g., a
variable declaration in line 5 of method OpenFile) had to be
done manually.

To the best of our knowledge, this paper presents the first
study on realistic change task investigation that collects and
analyzes both, developers’ user interaction and eye gaze data.
Due to the approach we developed that automatically links
eye gaze data to the underlying source code elements in the
IDE, we reduce the need of manual mapping and are able
to overcome the single page code task limitation of previous
studies, allowing for change tasks on a realistic-sized code
base with developers being able to naturally scroll and switch
editor windows.

3. EXPLORATORY STUDY
We conducted an exploratory study with 22 participants to

investigate the detailed navigation behavior of developers for
realistic change tasks. Each participant was asked to work
for a total of 60 minutes on three change tasks of the open
source system JabRef in the Eclipse IDE, while we tracked
their eyes and monitored their interaction in the IDE. For
the eye-tracking part, we developed a new version of our
Eclipse plugin called iTrace [49], by adding automatic linking
between the eye gazes captured by the eye-tracking system
to the underlying fine-grained source code elements in the
IDE in real-time. All study materials are available on our
website [3].

3.1 Procedure
The study was conducted in two steps at two physical

locations. In the first step, we conducted the study with
twelve professional developers on site at ABB. We used a
silent and interruption free room that was provided to us for
this purpose. In the second step, we conducted the study
with ten students in a university lab at Youngstown State
University. We used the same procedure as outlined below
at both locations.

When a participant arrived at the study location, we asked
her to read and sign the consent form and fill out the back-
ground questionnaire on their previous experience with pro-
gramming, Java, bug fixing and Eclipse. Then, we provided
each participant a document with the study instructions and
a short description of JabRef. Participants were encouraged
to ask questions at this stage to make sure they understood
what they were required to do during the study. The entire
procedure of the study was also explained to them by a
moderator. In particular, participants were told that they
will be given three bug reports from the JabRef repository
and the goal was to fix the bug if possible. However, we did

mention that the ultimate goal was the process they used to
eventually fix the bug and not the final bug fix.

For the study, participants were seated in front of a 24-
inch LCD monitor. When they were ready to start, we first
performed a calibration for the eye-tracker within iTrace.
Before every eye-tracking study, it is necessary to calibrate
the system to each participants’ eyes in order to properly
record gaze data. Once the system was successfully cali-
brated, the moderator turned on iTrace and Mylyn to start
collecting both types of data while the participants worked
on the change tasks. Participants were given time to work
on a sample task before we started the one hour study on the
three main tasks. At the end of each change task, we had
a time-stamped eye gaze session of line-level data and the
Mylyn task interactions saved in a file for later processing.
We also asked each participant to type their answer (the
class(es)/method (s)/attribute(s) where they might fix the
bug) in a text file in Eclipse at the end of each change task.

For the study, each participant had Eclipse with iTrace and
Mylyn plugins installed, the JabRef source code, a command
prompt with instructions on how to build and run JabRef,
and sample bib files to test and run JabRef. There were
no additional plugins installed in Eclipse. The study was
conducted on a Windows machine. Each participant was
able to make any necessary edits to the JabRef code and run
it. They were also able to switch back and forth between the
Eclipse IDE and the JabRef application. iTrace detects when
the Eclipse perspective is in focus and only then collects
eye gaze data. We asked subjects not to resize the Eclipse
window to maintain the same full screen setup for all subjects
and not to browse the web for answers since we wanted to
control for any other factors that might affect our results.

3.2 Participants
For our study, we gathered two sets of participants: twelve

professional developers working at ABB Inc. that spend most
of their time developing and debugging production software,
and ten undergraduate and graduate computer science stu-
dents from Youngstown State University. Participants were
recruited through personal contacts and a recruiting email.
All participants were compensated with a gift card for their
participation.

All professional developers reported having more than
five years of programming experience. Seven of the twelve
reported having more than five years of experience program-
ming in Java, while the other five reported having about one
year of Java programming experience. Nine of the twelve
professional participants also rated their bug fixing skills
as above average or excellent. With respect to IDE usage,
four of the twelve stated that they mainly use Visual Studio
for work purposes and that they were not familiar with the
Eclipse IDE, and one participant commented on mainly being
a vim and command line user. Of the twelve professional
developers, two were female and ten were male.

Among the ten student participants, one participant had
more than five years of programming experience, five students
had between three and five years programming experience,
and four of them had less than two years programming
experience. Three of the students reported having between
three and five years of Java programming experience, while
seven students had less than two years. Three of the ten
students rated their bug fixing skills as above average, and
seven rated them as average. All but one student stated that
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they were familiar with the Eclipse IDE. Of the ten students,
one was female and nine male.

3.3 Subject System and Change Tasks
We chose JabRef as the subject system in this study.

JabRef is a graphical application for managing bibliographic
databases that uses the standard LaTeX bibliographic format
BibTeX, and can also import and export many other for-
mats. JabRef is an open source, Java based system available
on SourceForge [1] and consists of approximately 38 KLOC
spread across 311 files. The version of JabRef used in our
study was 1.8.1, release date 9/16/2005.

To have realistic change tasks in our study, we took the
tasks directly from the bug descriptions submitted to JabRef
on Sourceforge. Information about each task is provided in
Table 1. All of these change tasks represent actual JabRef
tasks that were reported by someone on Sourceforge and that
were eventually fixed in a later JabRef release. The tasks
were randomly selected from a list of closed bug reports
with varied difficulty as determined by the scope of the
solution implemented in the repository. We selected a set
of three change tasks to be performed by all participants.
We consider this to be a reasonable number of tasks without
causing fatigue in the one hour of the study. A time limit
of 20 minutes was placed for each task so that participants
would work on all three tasks during the one hour study. To
familiarize participants with the process and the code base,
each participant was also given a sample task before starting
with the three main tasks for which we did not analyze the
tracked data. The task order of the three tasks was randomly
chosen for each participant.

3.4 iTrace
For capturing eye-tracking data and linking it to source

code elements in the IDE, we developed and use a new ver-
sion of our Eclipse plugin iTrace [35]. For this new version,
we added the ability to automatically and on-the-fly link eye
gazes to fine-grained AST source code elements, including
method calls, variable declarations and other statements in
the Eclipse IDE. In particular, iTrace gives us the exact
source code element that was looked at with line-level granu-
larity. Furthermore, to support a more realistic work setting,
we added features to properly capture eye gazes when the
developer scrolls or switches code editor windows in the IDE,
or when code is edited. Eye-tracking on large files that do
not completely fit on one screen is particularly challenging
as none of the state-of-the-art eye-tracking software supports
scrolling while maintaining context of what the person is
looking at. Our new version of iTrace overcomes this limi-
tation and supports the collection of correct eye gaze data
when the developer scrolls both, horizontally and vertically
as well as when she switches between different files in the
same or different set of artifacts.

iTrace interfaces with an eye-tracker, a biometric sensor
usually in the form of a set of cameras that sit in front of
the monitor. For our study, we used the Tobii X60 eye-
tracker [4] that does not require the developer to wear any
gear. Tobii X60 has an on-screen accuracy of 0.5 degrees.
To accommodate for this and still have line-level accuracy
of the eye gaze data, we chose set the font size to 20 points
for source code files within Eclipse. We ran several tests to
validate the accuracy of the collected data.

After calibrating the eye-tracker through iTrace’s calibra-
tion feature, the developer can start working on a task and
the eye gazes are captured with the eye-tracker. iTrace pro-
cesses each eye gaze captured with the eye-tracker, checks if it
falls on a relevant UI widget in Eclipse and generates an eye
gaze event with information on the UI in case it does. iTrace
then uses XML and JSON export solvers, whose primary job
is to export each gaze event and any information attached
to it to XML and JSON files for later processing.

Currently, iTrace generates gaze events from gazes that
fall on text and code editors in Eclipse. These events contain
the pixels X and Y coordinates relative to the top-left corner
of the current screen, the validation of the left and right eye
as reported by the eye-tracker (i.e., if the eye was properly
captured), the left and right pupil diameter, the time of
the gaze as reported by the system and the eye-tracker, the
line and column of the text/code viewed, the screen pixel
coordinates of the top-left corner of the current line, the file
viewed, and if applicable, the fully qualified names of source
code entities at the gaze location. The fully qualified names
are derived from the abstract syntax tree (AST) model of
the underlying source code. For this study, we implemented
iTrace to capture the following AST elements: classes, meth-
ods, variables, enum declarations, type declarations, method
declarations, method invocations, variable declarations, any
field access, and comments. These elements are captured
regardless of scope, which includes anonymous classes.

3.5 Data Collection
For this study, we collected data on participants’ eye traces

and their interactions with the IDE simultaneously. Since
we conducted our study with the Eclipse IDE, we used the
Eclipse plugin Mylyn [2, 20] to monitor user interactions.
For the eye-tracking data, we used our new version of the
Eclipse plugin iTrace [35].

We gathered a total of 66 change task investigations from
the 12 professional developers and 10 computer science stu-
dents who each worked on three different change tasks. For
each of these investigations, we gathered the eye-tracking
data and the user interaction logs. Due to some technical
difficulties, such as a participant wearing thick glasses or too
many eye gazes not being valid for a task, we excluded 11
change task investigations and ended up with 55 overall: 18
subjects investigating task 2, 16 subjects investigating task
3, and 21 subjects investigating task 4. With respect to indi-
vidual method investigations over all participants and tasks,
we gathered a total of 688 method investigation instances.

4. STUDY RESULTS
Based on the collected logs of eye gazes (gaze context) and

user interactions (interaction context) of the 22 participants
we were able to make detailed observations on how devel-
opers navigate within source code. Table 2 summarizes the
gaze and interaction contexts we collected and used to infer
our observations from. In the following, we structure our
observations along three research foci: the difference between
gaze and user interaction data, developers’ navigation within
methods and developers’ navigation between methods.

4.1 Interaction Context and Gaze Context
O1—Gaze contexts capture substantially more, and
more fine-grained data. To compare the different amounts
of elements within the gaze and the interaction contexts, we
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Table 1: Tasks used in the study.

ID Bug ID Date Submitted Title Scope of Solution in Repository

T2 1436014 2/21/2006 No comma added to separate keywords multiple classes: EntryEditor, GroupDialog

FieldContentSelector, JabRefFrame

T3 1594123 11/10/2006 Failure to import big numbers single method:

BibtexParser.parseFieldContent

T4 1489454 5/16/2006 Acrobat Launch fails on Win98 single method: Util.openExternalViewer

used a paired-samples t-test1 with pairs consisting of the
gaze and the interaction context for a task and subject.

This paired-samples t-test showed that the number of dif-
ferent classes contained in the gaze context (M = 4.78, SD =
3.58) and the number of different classes contained in the
interaction context (M = 4.42, SD = 3.00) do not differ sig-
nificantly (t(54) = 1.98, p = .053). Nevertheless, there were
more classes captured in the gaze contexts, which turned
out to be internal classes or classes defined in the same file.
While there is no significant difference on a class level, there
is a significant difference in the amounts of methods cap-
tured. The number of different methods within the gaze
contexts (M = 12.51, SD = 11.75) is significantly higher than
the number of different methods within the interaction con-
texts (M = 6.04, SD = 4.53), t(54) = 4.57, p < .05. This
observation on the substantial difference in the number of
elements within the gaze and interaction context provides
evidence that developers often look at methods that they do
not select. Approaches that only analyze interaction logs,
thus miss a substantial amount of information.

When analyzing the method sequences captured in the
logs, the data also shows that gaze context not only captures
more elements, but also more details on the actual sequences
of navigation between methods. A paired-samples t-test
revealed a significant difference in the number of method
switches captured in gaze contexts (M = 73.45, SD = 78.47)
and the number of method switches captured in interaction
contexts (M = 5.75, SD = 5.17), t(54) = 6.52, p < .05. Table 2
summarizes the number of unique methods and the num-
ber of method switches for each context type and participant.

O2—Gaze and Interaction Contexts capture different
aspects of a developer’s navigation. To evaluate whether
gaze and interaction contexts capture different aspects of
a developer’s navigation for change task investigations, we
defined ranking models based on the data available in the
different contexts and compared the top ranked methods.
There are a variety of models that can be used to select the
most important elements within a navigation sequence [29].
For our analysis, we used single-factor models to select the
most important elements in each kind of context that were
also suggested in previous studies [28, 29]. To rank the
methods of a gaze context we used a time-based model. This
model ranks methods higher for which a developer spends
more time looking at. To rank the methods of an interaction
context we used a frequency model, which ranks methods
higher that were visited more often.

1According to the central limit theorem, with large samples
number (>30), the distribution of the sample mean converges
to a normal distribution and parametric tests can be used [14].

The comparison of the top 5 methods for each change task
investigation resulted in an average agreement of 65.03%
(SD = 32.26%). Comparing solely the highest ranked method
for each context pair results in an agreement of 27.27%. The
agreement on the top 5 most important methods however
is considerably lower for change task 2 (M = 52.31%, SD =
34.98%) than for change task 3 (M = 71.88%, SD = 27.62%)
and for change task 4 (M = 70.71%, SD = 31.32%). While
the description for change task 3 and change task 4 include
concrete hints to source code elements which are possibly
important for performing the change task, change task 2
required to explore the source code more exhaustively in
order to find the relevant code and a possible fix. These
results illustrates that gaze context, especially in form of
the time of gazes, captures aspects that are not captured in
the interaction context and that might be used to develop
new measures of relevance. Especially, since gaze contexts
also capture elements that are not in the interaction context
(O1), the more fine-grained gaze data might provide better
and more accurate measures of relevance.

4.2 Navigation Within Methods
We base the analysis of navigation within methods solely

on the gaze data, since interaction contexts do not capture
enough detail to analyze within method navigation.

O3—Developers only look at few lines within methods
and switch often between these lines. Figure 1 depicts
the lines a professional developer (middle) and a student
developer (right) looked at within a certain method and over
time during a change task investigation.

Across all subjects and tasks, developers only look at few
lines within a method, on average 32.16% (SD = 24.95%) of
the lines. The lengths of methods included in this analysis
thereby differed quite a lot, with an average length of 53.03
lines (SD = 139.37), and had a moderate influence on the
number of lines looked at by a developer, Pearson’s r =
.398, p = .01.

Participants performed on average 39.95 (SD = 100.99)
line switches within methods. The method length again
influences the amount of line switches moderately, Pearson’s
r = .305, p = .01.

Further examination of the kind of lines developers ac-
tually looked at shows that developers spend most of their
time within a method looking at method invocations (M =
4081.98ms) and variable declaration statements (M = 1759.6
ms), but spent surprisingly little time looking at method
signatures (M = 1090.67). In fact, in 319 cases out of 688
method investigations analyzed, the method signature was
ignored and not looked at. Our findings demonstrate that de-
velopers who are performing an entire change task involving
several methods and classes, read methods differently than
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Table 2: Summary of professional (pro) and student (stu) developers’ average (avg) of methods and method
switches captured in the gaze and interaction context, as well as the percentage of lines read within methods.

ID
avg # of method switches average # of unique methods avg % of lines

read in methodgaze context interaction context gaze context interaction context

P1 6.5 3 4.5 3.5 31.7%

P2 59.7 10 12 8 32.4%

P3 50 7.5 15 8 23.6%

P4 46 3.5 16.5 3.5 32.9%

P5 126 12.5 14 10.5 25.8%

P6 22.5 4.5 5.5 5.5 47.0%

P7 226 8.7 39.3 8.7 35.0%

P8 47.7 3 5.3 4 26.9%

P9 50.5 3 6.5 4 41.4%

P10 172 9 9 8 71.4%

P11 64 6.7 12.3 6 30.2%

P12 138 5 8 6 45.4%

avg pro 83.73 6.42 13.38 6.46 33.6%

S1 13.3 2 8.7 3 28.4%

S2 20 1.7 6.7 2.3 24.7%

S3 45.3 2.4 8.7 3.3 27.3%

S4 96.3 15 23.7 14.7 35.5%

S5 96 7 11.7 7.6 37.4%

S6 10.5 3.5 3 4.5 19.4%

S7 142.3 0.7 9 1.7 34.5%

S8 64 4.7 19.7 5.3 25.1%

S9 59.7 5 8.3 4.3 33.3%

S10 77 9 15 9.3 28.5%

avg stu 64.24 5.14 11.72 5.66 30.6%

total avg 73.45 5.75 12.51 6.04 32.16%

developers who are reading methods disconnected from any
task or context, in which case the method signature might
play a stronger role.

O4—Developers chase data flows within a method. To
better understand how developers navigate within a method,
we randomly picked six change task investigation instances
from the collected gaze contexts and manually retraced the
paths participants followed through a method by drawing
their line switches on printouts of the methods. Closely
examining these printed methods with the eye traces drawn
on top, allowed us to form the hypothesis that developers
often trace variables when reading a method. To further
investigate this hypothesis. we selected four methods which
were investigated by most participants, resulting in 40 unique
method investigation instances (see Table 3). The 40 method
investigation instances stem from 18 different participants
and two different task. 22 of these 40 investigations stem
from professional software developers, while the other 18
stem from students.

For each method, we assigned a color for each variable used
within the method and colored the lines in which the variable

was either defined or used in the method. We did not color
lines or statements that did not include a variable. Over all
four methods, we identified an average of 7.25 variable slices
per method with an average of 6.2 different lines of code
per slice. Then, we applied this line-to-color mapping to the
sequence logs of participants who investigated these methods
(see Figure 2 for an example). Within each sequence log,
we ignored the lines which did not map to a slice, such as
brackets or empty lines. As we are investigating if developers
trace variables when reading a method we further ignored
control flow statements which did not use any variable. In
the event of more than one variable used in a single line, we
manually checked if a color was predominantly used before
or after the line was visited and decided on a color according
(using the predominant color). In cases where there was no
evidence of a predominant color, we picked the color of the
variable that was used first in the source code line.

Our analysis revealed that developers switched between
the lines of these four methods on average 178.0 (SD = 189.9)
times. We then used our color coding to examine how many
of these line switches are within variable slices (lines with
the same color). Overall method investigation instances we
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Figure 1: The sequence logs mapped to line numbers and colors, with the colored source code on the left.

Figure 2: Colored sequence logs of 8 participants investigating method BrowserLauncher.locateBrowser. Each
row represents a method investigation of a participant with the time axis going from left to right and an eye
gaze on a line represented by a colored line within the row.

found an average of 104.2 (112.1) line switches of the 178
to be within a variable slice, supporting our hypothesis that
developers are in fact following data flows when investigating
a method. The long green and yellow blocks within Figure 2
further illustrate the frequency of switching within a variable
slice rather than switching between different variable slices.

4.3 Navigation Between Methods
Overall, subjects switched on average 73.45 (SD = 78.48)

times between methods when working on a change task.
Thereby, they revisited a method on average 5.44 times.

O5—Developers frequently switch to methods in close
proximity and rarely follow call relationships. To in-
vestigate the characteristics of method switches we examined
whether they were motivated by call relationships or due to
the close proximity of methods. We assessed for each method
switch within a class and for each method switch to a differ-
ent class whether the switch was motivated by following the

call graph of the method. In addition, we assessed for each
method switch within the same class whether the sequentially
next method looked at is directly above or directly below
the current method. We conducted this analysis for both
contexts: the gaze context and the interaction context.

To understand if a method switch was motivated by fol-
lowing the call graph we memorized the method invocations
within a given method and assessed if the next method in the
method sequence was one of the memorized invoked methods.
While we had to consider all method invocations within a
given method when analyzing the interaction context, we
could precisely assess at which method invocation the de-
veloper actually looked at when analyzing the gaze context.
If a next method in the sequence was equal to one of the
memorized invoked methods, we concluded that it is likely
that the developer followed the call relationship (switch po-
tentially motivated by call graph), although, the next method
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Table 3: Methods used in the analysis to determine the amount of within variable-slice line switches.

method name
# investigation

instances (pro,stu)

length in

lines

# identified

slices

avg lines

per slice

avg line

switches

avg line switches

within slice

BibtexParser.parseFieldContent 12 (6,6) 92 10 4 232.6 125.7

Util.openExternalViewer 11 (7,4) 132 10 8.1 158.3 77.6

BibtexParser.parseTextToken 9 (4,5) 29 3 4 95.0 66.6

BrowserLauncher.locateBrowser 8 (5,3) 108 6 8.8 216.3 150.9

could have also been within spatial proximity and the call
relationship not of importance for the navigation. If the next
method was not contained within the memorized method
invocations we concluded that the developer’s navigation was
motivated by other means than the call relationships. To
understand if a method which was looked at next is directly
above or directly below a current method, we compared the
line numbers in the source file.

gaze context
We found that merely 4.05% (SD = 6.68%) of all method
switches were potentially motivated by following the call
graph. On average, the subjects switched methods potentially
motivated by the call graph more when they were investigat-
ing change task 4 (M = 6.57%, SD = 9.36%) than when they
were investigating change task 2 (M = 1.87%, SD = 2.94%)
and change task 3 (M = 3.18%, SD = 4.34%). A paired-
samples t-test showed that developers switched methods po-
tentially motivated by the call graph significantly more often
within a class (M = 4.44%, SD = 7.12%) than between differ-
ent classes (M = 0.70%, SD = 4.50%), t(54) = 3.17, p = .003.

At the same time, a larger amount of all method switches
ended in methods which were right above or below a method
(M = 36.95%, SD = 25.57%). These results suggest that the
call graph of a project is not the main drive for navigation
between methods, but the location of a method captures an
important aspect for navigation between methods.

interaction context
We found that 22.61% (SD = 29.09%) of all method switches
were potentially motivated by following the call graph. Dif-
ferent to the results of the gaze context analysis, participants
switched between methods potentially motivated by the call
graph substantially more when they were investigating change
task 3 (M = 38.23%, SD = 31.56%) than when they were in-
vestigating change task 2 (M = 8.05%, SD = 13.89%) and
change task 4 (M = 23.19%, SD = 31.42%). On average,
subjects followed considerably more call relations when they
were navigating within the class (M = 24.15%, SD = 34.71%)
than when they were navigating to a method implemented
in another class (M = 6.44%, SD = 20.74%).

We further found that on average 69.93% (SD = 39.01%)
of the method switches within a class were aimed towards
methods which are directly above or below a method.

Overall, these results also show that the more coarse
grained interaction context indicates that developers fol-
low structural call graphs fairly frequently (22.6%) while
the more fine grained gaze context depicts a different image
with only 4.1% of switches being motivated by structural call
relations.

Our results on switches to methods in close proximity fur-
ther support the findings of a recent head-to-head study that

compared different models of a programmer’s navigation [29]
and that suggested to use models to approximate a devel-
oper’s navigation based on the spatial proximity of methods
within the source code.

O6—Developers switch significantly more to methods
within the same class. A paired-samples t-test shows
that developers switched significantly more between methods
within the same class (M = 65.22, SD = 73.20) than they
switched from a method to a method implemented in an-
other class (M = 8.24, SD = 11.95), t(54) = 6.07, p < .001.
While, over all three tasks, participants rarely switched
to methods of different classes, the participants’ method
switching within the same class differs between tasks. A
Wilcoxon matched pairs signed rank test indicates that par-
ticipants switched significantly more between methods within
classes for task 2 (M = 103.50, SD = 106.23) than for task 4
(M = 36.31, SD = 39.08), z = −2.66, p = .008. While it is not
surprising that different tasks result in different navigation
behavior of participants, this also suggests that it is impor-
tant to take into account the task for support tools, such as
code navigation recommendations.

4.4 Differences Based on Experience
Previous empirical studies on software developers found

differences in the patterns that experienced and novice de-
velopers exhibit (e.g., [11]). To investigate such differences,
we analyzed our data for differences in navigation between
our professional developers and our students. In particu-
lar, we tested each statistic that contributed to the above
observations and examined whether there were any statisti-
cally significant differences in gaze, respectively interaction
contexts. To compare the professional developers and the
students we used a Mann-Whitney test, as there are different
participants in each group and the data does not meet para-
metric assumptions. Overall, we did not find any statistically
significant difference between the two groups of participants
in the amounts of unique elements on different granularity
levels within the gaze context (U = 341.0, p = .539 on class
level, U = 363.5, p = .820 on method level) nor the interaction
context (U = 368.0, p = .878 on class level, U = 286.5, p = .125
on method level). Furthermore, there was no significant
difference in the amounts of switches conducted between
different elements within a class (U = 314.5, p = .292 for the
gaze contexts and U = 297.5, p = .174 for the interaction con-
texts) nor outside of a class (U = 337.0, p = .495 for the gaze
contexts and U = 266.5, p = .058 for the interaction contexts).
Finally, we also could not find any significant difference in the
amount of call relationships followed (U = 325.5, p = .362 for
the gaze contexts and U = 268.0, p = .055 for the interaction
contexts) nor if any of these two groups switched more often
to methods with a high spatial proximity (U = 367.5, p = .873
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for the gaze contexts and U = 332.0, p = .445 for the in-
teraction contexts ). So even though our exemplary figure
(Figure 1) that depicts a sequence log for a professional and
a student developer might suggest a difference in navigation
behavior, our analysis did not produce any such evidence.
Further analysis is needed to examine this aspect in more
detail.

4.5 Threats to Validity
One threat to validity is the short time period each par-

ticipant had for working on a change task. Unfortunately,
we were limited by the time availability of the professional
developers and therefore had to restrict the main part of the
study to one hour. While the data might thus not capture
full task investigations, it provides insights on investigations
for multiple change tasks and thus the potential of being
more generalisable.

Another threat to validity is the choice of JabRef as the
subject system. JabRef is written in a single programming
language and its code complexity and quality might influence
the study. For instance, code with low quality and/or high
complexity might result in developers spending more time
to read and understand it, and thus longer eye gaze times
for certain parts of the code. We tried to mitigate this risk
by choosing a generally available system that is an actively
used and maintained open source application and that was
also used in other studies. Further studies, however, are
needed to examine the effect of factors, such as code quality,
to generalize the results.

In our study, JabRef had to be run through the command
prompt using ANT and not directly in Eclipse. This meant
that participants were not able to use breakpoints and the
debugger within Eclipse and might have influenced the results.
We intend to conduct further study to investigate if our
findings generalize to other settings, e.g., ones in which the
project can be run from within Eclipse.

iTrace collects eye gazes only within Eclipse editors. This
means that we do not record eye gaze when the developer
is using the command prompt or running JabRef. However,
since we were interested in the navigation between the code
elements within the IDE, this does not cause any problems
for our analysis.

If the user opens the “Find in File” or “Search Window”
within Eclipse, or a tooltip pops up when hovering over an
element in the code, the eye gaze is not recorded as this
overlaps a new window on top of the underlying code editor
window and iTrace did not support gazes on search windows
at the time of the study. To minimize the time in which eye
gazes could not be recorded, we made sure to let participants
know that once they were done with the find feature within
Eclipse to close these windows so gaze recording can continue.

Finally, most professional developers were mainly Visual
Studio users for their work, we conducted our study in Eclipse.
However, all professional developers stated that they did not
have problems using Eclipse during the study.

5. DISCUSSION
Tracing developers’ eyes during their work on change tasks

offers a variety of new insights and opportunities to support
developers in their work. Especially, the study’s focus on
change tasks, the richness of the data, and the finer granular-
ity of the data provide potential for new and improved tool
support, such as code summarization approaches or code and

artifact recommendations. In the following, we will discuss
some of these opportunities.

Richness of Eye-Tracking Data and Gaze Relevance.
Our findings show that the eye-tracking data captures sub-
stantially more (O1 ) and different aspects (O2 ) of a de-
veloper’s interaction with the source code. Therefore, eye-
tracking data can be used complimentary to user interaction
task context to further enhance existing approaches, such as
task-focused UIs [21], or models for defect prediction [24]. In
particular, since eye-tracking data also captures gaze times—
how long a developer spends looking at a code element—more
accurate models of a code element’s relevance could be devel-
oped as well as models of how difficult a code element is to
comprehend which might inform the necessity of refactoring
it.

To examine the potential of the gaze time, we performed
a small preliminary experiment to compare a gaze-based
relevance model with a model based on user interaction.
We focused on professional developers and were able to col-
lect and analyze user ratings from 9 professional developers
within the group of participants, also since not everyone was
willing to spend additional time to participate in this part.
Each developer was asked to rate the relevance of the top
5 elements ranked by gaze time as well as the top 5 ranked
by degree-of-interest (DOI) from Mylyn’s user interaction
context [21] on a five-point Likert scale. Overall, participants
rated 76% of the top 5 gaze elements relevant or very rel-
evant and only 65% of the top 5 DOI elements as relevant
or very relevant. While these results are preliminary and
further studies are needed, the 17% improvement illustrates
the potential of the data richness in form of the gaze time.

Finer Granularity of Data and Task Focus.
Most current tools and research approaches to support de-
velopment work focus on method or class level granularity.
Most prominently, editors of common IDEs, such as Visual
Studio or Eclipse, display whole classes, but even the re-
cently suggested new bubble metaphor for IDEs displays full
methods [9]. Similarly, approaches to recommend relevant
code elements for a task, such as Mylyn [21, 2] or wear-based
filtering [13], operate on the class and method level. While
the method and class level are important, our results show
that developers only focus on small fractions (on average
32%) of methods that are important for the change task at
hand (O3 ). These findings suggest that by identifying, high-
lighting and possibly filtering the parts within methods that
are relevant for the task, we might be able to save developers
time and effort to switch between relevant parts of code and
avoid getting distracted by other irrelevant code. Since de-
velopers focus a lot on data flow within a method (O4 ) that
is related to the task, we hypothesize that a task-focused
program slicing approach might provide a lot of benefit to
developers working on change tasks. Such an approach could
take advantage of existing slicing techniques, such as static
or dynamic slicing [50, 23], and identify the relevance of a
slice based on its relation to the task by, for instance, using
textual similarity between the slice and the task description
or previously looked at code elements.

By using eye-tracking to capture a more fine-grained task
context while a developer is working, we are also able to bet-
ter determine what a developer is currently interested in and
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complement existing approaches to recommend relevant arti-
facts to the developer, such as Hipikat [46] or Prompter [30].

Finally, the insights from our study can also be used to
inform summarization techniques to help developers compre-
hend the relevant parts of the code faster. Existing techniques
to summarize code have mainly focused on summarizing
whole methods [17, 18] rather than only summarizing the
parts relevant for a given task. Similarly, the approach by
Rodeghero et al. [34] focused on using eye-tracking to sum-
marize whole methods. Our findings show that developers
usually do not read or try to comprehend whole methods and
rather focus on small method fractions and data flow slices
for a change task. This suggests that a more task-focused
summarization that first identifies relevant code within a
method according to previous eye-tracking data or other
slicing techniques and then summarizes these parts of the
method, might help to provide more relevant summaries and
aid in speeding up code comprehension.

Accuracy of Method Switches.
The eye-tracking data captured in our study shows that a
lot of the switches between methods are between methods
in close proximity, as well as within a class O5, O6 . These
findings suggest that there is a common assumption among
developers that nearby code is closely related. While this is
not a new finding, the additional data captured through eye-
tracking that is not captured by user interaction monitoring
provides further evidence for this switch behavior. This
finding also suggests that a fisheye view that zooms in on
the current method and provides much detail on methods
in close proximity but less on methods further out might
support faster code comprehension for developers.

A common assumption of navigation recommendation ap-
proaches is that structural relations between elements are
important in a developers’ navigation [33]. While empirical
studies that examined developers’ navigation behavior based
on user interactions have shown that developers actually
follow such structural relations frequently, in particular call
relations (e.g., [16]), the eye-tracking data of our study shows
that developers perform many more switches that do not
follow these relations and that are not captured by explicit
user interaction. These findings point to the potential of
eye-tracking data for improving method recommendations as
well as for identifying the best times for suggesting structural
navigation recommendations. However, further studies are
needed to examine this possibility.

An Eye-Tracker per Developer.
As discussed, using eye-trackers in practice and installing

them for each developer not just for study purposes bares
a lot of potential to improve tool support, such as better
task-focus, recommendations or summarization. With the
advances and the price decrease in eye-tracking technology,
installing eye-trackers for each developer might soon be rea-
sonable and feasible. At the same time, there are still several
challenges and questions to address to be smooth and of value
to developers, in particular with respect to eye calibration,
granularity level and privacy. Several eye-trackers, especially
cheaper ones, currently still need a recalibration every time
a developer changes position with respect to the monitor,
which is too expensive for practical use. For tool integration,
one has to decide on the level of granularity that is best

for tracking eye gazes. While more fine-grained data might
provide more potential, eye-tracking on a finer granularity
level is also more susceptible to noise in the data. Finally,
as with any additional data that is being tracked about an
individual’s behavior, finer granular data also raises more
privacy concerns that should be considered before such an
approach is being deployed. For instance, the pupil diameter
or the pattern of eye traces might also be used to monitor
the cognitive load of the developer, which could also be used
in harmful ways.

6. CONCLUSION
To investigate developers’ detailed behavior while perform-

ing a change task, we conducted a study with 22 developers
working on three change tasks of the JabRef open source sys-
tem. This is the first study that collects simultaneously both
eye-tracking and interaction data while developers worked
on realistic change tasks. Our analysis of the collected data
shows that gaze data contains substantially more data, as well
as more fine-grained data, providing evidence that gaze data
is in fact different and captures different aspects compared
to interaction data. The analysis also shows that developers
working on a realistic change task only look at very few lines
within a method rather than reading the whole method as
was often found in studies on single method tasks. A further
investigation of the eye traces of developers within methods
showed that developers “chase” variables’ flows within meth-
ods. When it comes to switches between methods, the eye
traces reveal that developers only rarely follow call graph
links and mostly only switch to the elements in close prox-
imity of the method within the class.

These detailed findings provide insights and opportunities
for future developer support. For instance, the findings
demonstrate that method summarization techniques could
be improved by applying some program slicing first and
focusing on the lines in the method that are relevant to the
current task rather than summarizing all lines in the whole
method. In addition, the findings suggest that a fisheye
view of code zooming in on methods in close proximity and
blurring out others, might have potential to focus developers’
attention on the relevant parts and possibly speed up code
comprehension.

The approach that we developed for this study automat-
ically links eye gazes to source code entities in the IDE
and overcomes limitations of previous studies by supporting
developers in their usual scrolling and switching behavior
within the IDE. This approach opens up new opportunities
for conducting more realistic studies and gathering rich data
while reducing the cost for these studies. At the same time,
the approach opens up opportunities for directly supporting
developers in their work, for instance, through a new measure
of relevance using gaze data. However, possible performance
and especially privacy concerns have to be examined before-
hand.
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W. Snipes, C. Bräunlich, and T. Fritz. A field study on
fostering structural navigation with prodet. In
Proceedings of the 37th International Conference on
Software Engineering (ICSE SEIP 2015), 2015.

[48] B. Walters, M. Falcone, A. Shibble, and B. Sharif.
Towards an eye-tracking enabled ide for software
traceability tasks. In 7th International Workshop on
Traceability in Emerging Forms of Software Engineering
(TEFSE), pages 51–54.

[49] B. Walters, T. Shaffer, B. Sharif, and H. Kagdi.
Capturing software traceability links from developers’
eye gazes. In Proceedings of the 22nd International
Conference on Program Comprehension, ICPC 2014,
pages 201–204, New York, NY, USA, 2014. ACM.

[50] M. Weiser. Program slicing. In Proceedings of the 5th
international conference on Software engineering, pages
439–449. IEEE Press, 1981.

[51] S. Yusuf, H. Kagdi, and J. Maletic. Assessing the
comprehension of uml class diagrams via eye tracking.
In Proceedings of the 15th IEEE International
Conference on Program Comprehension, pages 113–122,
June 2007.
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