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ABSTRACT
With the advent of large code repositories and sophisticated
search capabilities, code search is increasingly becoming a
key software development activity. In this work we shed
some light into how developers search for code through a case
study performed at Google, using a combination of survey
and log-analysis methodologies. Our study provides insights
into what developers are doing and trying to learn when per-
forming a search, search scope, query properties, and what a
search session under different contexts usually entails. Our
results indicate that programmers search for code very fre-
quently, conducting an average of five search sessions with
12 total queries each workday. The search queries are often
targeted at a particular code location and programmers are
typically looking for code with which they are somewhat fa-
miliar. Further, programmers are generally seeking answers
to questions about how to use an API, what code does, why
something is failing, or where code is located.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Tech-
niques—user interfaces

Keywords
Developer tools, code search, user evaluation

1. INTRODUCTION
Code search has been a part of software development for

decades. It is unclear when it became entrenched in soft-
ware development practices, but one of the first studies on
the subject by Singer et al. reported in 1997 that the most
frequent developer activity was code search [29]. The search
mechanisms have evolved since that report, from “grep”-like
tools to specialized and more efficient code search engines
(e.g., [14, 21, 22, 25]). Perhaps more impressive is the in-
creased scope of code search as repositories containing tens
of billions of lines of code become available (e.g., [5,6,8,30]).

Throughout this evolution, code search appears to have ce-
mented its role in software development [3, 17,28,31].

In spite of the pervasiveness of code search, we do not
quite understand many aspects of how it is performed in-
vivo. There is evidence, discussed in more detail in Section 2,
that code search is practiced often, that there is a great deal
of variation in how much effort is involved in code search,
and that the developer’s experience matters. Surprisingly,
we still do not know much about the context in which code
search is performed, what kind of questions developers are
trying to answer when searching for code, what the most
common search patterns are, and what patterns are pre-
dominant in certain contexts. Understanding how devel-
opers interact with code search is crucial to drive the next
generation of techniques and tools to support searching, and
future software development environments and workflows.

Through this work we provide a characterization of how
developers at Google search for code, obtained through a
combination of survey (396 responses) and search log-analysis
(tens of thousands of records) generated by 27 developers
during a period of 2 weeks. By carefully intertwining both
methodologies, deploying the surveys just before a search
begins, and having access to anonymized but precise user
identification, we have been able to derive interesting and
unique insights about code search practices. More specifi-
cally, the study finds:

• Programmers use code search to answer questions about
a wide range of topics, including what code does, where
is code instantiated, why code is behaving a certain
way, who was responsible for an edit and when it hap-
pened, and how to perform a task. (RQ1)

• Code search tools are becoming so entrenched in soft-
ware development that they are used to navigate even
through code developers know well. (RQ2)

• Almost a third of searches are incrementally performed
through query reformulation. Most queries were scoped
to a subset of the code repository, with short sessions
(lasting a median of 90 seconds) consisting of one or
two queries. (RQ3)

• On average, developers compose 12 search queries per
weekday (median is 6). Compared to previous litera-
ture [29], it would seem that code search is far more
common than it once was. (RQ4)

• Search patterns vary greatly among contexts. For ex-
ample, sessions with more clicks are typically associ-
ated with code reviews, and programmers searching
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for code attributes are less likely to click on a result.
(RQ5)

These findings have several important implications for the
future of code search techniques and tools. First, given the
pervasiveness of code search in software development, the
effectiveness and efficiency of code search tools is likely to
have an increasingly significant impact on developers’ overall
practices and performance. Second, code search is used by
developers to answer diverse questions that require enriching
its query format, its ranking algorithms, and its sources of
data to better match those questions. Third, although code
repository growth seems to be boundless, code search tends
to have a well targeted scope. Search tools could benefit
from inferring such scope by using, for example, a devel-
oper’s code history to prioritize the results. Fourth, code
information needs lead to different usage patterns that may
be better served if code search tools were aware of those
needs by, for example, providing additional operators or be-
ing cognizant of other tools currently being used by the de-
veloper. Last, as search sessions become shorter and more
focused, there is a greater incentive for code search tools
to be better integrated into software development environ-
ments to reduce the number context switches.

2. RELATED WORK
Code search can take on many forms, from searching for

code reuse to searching for concept localization. Efforts to
observe code search have ranged from surveys to lab studies,
log analysis to observations of work practices. In this sec-
tion, we focus on studies that explore code search behavior
and existing code search tools.

2.1 Previous Code Search Studies
Code search has been studied in the wild by observing pro-

grammers directly [29] or analyzing search logs [3], in con-
trolled settings using pre-defined tasks [2, 3, 12,15,17,28] or
by surveying developers about their search practices [27,31].
In some cases, the goal was not to observe code search di-
rectly, but rather code search was observed as part of in-
formation seeking activities performed by developers [3, 12,
15]. In these search studies, participants come from com-
panies [2, 15], student populations [12, 17, 28, 31], or crowd-
sourcing platforms such as Amazon’s Mechanical Turk [31]
or online newsgroups [27].

Surveys have reported that 50% of programmers search
for code frequently and 39% search occasionally [28]. Fur-
thermore, among developers who program daily, 59% search
for code daily [31]. In addition to frequency, surveys can also
inform search motivations. In one survey, the criteria that
guide the final code selection were reported [27]. Among the
69 respondents, 77% consider the functionality, 43% consider
the licensing terms, and 30% consider user support when se-
lecting code for reuse. Among search sessions dealing with
java, 34.2% had a goal of finding/learning about an API [10].
Of those, 17.9% included the word ‘sample’ or ‘example’ in
the query. Surveys often suffer from response bias where
subjects’ recollections of past events might not match actual
past events. By placing the survey directly before a search
occurs, the response bias in our study is mitigated as the
programmer does not need to reflect on past activity, but
rather report on current activity. In our methodology, we
further combine survey analysis with log analysis to bring

context to the search behaviors. We revisit prior survey
results in Section 4.1.

A prevalent finding across observational studies is that
code search is common among maintenance tasks. Observ-
ing eight programmers in a company across several sessions
revealed that 100% of programmers perform search activities
using standard tools such as grep or in-house toolsets [29].
With a more focused study of one programmer, that same
study revealed that a search task is performed on 57% of the
days in which a programmer works, and that search is the
most frequently-performed activity [29].

Lab studies are often designed to observe behaviors other
than search, but search activities are recorded. While per-
forming program maintenance tasks, 92% of participants,
all corporate employees, used search tools [15]. When start-
ing maintenance tasks, student programmers typically start
with search within an IDE (40 / 48 participants), and oc-
casionally by searching the Web using Google [12]. Other
studies have shown that 100% of programmers use search
during program maintenance tasks [17].

Search terms are also the focus of some lab studies. One
study [26] found that average searches to Google contain
4.7 terms versus 4.2 terms for the now deprecated external
Google Code Search, 4.1 for Krugle [14], 3.7 to Koders [13],
and 3.8 to SourceForge [30]. For the first query of a session,
48% of queries contain just code, 38% contain just natu-
ral language, and 14% contain a mix [3]. We revisit these
observations in the context of our search logs in Section 4.3.

Yet other studies relate search behaviors with experience.
Brant et al. found that when a programmer wants to learn
a new concept, each web session took tens of minutes [3]. In
contrast, when a programmer wants to refresh their memory
of a concept, like a syntactic detail, a web session took tens
of seconds. Clarifying implementation details usually took
approximately one minute. We revisit these observations in
the context of our search logs in Section 4.5.

Beyond just the use of search, some lab studies have char-
acterized search sessions. For example, in two 2-hour lab-
oratory experiments, Li, et al. found that developers con-
ducted 4.3 or 6.6 web searches, on average [17]. Another
controlled study found that each search session involved 2.38
queries [26]. For tasks taking an average of 125 seconds to
complete, Hoffman, et al. observed an average of 1.9 queries
to Google [10]. These studies indicate a range of frequen-
cies for search activity, but the observation remains that
search is a frequent activity among programmers. Rather
than just using lab studies, using search logs can allow re-
searchers to analyze more data, providing useful insights into
the frequency of use for tools as well as which behaviors and
features are most common. For example, when analyzing
search logs and identifying sessions based on IP address and
durations of inactivity, it was found that users perform an
average of 1.45 queries per session [3]. However, when us-
ing logs some of the details of the search process, like the
user’s context, are masked. For these reason, we combine
log analysis with in situ surveys. We revisit these findings
in Section 4.4.

2.2 Existing Code Search Tools
Several code search engines exist today. Sim’s paper [28]

compares the following: Koders [13] aka ohloh [22], Google
(general), Google Code Search (the former public version),
Krugle [14], SourceForge [30], exploring the number of Java
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files indexed, retrieval algorithm, whether regular expres-
sions are permitted in the query, and the presence of special
features such as filters. Each of these search engines is pub-
licly available and indexes based on keyword and/or method
signatures. Other source code search engines have started to
provide more semantic features. Exemplar uses a keyword
search that ranks based on application descriptions, APIs
used, and the data flow among those APIs, providing a more
semantic search approach [9, 20]. S6 uses keywords, type
signatures, and a test-based approach to find modules that
match the keywords, have a specified interface, and behave
as specified using an example [23]. CodeGenie uses a test-
driven approach to search for a reuse code [16]. Sourcerer
has indexed over 38 million lines of Java code, maintaining
a database with keyword, structure, data type, and pattern
information [1,18]. Satsy uses a unique query model consist-
ing of input/output pairs and an SMT solver to find source
code that behaves as specified by the query [31].

3. STUDY
Most software development at Google is done in one giant

repository, and developers are able to browse that reposi-
tory to review (and potentially use) code outside of their
specific project [24]. Google engineers are able to search
over the internal codebase using an internal code search
engine; this tool is similar to the public code search tool
that was available externally from 2006 until 2012 [7] and
a variant of this code search tool is currently available ex-
ternally for Chromium [4]. Developers can search for code
with regexes and operators such as lang:. For example,
lang:java server could return a result like MyServer.java.
Queries with the file: operator match against the file path.
Operators may also be used to return results without a cer-
tain property, so that a path supplied with -file: will re-
turn results that do not match the path. In addition to
returning a ranked list of files as search results, the code
search tool also surfaces some additional metadata about the
files, and allows developers to navigate through source code
files via the directory structure or by clicking on references
(e.g. to jump to a definition or usages).

3.1 Data collection
We experimented with different study designs in order to

capture the questions that developers were trying to answer
when searching and fill in some gaps in existing literature.
In the end, we developed a lightweight survey methodology
based on a browser extension. We combined this with logs
analysis. In total, we invited 40 developers, from which 27
agreed to participate from 23 different teams throughout
Google over a period of two weeks. These developers were
known by at least one of the authors and were deemed po-
tentially responsive in the time frame when the study was
conducted. The participants included 18 software engineers,
8 software test engineers, and one release engineer. There
were 22 males and five females, nine with B.S. (or similar
degree), 10 with an M.S., and eight with a Ph.D., with an
average of 9.75 years of post-degree software development
experience, and 3.4 years at Google.

3.1.1 Surveys
We wrote a browser extension that directed developers

to our survey when they accessed the internal code search
site, and had participants install this extension on all com-

puters they used while working. Through this extension,
we collected survey results before a search started. So as
not to overwhelm developers or repeatedly ask about the
same search session, we configured the extension to survey
a maximum of 10 times a day (per browser run), and only
when at least 10 minutes passed since last code search activ-
ity. We asked developers to fill in the survey every time it
appeared, although we observed that sometimes developers
would skip filling it out (particularly when working at their
desk with a second developer). All told, we collected 394
survey responses.

The full text of the multi-select survey questions can be
found in the first column of Table 2. We wanted to keep
it brief; from our previous experience with deploying simi-
lar surveys we found that 3-4 questions maximizes response
rates. Developers could select multiple options in the mul-
tiple choice questions.

We refined the survey questions and answers through 2
pilot iterations with 2-3 developers. These pilot iterations
helped us refine the questions, and adjust the survey fre-
quency to balance data capture with a load that developers
deemed acceptable. The developers involved with the pilots
were not included in the final data logs.

3.1.2 Logs
The logs collected search events and interactions with the

code search tool. When a developer goes to the code search
site, all requests to the code search servers are logged. The
logs included the user, time, search terms, results clicked,
files viewed, as well as a unique per-tab ID. Since one user
action (e.g. searching for the term foo) results in many
logged events, some entries are associated with loading dif-
ferent parts of the code search UI. The 27 developers ob-
served over the two week period generated 180,429 entries.
We filtered out all logs that were not related to a user event
(e.g. clicking the search button or selecting a result). We
further filtered the logs to remove duplicate entries, resulting
in 77,632 events.

We analyzed these logs using search sessions. A search
session represents when a developer goes to the code search
site, performs one or more searches, and potentially also
clicks on results or views files. Sessions were computed
as activities in one or more browser tabs by a single de-
veloper with a 6-minute timeout between events. This 6-
minute timeout was derived empirically, in part following
prior work [3].

After filtering, we ended up with 1,929 sessions. Of these,
1,429 sessions contained a search event. Of those with no
search, 476 (95%) were the result of browsing the directory
information in the search interface, without an actual search
query. The remaining sessions either had zero duration (i.e.,
open the search interface and then close it) or had other
patterns of behavior that could not be discerned into recog-
nizable patterns.

3.2 Research Questions
We investigated 5 research questions.

• RQ1: Why do programmers search?
We performed a qualitative analysis on the freeform
responses to the fourth survey question (see Table 2),
“What question are you trying to answer?”, to identify
a set of question topics. This was done by open coding
the responses to identify themes.
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• RQ2: In what contexts is search used?
We explore context from three angles: what activities
developers are performing when searching, what they
are trying to learn, and how familiar they are with the
code on which they are searching. We utilize the data
collected through the first three survey questions (see
Table 2),.

• RQ3: What are the properties of the search queries?
We explore the keyword queries in terms of the num-
ber of words, the use of reserved operator words, and
patterns of query reformulation. We utilize the search
logs to answer this question.

• RQ4: What does a typical search session entail?
We answer this question by quantifying how often and
for how long developers search for code, and how many
search results they explore. We utilize the search logs
to answer this question.

• RQ5: Do different contexts lead to distinct search pat-
terns?
We analyze the survey and logs jointly, identifying
search patterns that differ across contexts.

4. RESULTS
In this section, we present our analyses and results for

each research question.

4.1 RQ1: Why do programmers search?
To answer this question, we analyzed the questions pro-

grammers were trying to answer by coding their textual re-
sponses to the fourth survey question (Table 2).

We wanted to understand why developers search and what
questions developers were trying to answer with code search.
To address this question, we had a fill-in question on the
survey “What question are you trying to answer?”. In all,
we had 266 responses to this question. We eliminated 7
responses where the developers stated they were using the
code search interface to navigate to a different task and not
trying to answer a question. This resulted in 259 different
responses. We wrote each response down on a card, and
then performed an open card sorting [11] exercise with three
sorters. We kept going until we reached a fix point of cat-
egories. We then identified higher-level concepts from the
card sorting to organize the developers’ activities. The full
breakdown is in Table 1; this table contains the count, per-
centage, and name for each category, as well as a representa-
tive sample of the searches in each category. The high-level
categories are bolded. These roughly correspond to what
type of question was being asked, whether it was about how
to do something, learning what code does, determining why
code is behaving as it is, locating where something is, or
finding out who did something and when they did it.

Example Code Needed (How).
The most common theme deals with getting specific API

or library information or functional example, representing
over a third (33.5%) of the surveys. This is strikingly similar
to prior work that found 34.2% of search sessions had a goal
of finding/learning about an API [10]

Responses in the discover correct library for task
were focused on trying to find a library that would fulfill
a particular specific task, e.g. that transform known inputs

into desired outputs. In contrast, API consumer needs
help encompasses situations where the developer knows the
name of the specific class or API they want to use, but are
trying to figure out what methods or parameters to use.
These kinds of questions could also potentially be answered
by viewing documentation for APIs. Searches in the ex-
ample to build off of category are looking for a specific
function. How to do something covers examples where
a developer is trying to figure out how to complete a broad
task, as opposed to finding or using a specific API.

Exploring or Reading Code (What).
Representing 26% of the survey responses, this category

deals with exploring code and reading code. In contrast
to the where, these activities are more exploratory and less
targeted. Browsing encompasses situations where a de-
veloper is not trying to answer a specific question, but is
instead navigating to and reading some code. Check im-
plementation details deals with situations where a devel-
oper is trying to understand how a particular function is
implemented, or sometimes navigating to very specific place
in the code base to check a specific detail such as the exact
name of a flag (16 out of the 51 instances are focused on
answering these types of extremely targeted queries). Re-
sponses in the name completion category were searches
where the developer could only remember part of the name
of a class or file they wanted to reference, and were searching
to find the entire name. Check common style represents
situations where the developer is checking how something is
usually done in the repository.

Code Localization (Where).
This category focuses on finding a particular location in

source control, representing 16% of the searches. Reach-
ability encompasses situations where a developer is trying
to trace through source code to find out how pieces of code
are connected; for example, where specific types are used or
where the call sites (or definitions) of specific methods are.
Showing to someone else deals with searches that are
focused on showing details known to the searcher to another
colleague. Responses in the location in source control
category were just trying to check the specific location of
a known object in the depot. For example, checking the
location of a file when the name is known.

Determine Impact (Why).
Understanding the impact of a change or why code be-

haves a certain way represents 16% of the searches. Why is
something failing searches encompass situations where the
developer is trying to understand why there is a mismatch
with how they think code should behave, and how code is ac-
tually behaving. Side effects of a proposed change rep-
resents searches focused on verifying whether assumptions
made in a changelist are valid. In contrast to reachability,
understanding dependencies deals with specific queries
about how projects are connected, e.g. by the build system.

Metadata (Who and When).
Answering questions related to how other developers have

interacted with the depot represents 8% of the categories.
Trace code history encompasses situations where devel-
opers want to find out when something was introduced or
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Table 1: Categories of answers to fourth survey question, ”What question are you trying to answer?”

Category Example Count Percent

Example Code Needed (How) 87 33.5%
API consumer needs help “I want to know how a function should be called.” 57 22%
Discover correct library for task “Best way to convert output stream into a string of limited

length.”
14 5%

Example to build off of “Just want to copy-and-paste some code I’m changing” 9 3.5%
How to do something “How to write a hash function” 7 3%

Exploring or Reading Code (What) 67 26%
Check implementation details “What a particular script does” 51 20%
Browsing “Re-familiarizing myself with some code referenced in a CL un-

der review.”
11 4%

Check common style “Where are friend classes usually declared?” 3 1%
Name completion “I’m looking for an enum member that I think begins with a

particular prefix.”
2 1%

Code Localization (Where) 41 16%
Reachability “Where a class is instantiated” 22 8.5%
Showing to someone else “I’m trying to create a link to a known piece of code, to provide

to someone else.”
10 4%

Location in source control “Where are all the boxed environment configurations?” 9 3.5%

Determine Impact (Why) 42 16%
Why is something failing “I’m wondering why a CL I wrote earlier did not fix a currently-

occurring production problem and am reading the code to diag-
nose.”

26 10%

Understanding dependencies “Looking for dependencies of a build file” 12 4.5%
Side effects of a proposed change “Am I about to blow up production with my CL” 4 1.5%

Metadata (Who and When) 22 8.5%
Trace code history “Who last touched some code.” 13 5%
Responsibility “Who is allowed to approve changelists for a particular file.” 9 3.5%

Total 259 100.00%

changed. Responsibility represents situations where a de-
veloper is trying to establish ownership of a particular piece
of code. Ownership is important when deciding who should
code review a change to a particular project, or who to talk
with about a proposed change.

Overall, we find that code search is about more than just
finding examples for how to do something, though getting
API information and examples is the most frequent task.
Many of the surveys indicated that the programmer was
just reading code or exploring the history or code attributes
to understand who did or can do something and when. Over
16% of the surveys were concerned with finding a particular
location in the code, also referred to concept location [19].

4.2 RQ2: In what contexts is search used?
To address this question, analyzed the multiple-choice sur-

vey questions using summary statistics.

4.2.1 Purpose for Searching
The collected data from the survey’s first three questions

is summarized in Table 2. The table includes a count and
percentage for each potential answer within each question.

Overall, we see that code search is utilized across many
development activities performed by a typical software engi-
neer at Google. Most searches are performed while working
on a code change (39%). The activities of triaging a problem
or reviewing a change review also use code search. Note that

the distribution does not necessarily mean that code search
is more prevalent in one particular activity, but could also
reflect the amount of time spent in each of these activities
by a developer.

With respect to the scope of the search, most searches
focus on code that is familiar or somewhat familiar to the
developers (17% and 44% respectively). This may indicate
that code search tools are becoming so entrenched in soft-
ware development that they are being adopted to navigate
even through code that developers know well.

Almost half of the developers use code search to under-
stand how code works (46%), and to a less extent how to use
it (21%). One unexpected finding was the diversity of infor-
mation that developers try to obtain through code search.
We received 14% of responses that included other learning
objectives, such as understanding build relationships, mak-
ing a recommendation to a peer, or assessing tests that may
be triggered.

4.2.2 Correlating Familiarity, Learning, and Doing
Table 3 provides a breakdown of the first level interactions

among the survey responses across questions. This reveals
some interesting patterns that were not obvious when ana-
lyzing the responses to individual questions. For each pair
of response options the table provides a count and two per-
centages (%h conveys the percentage over the count of the
response in the row, while %v conveys the percentage over
the count of the response in the column – these percentages
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Table 3: Survey results breakdown. We consider first level interactions among single predefined responses (“other” or multiple
marked responses are not accounted). The cells contain the number of responses for the row and column answers, or the %
using as denominator the occurrences of the row (%h) or the column (%v).

Doing and Familiarity Very
Familiar

%h %v Not Famil-
iar

%h %v Somewhat
Familiar

%h %v - - -

Exploring 5 11 7 20 43 14 12 26 7 - - -
Working on a CL 26 16 38 51 32 35 75 45 41 - - -
Triaging a problem 10 11 15 33 37 23 41 46 24 - - -
Reviewing a CL 10 16 15 22 35 15 29 47 17 - - -
Designing a new feature 4 17 6 6 25 4 5 21 3 - - -

Doing and Learning Code
attributes

%h %v How code
changed

%h %v How code
works

%h %v How to use
code

%h %v

Exploring 6 13 14 2 4 7 20 43 11 4 9 5
Working on a CL 16 10 36 7 4 23 54 34 31 42 26 53
Triaging a problem 9 10 20 12 13 40 45 50 26 10 11 13
Reviewing a CL 4 6 9 5 8 17 32 52 18 7 11 9
Designing a new feature 2 8 5 1 4 3 3 13 2 6 25 8

Familiarity and Learning Code
attributes

%h %v How code
changed

%h %v How code
works

%h %v How to use
code

%h %v

Very Familiar 4 6 9 9 13 30 26 38 15 3 4 4
Not Familiar 13 9 30 8 6 27 56 39 32 42 29 53
Somewhat Familiar 24 14 55 12 7 40 81 47 46 27 16 34

Table 2: Survey results. The survey included 394 responses
from 27 software developers during a period of 15 days.

Question Count %

1. What are you doing?
- Exploring 47 12%
- Working on a CL 159 39%
- Triaging a problem 90 22%
- Reviewing a CL 62 15%
- Designing a new feature 24 6%
- Other (e.g., finding a link, helping someone) 25 6%
2. How familiar are you with the code you are searching for?
- Very Familiar (e.g., I wrote it) 68 17%
- Somewhat Familiar (e.g., I’ve seen it before) 173 44%
- Not Familiar 145 37%
- Not sure 6 2%
3. What are you trying to learn?
- Code attributes (e.g. location, owner, size) 44 12%
- How code changed 30 8%
- How code works 175 46%
- How to use code 80 21%
- Other (e.g., build, configuration, test) 53 14%
4. What question are you trying to answer?
〈 free-text response 〉 271 100%

may not add up to 100% as only single responses were con-
sidered and these were multi-select questions). For example,
the cell in the second row and column indicates that 5 sur-
vey responses included “Exploring” to the first question and
“Very familiar” to the second question. This corresponds to
11% of all the exploring activities reported, and 7% of all
very familiar responses.

Although the same trends as before can be observed in
Table 3, there are some new pieces of information worth
highlighting. When looking at the responses to “Doing and
Familiarity” we see that almost half of the work on CLs,
triaging, or reviewing occurs on somewhat familiar code.
Still, 35% of the time developers search for non familiar
code when performing those tasks. Perhaps more interest-
ing is that most searches for exploring and designing new

features occurred on not familiar code. This seems to indi-
cate that the scope of the search for new development versus
maintenance activities is different.

For “Doing and Learning” we see that, independent of the
activity, learning how code works is consistently desired by
developers performing a search (∼50%) except for when de-
signing a new feature when how to use the code is most
common. On the other hand, developers performing a search
when performing triaging most often asked how the code
changed.

For “Familiarity and Learning”, most search questions on
very familiar code were about how code works. Developers
seem to be using search support for navigating code they
know but may not recall particular details. The scope of
the search shifts in the context of how code changed which
were performed on somewhat familiar code (40%), and it
shifts even further to not familiar code when asking how to
use code (53%). Just as in the case of what the developer
is doing, there seems to be a clear relationship between the
scope of the search and what the developer is trying to learn.

Taking the survey analysis a step future, we correlate the
responses with search behavior patterns in Section 4.5.

4.3 RQ3: What are the properties of the search
queries?

In this section, we use the search logs to explore the prop-
erties of a typical search query and series of queries with no
result clicks between. We filtered out terms from the search
that are typically placed there by default.

The average number of keywords per query was 1.85 (me-
dian of 1, maximum of 11). Compared to previous work, this
number is rather low. Prior work looking at the number of
keywords in searches to Google Code Search [7] reported
4.2 terms per query [26]. We conjecture that these changes
may have resulted from search engine improvements, user
familiarity with query formation, and also from the more
incremental nature of search (discussed in the next section).

In addition to counting the terms per query, we can look
inside the queries at the content. Of the 3,870 queries, 1,025
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(26.5%) contained the operator file: followed by the name
of a path expression in which the search should take place,
for example, to restrict search to a particular project. This
indicates a high frequency of targeted searches. A specific
language was specified using the lang: operator for 210
(5.4%) of the queries.

Often, we observe a series of two or more searches with
no result clicks in between. The final search may or may
not have clicks. There are 970 pairs of search events in
the logs with no clicks between (this is the SS pattern from
Section 4.4), impacting 429 (30%) of the sessions.

Using Levenshtein’s Distance1 at the word level, we look
at the distance between successive search queries. This met-
ric counts the number of insertions, deletions, or substitu-
tions required to change one sequence into another. As an
example, a programmer may refine their query by adding
an additional keyword, such as the name of a particular file
where the desired code lives. Here, the first query would
contain a word or sequence of words, and the second query
would be equivalent to the first with the addition of a file
name. That would cause a distance of 1. Modifying a word
in a query also results in a distance of 1.

Of the 970 instances of SS within a session, the range of
Levenshtein’s distance was one to eight. Of those, 734 (76%)
had a distance of one from the previous search query, indi-
cating potential query reformulation. Also, 52 (7%) of the
these involved adding restrictions to the file paths returned.
The average time between search queries was 23 seconds
(median was eight).

Overall, we see strong evidence of frequent query reformu-
lation within the search sessions, and it typically happens
within eight seconds of the original query. We can hypothe-
size that the typical user can scan results, determine if they
meet their needs, and reformulate an initial query within
eight seconds.

4.4 RQ4: What does a typical search session
entail?

In this section, we use the search logs to explore the prop-
erties of a typical search session (activities by a single de-
veloper with a 6-minute timeout between events) in terms
of duration, number of queries, number of result clicks, and
the patterns of behavior.

Among all developers, the total number of sessions with a
search event was 1,429. The typical search session lasted an
average of 3 minutes 30 seconds (median was 1 minute 29
seconds), had 2.12 tabs (median 1.00), and conducted 2.64
search queries (median 1.00). Each session had an average
of 3.41 result clicks (median 2.00). In our logs, the number
of queries was higher than in prior work, which found an
average of 1.45 queries per session [3]. The longest session
lasted nearly 42 minutes, the most searches in a session was
67, the most result clicks in a session was 92, and the largest
number of tabs was 50.

For all developers, there were an average of 53 total ses-
sions (median 42). Developers performed an average of 140
searches over the course of the 15 days with a median of 86.
Two of the 27 developers performed more than 500 searches,
whereas the remaining performed fewer than 200 searches
each. Of the searches, 96% were performed on weekdays

1This metric was chosen over Hamming distance because it
relaxes the requirement on even lengths of the strings being
compared.

Table 4: Patterns of Whole Sessions

Pattern Meaning Sessions %
SC 1 click 264 18.5
(S1)+ 1 result 189 13.2
SCC+ 1 search 2+ click 171 11.9
S+C+(S+C+)+ 2+@(search+ click+) 163 11.4
S+ 0 clicks 127 8.9
SS+C 2+ searches, 1 click 67 4.7
C Starts with a click 62 4.3
SS+CC+ 2+ search, 2+ click 39 2.7
Other — 347 24.3

Total 1429

compared to weekends. On the average weekday (4 of the
15 days were weekends), each participant wrote an average
of 12 search queries (median is 6). While these numbers are
from 2013, linking this to prior work, in 1997, Singer et al.
found programmers search on 57% of the days in which they
work [29]. Clearly, search is becoming an integral component
of the modern software development process.

Within each session, we explored patterns of behavior
related to the searches and the result clicks. To describe
these sessions, we use S to denote a search event (queries
are associated with these events), 1 to indicate the search
returned only one result, and C to denote when the pro-
grammer clicked on a search result. The following sections
describe the patterns observed across whole sessions as well
as micro-patterns within sessions.

4.4.1 Whole Session Patterns
Representing each session as a series of searches and clicks,

we observe several common patterns, shown in the Pattern
column of Table 4, followed by a textual description in the
Meaning column. The number and percentage of sessions
are in the subsequent columns. For example, the pattern SC,
which means there was one search and one click, represents
264 or 18.5% of the total sessions. The + is used like a
regular expression, indicating one or more repetition. For
example, (S1)+ means that there was one or more searches
that each returned exactly one result. A session with the
pattern, S1S1, would match this category. The patterns were
identified using manual analysis to find succinct, orthogonal
representations of the whole sessions.

The Other category represents patterns that could not be
concisely described. For example, the pattern, S1SCCCC is
a compound pattern between S1 and SCC+. The pattern,
SCCCCS, starts with SCC+ and ends with S+.

Overall, we observe that over 75% of the sessions involve
one or more clicks. The no-clicks pattern may indicate that
the programmer does not find what they want, or they find
what they want by observing the previews in the results.
One anomalous pattern that was common but did not start
with search was C, involving just a single click. This pattern
can emerge when a user opens a search result in a new tab
at least 6 minutes after their last recorded search event.

4.4.2 Micro-Patterns in Sessions
While the eight patterns in Table 4 represent over 75% of

the sessions, programmers often perform multiple searches
in the same session, each with its own click patterns. For this
reason, we capture micro-sessions as sequences of events de-
limited by searches. In total, there were 3,780 micro-sessions
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Table 5: Patterns of Micro-Sessions

Pattern Meaning Micro-Sessions %
S 1 search, 0 click 1466 38.8
SC 1 click 909 24.1
S1 1 result, implicit 599 15.7
SCC 1 search 2 click 219 5.8
SCCC 1 search 3 click 227 6.0
SCCC+ 1 search 4+ click 202 5.4
Other — 158 4.1

Total 3,780

(one micro-session for each search). Table 5 shows the six
most common micro-patterns, representing nearly 96% of
the micro-sessions.

In Table 5, we see that nearly 39% of the searches are
followed by zero clicks. There are two potential reasons for
this. The first is that the search needs to be refined, as
we see with any of the S+ patterns in Table 4. The other
explanation is that the answer to the programmer’s question
can be found on the results page. Another common pattern
is S1, where only one result is returned. This could be the
result of query autocompletion, using a URL to navigate
directly to results, or a very exact search term.

4.5 RQ5: Do different contexts lead to dis-
tinct search patterns?

Since we collected both logs and survey data of search ac-
tivity using the same user base, we have an opportunity to
identify deeper patterns of behavior based on the program-
mer’s context. In this section, we link the survey information
from RQ1 and RQ2 to the patterns identified in RQ4.

Every developer from whom we collected logs also submit-
ted at least one survey. The average number of surveys per
person was 14.5 (median 9), with a range from one to 69.
We dropped 11 surveys that were filled out before we began
collecting logs information.

We linked the surveys to search whole-sessions (RQ4) by
associating the surveys with search sessions that were closest
in time. The average time between a survey submission and
a search was 40 seconds with a median of 11 seconds and
a standard deviation of 2 minutes 47 seconds. This means
that on average, the survey took 40 seconds to fill out and
submit. In some cases, a survey was not associated with
any search session (NS). This could happen, for example, if
a developer is browsing directories or reviewing prior results.

Table 6 shows the relationships between the quantitative
questions in the survey (Table 2) and the search session type
(Table 4). In this table, S+C+ covers the session types of SC,
SCC+, SS+C, and SS+CC+, (S1|(S+C+)){2,} is used to cap-
ture session type S+C+(S+C+)+ and Other sessions, and NS is
used to identify surveys that are not grouped with a search
session. This table shows the count and row percentage for
each session type. For example, if a programmer indicated
they were Somewhat familiar with code being searched for,
the search pattern S+C+ followed 30% of the time and the
pattern S+ followed 21% of the time.

A programmer who is very familiar with the code is most
likely to follow the S+C+ pattern, representing 52% of the
searches in that context. In eight (53%) of those sessions,
there is exactly one search followed by exactly one click.
This is rather intuitive, as they likely know where they want
to go and use search to get there.

Regarding what the programmer wants to learn, if they
want to learn about code attributes, 19% of the time no file
is clicked, perhaps indicating that this answer is found in
the previews on the search results page, plus another 25%
of the time the search only returned one result.

One expectation we had was for developers who are not
familiar with the code to follow a search with many searches
and many clicks. We have some evidence of this, where 28%
of the sessions match S+C+ and 24% match (S1|(S+C+)){2,}.

Table 7 links the categories from Table 1 to the whole
search sessions in Table 4. As in Table 6, S+C+ covers the ses-
sion types of SC, SCC+, SS+C, and SS+CC+, (S1|(S+C+)){2,}
is used to capture session type S+C+(S+C+)+ and Other ses-
sions, and NS is used to identify surveys that are not grouped
with a search session. For example, of the surveys looking
for API consumer need help, 38% were the session type S+C+.

Developers looking to understand the Side effects of pro-
posed change had one or more searches followed by one or
more result clicks 75% of the time. This same pattern, S+C+,
represent 32% of the searches that want to check implemen-
tation details.

Developers with Reachability questions often result in a
pattern of only viewing search results, without clicking through
to a file (pattern S+ happens 30% of the time). Developers
who want to Discover library for task only view search re-
sults 73% of the time (pattern S+). This represents eight
sessions; seven (88%) have a single search and only one has
multiple searches.

5. DISCUSSION
The combination of survey and log data has led to in-

sights regarding where, why, and how programmers search
for source code. In this section, we elaborate on the main
findings, which include observations of developer behavior
and implications for tool designers.

5.1 Observations of Developer Behavior
Developers search frequently. The average developer

in our study had 5.3 search sessions on a typical weekday,
performing 1-2 searches and clicking on 2-3 results per ses-
sion. With this prevalence of search activity, greater than
expected given previously reported results, search speed and
recall/precision will impact a developer’s productivity.

Developers search for examples more than any-
thing else. Based on the free-text responses, the most
common questions dealt with finding examples or sample
code (34%). Despite the breadth of purposes code search
serves, examples still need to be well supported.

Developers search local. Repositories are growing, but
developers mostly search familiar or somewhat familiar code.
Developers use search for quick navigation of a code base;
over 26% of the queries restricted the file path to search
within.

Queries are incremental. Compared to prior studies in
a controlled lab environment that observed queries with an
average of 3-5 terms [26], in our study the queries had just
1-2 terms, but were incrementally refined. These differences
could be caused by the more sophisticated tools available
(e.g., search auto completion), the experience of the devel-
opers involved who could better scope a search or know the
standard naming conventions others may used, or by the
richer development contexts with additional information.
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Table 6: Relationship Between search whole-session patterns (Table 4) plus NS for “sessions” that contain no search event
(e.g. browsing directories or reviewing prior results) and Familiarity, Activity, and Learning (Table 2). The cells contain the
number of responses for the row and column, or the % using as denominator of the row (%).

What are you doing? S+C+ % (S1|(S+C+)){2,} % S+ % (S+1)+ % S+CS+ % NS % ˆC %
Answering a question 0 0 0 0 0 0 1 50 1 50 0 0 0 0
Designing a new feature 5 45 5 45 1 9 0 0 0 0 0 0 0 0
Exploring 6 26 7 30 3 13 5 22 1 4 1 4 0 0
Reviewing a CL 18 36 8 16 10 20 3 6 4 8 1 2 6 12
Triaging a problem 15 26 12 21 8 14 4 7 10 18 4 7 4 7
Working on a CL 32 33 18 19 15 16 12 13 8 8 7 7 4 4
Other 2 14 3 21 1 7 4 29 1 7 2 14 1 7

How familiar are you? S+C+ % (S1|(S+C+)){2,} % S+ % (S+1)+ % S+CS+ % NS % ˆC %
Not sure 0 0 0 0 1 50 1 50 0 0 0 0 0 0
Not Familiar 27 28 23 24 9 9 11 11 9 9 10 10 7 7
Somewhat Familiar 36 30 21 17 26 21 15 12 13 11 6 5 4 3
Very Familiar 15 52 3 10 2 7 2 7 3 10 1 3 3 10

What do you want to learn? S+C+ % (S1|(S+C+)){2,} % S+ % (S+1)+ % S+CS+ % NS % ˆC %
Code attributes 6 19 7 22 6 19 8 25 1 3 4 13 0 0
How code changed 2 17 2 17 1 8 1 8 2 17 1 8 3 25
How code works 34 31 22 20 9 8 17 15 14 13 8 7 7 6
How to use code 15 28 11 20 17 31 0 0 5 9 3 6 3 6
Other 21 50 8 19 5 12 3 7 3 7 2 5 0 0

Code familiarity does not mean less clicks. For very
familiar sessions, the average number of result clicks was 2.5,
slightly lower than the average for not familiar sessions, with
an average of 3.1, but the difference is not significant (p =
0.41 using a Mann-Whitney non-parametric test of means).
This is contrary to prior work that showed programmers
who are less familiar with the code they are searching for
are more likely to click more results [29].

5.2 Implications for Tool Designers
Focus on developer’s questions. Search tools should

start focusing on comprehension tasks based on the ques-
tions developers are asking and how they are asking them.
They should also tap into the code repository metadata such
as build dependencies, developers involved, file and workflow
permissions, tests executed, and relevant review comments
since many of the questions asked during search include such
pieces of information.

Provide simple code examples. As shown in Table 1,
34% of the surveys indicated a desire to find code examples,
for example, illustrating API usage. To reduce the duration
of search sessions and keep developers productive, these ex-
amples should be minimal and illustrate common usage. In-
tegrating the usage frequency for patterns of API usage into
a ranking algorithm, or their size, could help developers find
needed information faster.

Consider code location. Query features such as the
-file: operator help support the specification of a search
scope, but additional operators could help scope the search,
for example, to code touched by specific developers or groups
of developers (-dev:). Furthermore, tools should predict a
developer’s locality needs based on search history and the
files recently touched to better rank the matches.

Consider richer context. Search patterns vary across
activities. A tool cognizant of the contextual elements (e.g.,
applications open, recent communications) associated with
different activities could be more effective. For example, if
a developer is working with the reviewing and bug tracking
tools, then the search tool could infer that triaging is hap-
pening and give priority to matches that show code changes.

Consider integrating code search into development
environment. With search sessions lasting only a few min-
utes, and a small number of queries per session, the time
to context switch between the development or code review
environment and the search tool becomes more dominant.
Integrating code search into the development environment
could reduce that overhead.

6. THREATS TO VALIDITY
Internal Validity. The two major threats to internal

validity are the quality of the surveys and logs. Surveys
were filled by developers in the midst of their activities,
sometimes under tight time constraints. As a result, we
may have missed responses at the most pressing times, may
have received incomplete or not well thought out responses,
and the overall number and quality of the responses varied
across developers. We tried to mitigate this risk by limiting
the number and frequency of surveys per developer, and by
including developers some of the authors knew to be respon-
sive to this type of request even when under pressure.

It is also possible that there is noise in the logs we analyzed
from spurious requests. To combat this, we were careful in
spotting problematic patterns like duplicated records or re-
quests that seem suspicious, and removing them from the
data set. For example, we encountered some requests that
happened too often because they were caused automatically
by tools not developers. Although we attempted to under-
stand and control for the variety of situations in which a
search can be performed with the code search tool, the log-
ging mechanism is complex. It is possible that we missed
search events, or mistook an event as performing a search
from the logs (e.g. following a link to search results). To
mitigate this, we validated our assumptions about how the
logs were constructed by running test searches and examin-
ing the generated logs. We also iterated on our methodology
based on discussions with members of the code search team.
Since the logging and survey collection mechanisms were not
synced, we had to link the surveys to search sessions using
timestamps. It is possible that in some cases our bindings
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Table 7: Mapping Categories for Search (Table 1) to search whole-session patterns (Table 4) plus NS for “sessions” that contain
no search event (e.g. browsing directories or reviewing prior results). The cells contain the number of responses for the row
and column, or the % using as denominator of the row (%)

Example Code Needed (How) S+C+ % (S1|(S+C+)){2,} % S+ % (S+1)+ % S+CS+ % NS % ˆC %
API consumer needs help 21 38 12 22 8 15 2 4 5 9 5 9 2 4
Discover library for task 2 18 0 0 8 73 1 9 0 0 0 0 0 0
Example to build off 2 25 1 13 2 25 1 13 2 25 0 0 0 0
How to do something 2 29 3 43 1 14 0 0 0 0 0 0 1 14

Exploring Code (What) S+C+ % (S1|(S+C+)){2,} % S+ % (S+1)+ % S+CS+ % NS % ˆC %
Check implementation details 16 32 8 16 1 2 10 20 9 18 4 8 2 4
Browsing 2 20 1 10 3 30 0 0 0 0 2 20 2 20
Checking common style 0 0 1 33 1 33 1 33 0 0 0 0 0 0
Name completion 0 0 1 50 1 50 0 0 0 0 0 0 0 0

Code Localization (Where) S+C+ % (S1|(S+C+)){2,} % S+ % (S+1)+ % S+CS+ % NS % ˆC %
Reachability 4 20 6 30 6 30 0 0 3 15 0 0 1 5
Showing to someone else 3 30 2 20 1 10 3 30 1 10 0 0 0 0
Location in the depot 3 33 3 33 0 0 1 11 1 11 0 0 1 11

Determine Impact (Why) S+C+ % (S1|(S+C+)){2,} % S+ % (S+1)+ % S+CS+ % NS % ˆC %
Why is something failing 11 44 2 8 2 8 3 12 1 4 3 12 3 12
Understanding dependencies 4 33 3 25 0 0 2 17 1 8 0 0 2 17
Side effects of proposed change 3 75 1 25 0 0 0 0 0 0 0 0 0 0

Metadata (Who and When) S+C+ % (S1|(S+C+)){2,} % S+ % (S+1)+ % S+CS+ % NS % ˆC %
Trace code history 5 38 3 23 1 8 2 15 2 15 0 0 0 0
Responsibility 0 0 0 0 3 33 3 33 0 0 3 33 0 0

are not correct, e.g. if a developer did not fill out the survey
immediately, as was instructed.

Construct validity. There are many aspects of the
search activity that neither the logs nor the survey cap-
tured. In particular, we did not capture whether the search
was successful, that is, whether the developer obtained the
information they needed. This was intentional as to reduce
the intrusion to the developers, but it is clearly something
that future studies must take into consideration. Using the
logs to estimate search success is tricky, and future work will
evaluate how well result clicks represent query success.

We identify potential cases of query reformulation using
sequential searches with no clicks and Levenshtein’s distance
at the word-level, which may not be representative of query
reformulation or actual query edit distances.

External Validity. Google has a unique software de-
velopment process, and the way Google developers interact
with code search may not match the way external devel-
opers would. It is possible that the reasons for using the
code search tools, types of queries, or the way those queries
are constructed, may be different. Furthermore, although
this is the first study to combine surveys with log analysis,
it only included 27 developers that may not even represent
the Google population of developers.

7. CONCLUSIONS AND FUTURE WORK
Based on surveys and logs of programmer behavior, we

can learn about how and why code search is done, what a
typical code search session looks like in duration and number
of queries and clicks, and how patterns of behavior correlate
with a developer’s goals. We learn that code search is inte-
grated in many development activities, from helping some-
one with a task to reviewing code, from finding an example
to finding who was responsible for a change. We also learn
that a search session is generally just one to two minutes
in length and involves just one to two queries and one to
two file clicks. While we have gleaned lots of interesting
information from the search logs and surveys, there are still
many unanswered questions that require further analysis.

In this paper, we did not focus on questions related to
search quality at all. We defined query reformulation as two
successive searches with no clicks in-between;. future studies
will evaluate if this was an appropriate measure. When no
results were clicked, it is unclear if this means the results
page was sufficient to answer the question or if the query
needs reformulating. When a result was clicked, we did not
investigate the ranking of that result.

This study also did not focus on how the results are used,
which could inform search tool design and workflow. We did
attempt to gain any insight into the types of questions de-
velopers were not able to answer with code search. A deeper
look into programmer behavior, likely involving direct ob-
servation, is needed to more fully understand the limitations
of current search technology.

Distinct segments of the developer population may inter-
act with code search differently. Some of the participants
were software engineers and others were release engineers
or test engineers. Each of these groups may have different
search patterns. Future studies should include a large num-
ber of participants in each role to draw comparisons across
groups. Different search patterns could emerge depending
on developer experience. Future studies should control for
this to see if less experienced developers search more, use
longer query strings, or do other search activities differently
when compared to developers with more experience.

Some of the results may be affected by the fact that the
Google repository follows a very well defined and practiced
set of company standards (e.g., directory structure and nam-
ing conventions) that may affect how people search and how
good the results are. Reproducing the study in other com-
panies would reveal the generality of these results.
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