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ABSTRACT
Although automated unit test generation techniques can in principle
generate test suites that achieve high code coverage, in practice
this is often inhibited by the dependence of the code under test on
external resources. In particular, a common problem in modern
programming languages is posed by code that involves networking
(e.g., opening a TCP listening port). In order to generate tests for
such code, we describe an approach where we mock (simulate)
the networking interfaces of the Java standard library, such that a
search-based test generator can treat the network as part of the test
input space. This not only has the benefit that it overcomes many
limitations of testing networking code (e.g., different tests binding
to the same local ports, and deterministic resolution of hostnames
and ephemeral ports), it also substantially increases code coverage.
An evaluation on 23,886 classes from 110 open source projects, to-
talling more than 6.6 million lines of Java code, reveals that network
access happens in 2,642 classes (11%). Our implementation of the
proposed technique as part of the EVOSUITE testing tool addresses
the networking code contained in 1,672 (63%) of these classes, and
leads to an increase of the average line coverage from 29.1% to
50.8%. On a manual selection of 42 Java classes heavily depending
on networking, line coverage with EVOSUITE more than doubled
with the use of network mocking, increasing from 31.8% to 76.6%.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—Testing
tools

Keywords
Unit testing, automated test generation, Java, JUnit

1. INTRODUCTION
Unit testing is a common practice in industry with the aim to

improve software quality. However, writing effective unit tests is a
challenging and tedious task. Automated test generation techniques
such as random testing [1,2], dynamic symbolic execution (DSE) [3],
search-based software testing (SBST) [4], or hybrid approaches [5],
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have been developed to address these problems. These approaches
generate sequences of function calls with the right data to achieve
high code coverage on the classes under test (CUTs).

To evaluate just how well this works in practice, we conducted
a large empirical study [6] on the SF110 corpus of classes (100
projects randomly chosen from SourceForge, also referred to as
SF100, and the top 10 most downloaded ones), artificial software
previously used in the literature, and seven industrial systems, using
the EVOSUITE unit test generation tool [7]. Although reasonably
high code coverage was achieved, these experiments pointed out a
severe limitation of current test data generation techniques: environ-
ment dependencies. It is not uncommon that code manipulates files,
takes inputs from a GUI, opens network connections, etc. In those
cases, sequences of function calls on the CUTs are not enough: the
environment needs to be taken into account, and environment events
(e.g., incoming TCP connections) need to be part of the test data.

To overcome some of these limitations, in previous work [8] we
introduced a technique to control environmental dependencies using
bytecode instrumentation. For several of the Java API classes involv-
ing, for example, the file system (e.g., java.io), the CPU clock,
console inputs/outputs, and some non-deterministic functions in the
JVM, we wrote “mock” classes that are semantically equivalent, op-
erating on a virtual environment (e.g., a virtual clock, and a virtual
file system in memory). When a CUT is loaded in a test, our instru-
mentation automatically replaces all those Java classes operating on
the environment (e.g., java.io.File) with the corresponding
mocks (e.g., MockFile). As these mocks are semantically equiva-
lent, the instrumentation is transparent to the CUT. This technique
not only makes the tests more stable (e.g., we can control the CPU
clock, thus making assertions relating to time deterministic), but
also leads to higher code coverage. We measured increases of up to
+90% code coverage on some classes when applying this technique.
When run on all the 11,219 classes of the SF100 corpus, the code
coverage increased from 76.5% to 77.9%, indicating that there are
further problems that need to be addressed.

In this paper, we extend our initial work on mocking [8] by imple-
menting a virtual network, used to mock classes in the java.net
package, like TCP sockets. Each generated test case uses its own
virtual network, which is independent from the ones used in the
other tests. This has several advantages, as (1) it is possible to run
tests in parallel that bind to the same local ports; and (2) it is possible
to programmatically control remote resources. Furthermore, we also
present search operators to better control how network inputs are
generated as test data.

To study the effects of a virtual network on code coverage, we car-
ried out an empirical study on the SF110 corpus [6]. SF110 consists
of 6.6 millions of Java code lines involving 23,886 classes coming
from 110 different systems. Using a custom security manager to
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1public class Example_UDP_TCP {
2 public String getMessage(int port) throws IOException {
3

4 //defines message to send in UDP broadcast
5 InetAddress addr =
6 InetAddress.getByName("192.168.0.1");
7 String handShake = "HAND_SHAKE";
8 String outMsg = addr+":"+port+":"+handShake;
9 byte[] data = outMsg.getBytes();

10

11 //send the message
12 DatagramPacket packet = new DatagramPacket(
13 data, data.length,
14 InetAddress.getByName("255.255.255.255"),12345);
15 DatagramSocket udpSocket = new DatagramSocket();
16 udpSocket.send(packet);
17

18 //open listening TCP server based on sent out message
19 ServerSocket tcpServer =
20 new ServerSocket(port,1,addr);
21 Socket tcpSocket = tcpServer.accept();
22

23 //read string from incoming TCP connection
24 Scanner in = new Scanner(tcpSocket.getInputStream());
25 String msg = in.nextLine();
26

27 //close all resources
28 in.close();
29 tcpSocket.close();
30 tcpServer.close();
31

32 //check if first line contains the handshake token
33 if( msg.startsWith(handShake)){
34 return msg;
35 } else{
36 throw new IOException("Invalid header: "+msg);
37 }
38 }
39}

Figure 1: Example class with UDP and TCP communication.

track network accesses, it turned out that networking is a problem
for 2,642 classes (11%). Of those, our current implementation of
the presented technique can fully handle the network accesses in
1,672 cases (63%), increasing average line coverage from 29.1% to
50.8%. Furthermore, we carried out more detailed experiments on a
manual selection of 42 Java classes, showing that the achieved line
coverage more than doubled, increasing from 31.8% to 76.6%.

The main contributions of this paper are:
• Empirical evidence that networking is a common problem,

happening in 11% of the classes out of 6.6 millions of Java
code lines used in the experiments.

• An extension of the instrumentation-based environment mock-
ing approach [8] to (a) allow mocking of final classes, and
(b) allow the mocking behavior to be activated and deactivated
at runtime.

• A virtual network implementation that can be controlled by a
test generator through method calls in the tests.

• An adaptation of the search-operators in the search-based
EVOSUITE test generation tool that uses runtime observations
to improve the selection of operations on the virtual network.

• Empirical evidence that these techniques increase line cover-
age by more than 20% on average on network-related classes.

2. MOTIVATING EXAMPLES
The Java class listed in Figure 1 presents a non-trivial usage ex-

ample covering a wide range of network functionalities. The method
getMessage takes as input an integer value representing a local
port. The method first sends a UDP broadcast on the network, with
a handshake code and the local port number. Then, it opens a TCP
listening server on the same port. When an incoming connection
from a remote entity is established, the CUT reads the incoming

1@Test public void test0() throws Throwable {
2 Example_UDP_TCP example_UDP_TCP0 =
3 new Example_UDP_TCP();
4 // Undeclared exception!
5 try {
6 example_UDP_TCP0.getMessage((-115));
7 fail("Expecting exception: IllegalArgumentException");
8 } catch(IllegalArgumentException e) {
9 // Port value out of range: -115

10 }
11}

Figure 2: Without virtual network, tests generated by EVOSUITE on
the class in Figure 1 only result in exceptions for getMessage.

1 try {
2 Socket socket = serverSocket.accept();
3 InetSocketAddress addr =
4 (InetSocketAddress) socket.getRemoteSocketAddress();
5 if( addr.isUnresolved() || ! isAllowed(addr) ) {
6 System.out.println(
7 "TelnetUI: rejecting connection from: " +
8 addr + " as address is not allowed");
9 socket.close();

10 } else {

Figure 3: Code excerpt from SocketServer in Vuze.

message, and check if it is valid by looking at the handshake code. If
so, the received message is returned to the caller of getMessage.
Otherwise, an exception is thrown.

To the best of our knowledge, no current unit test generation tool
can achieve full coverage on such a CUT, as it requires network
communications as test data. For example, previously EVOSUITE
would not be able to execute the method getMessage without
leading to a security exception first caused by Line 15, which leads to
an attempt to bind to an ephemeral port. Deactivating EVOSUITE’s
security manager would still lead to an exception at that line, due to
“maximum number of DatagramSockets reached” when generating
several test cases, as the UDP sockets are never closed in this code
example. Furthermore, a correct execution also depends on whether
the IP address at Line 6 is a valid local address, otherwise opening a
TCP server on the address at Line 20 would fail. Figure 2 shows the
only test that EVOSUITE could previously generate.

2.1 Network Transmissions
Code relying on networking is not only a problem with respect

to achieving code coverage. For example, during test generation
with an SBST or DSE tool, the method getMessage could be
called several times to find the right test data, even in the order of
hundreds of thousands of times. However, broadcasting hundreds
of thousands of messages (Line 16) on a network might not be the
smartest idea, especially when an engineer is using EVOSUITE on
her development machine, which most likely would be connected to
a corporate network. This is not a problem in a virtual network.

2.2 Blocking Calls
Consider the call at Line 21 in Figure 1: The code attempts

to listen to an incoming TCP connection, which is a blocking
call: If no external entity actually tries to connect, the test call-
ing getMessage will never return. Although a JUnit test case can
be run with a timeout (e.g., five seconds in EVOSUITE), each test
execution would always use the full amount of time specified in the
timeout, making the search for test cases extremely inefficient.

As another example, see the snippet in Figure 3 from the class
SocketServer in the Vuze program (one of the most used peer-
to-peer programs in the world). The if statement will never be
executed if there is no incoming connection (the accept method
is blocking). Therefore, for testing purposes, there is the need to
create incoming connections as test data for the CUT.
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1public class Example_URL {
2 public boolean checkURL() {
3 try {
4 URL url =
5 new URL("http://www.evosuite.org/index.html");
6 URLConnection connection = url.openConnection();
7 Scanner in =
8 new Scanner(connection.getInputStream());
9 String line = in.nextLine();

10 in.close();
11 if(line.contains("<html>")){
12 return true;
13 } else {
14 return false;
15 }
16 } catch (IOException e) {
17 return false;
18}}}

Figure 4: Example of an HTTP read with a URL object.

1@Test public void test0() throws Throwable {
2 Example_URL example_URL0 = new Example_URL();
3 boolean boolean0 = example_URL0.checkURL();
4 assertFalse(boolean0);
5}

Figure 5: Without networking support, tests generated by EVO-
SUITE on the class in Figure 4 will only return false.

1public static final String WHOIS_SERVER =
2 "whois.geektools.com";
3public static final int WHOIS_SERVER_PORT = 43;
4//...
5try {
6 Socket socket = new Socket(WHOIS_SERVER,

WHOIS_SERVER_PORT);
7 UnsyncBufferedReader unsyncBufferedReader =
8 new UnsyncBufferedReader(
9 new InputStreamReader(socket.getInputStream()));

10 PrintStream out = new PrintStream(
11 socket.getOutputStream());
12 //...
13catch (Exception e) {
14 throw new WebCacheException(_domain + " " +
15 e.toString());
16}

Figure 6: Code excerpt WhoisWebCacheItem in Liferay.

On the other hand, a case of interest for testing might be the
behavior of a CUT if no incoming connection is registered; again
this is difficult to achieve in a test in an efficient way.

2.3 Networking Data
Directly opening TCP connections or sending UDP packets are

not the only way to do networking in Java. For example, one could
use HTTP to download the content of a remote resource (e.g., a
webpage) by using a URL object, as shown in Figure 4. The branch
at Line 11 is not trivial: only if the resource exists and contains the
needed data, the predicate will be true. But having two different test
cases in the same test suite, one for each branch, would require a
change in the remote resource. If the tester has write-permission
access to the resource, it could be done, although it might be a bit
cumbersome. If not, then there would not be many options. Even
without a sandbox activated, previous EVOSUITE versions could
only generate tests covering the false branch, as shown in Figure 5.

Another interesting case can be seen in Figure 6, which shows a
code snippet from the class WhoisWebCacheItem in the Liferay
project. The CUT connects to a remote host, whose IP address is
hardcoded in a final variable. At the time of writing of this paper, it
points to a valid public server (the interested reader might want to
use a web browser to look at the address whois.geektools.com). It
would be cumbersome, if possible at all, to deterministically control
the behavior of that remote server from within a test (e.g., if one
wants to cover the code within the catch block). Furthermore, a

generated test that captures the current behavior of the CUT could
fail tomorrow if the remote server behaves differently, or more
simply if the internet connection of the developer running the test
momentarily goes down.

3. BACKGROUND
It is not in the scope of this paper to provide a full description of

computer networking. In this section, we provide a brief description
of different key concepts used in the paper, as well as background
information on test generation. For more details about networking
we refer to standard literature on the topic (e.g., [9]).

3.1 Networking Concepts

3.1.1 Network Addresses
A machine on a network is identified with an Internet Protocol

(IP) address. The most used version of the protocol is IPv4, in which
an address is specified with 32 bits, usually visualized by showing its
4 bytes separated by dots, e.g., 127.0.0.1 for the loopback address.

To communicate with a remote host, one not only needs to know
its IP address, but also the port on which the remote host is listening
for incoming connections. Typically, there are up to 216 = 65,536
different ports, where the first 1024 are reserved for special purposes.
For example, a webserver hosting webpages will have a server
application listening on port 80, and an ssh connection is usually
done on port 22. Binding on a port is unique: no other process/thread
can bind on the same port with the same protocol (e.g., UDP/TCP).
Even if a port is closed, it is not necessarily going to be available
again in the immediate future. The closing/reallocation of ports is
handled by the operating system, and, in special cases, it can even
take several minutes. Instead of specifying a local port to open, one
can also use an ephemeral one: the operating system will just use
any currently available port that is not already bound.

Instead of specifying an IP address numerically, one can also use
the name of the remote server, which is then mapped to an IP address
using the Domain Name System (DNS). For example, to connect to
www.evosuite.org one would first connect to a DNS server, which
would return the IP address 143.167.8.56.

To connect to a remote host, a network interface card is needed.
Typical connections are through ethernet and WiFi. A computer can
have more than one interface, specifying different IP subdomains.
When an outbound message is sent, based on its remote IP address,
it will be forwarded to the right interface serving that subdomain,
which will then send the message to the first hop (e.g., a router)
toward the final destination.

3.1.2 UDP/TCP Internet Protocols
The user datagram protocol (UDP) is one of the core elements

of the internet. It is a connectionless, simple protocol. It does not
guarantee that messages will be delivered to the final destination,
and, even if they arrive, their order is not guaranteed either. A
message can get lost if, for example, it is forwarded through a router
that is overloaded and has no space left in its memory buffer.

In UDP, one sends packets, with five main components: the IP
address and port of the remote host (i.e., final destination), the IP
address and port of the local interface from which the message is
originated from (i.e., the source), and the payload (up to 65k bytes).

The transmission control protocol (TCP) is more sophisticated
than UDP: it does guarantee delivery, and the order of messages.
This is achieved by, for example, resending packets that are lost, and
re-ordering the packets on the destination if they are in the wrong
order. Similar to UDP, one needs to specify a remote destination
with an IP address and port, and a local interface address and port.
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From the point of view of the user, the “connection” with the remote
host can be seen as a stream, to/from where data can be sent/read.
Accurate delivery of TCP compared to UDP comes at the cost
of possible time delays, e.g., when lost packets need to be resent.
Which protocol to use depends on the application requirements.

3.1.3 HTTP
The hypertext transfer protocol (HTTP) is an application protocol,

usually built on top of TCP. It defines a request/response protocol
between hosts, usually used to retrieve textual data. The most
typical case is the world wide web. For example, if one uses a web
browser to view the page http://www.evosuite.org/evosuite/, then
the browser will open a TCP connection on port 80 on the server
www.evosuite.org. Once the TCP connection is established, the
browser will send a message looking like “GET evosuite”. On the
same connection, the remote server will send the textual information
contained in that web page.

The HTTP protocol is very common. Therefore, many program-
ming languages provide libraries to handle it without the need of
dealing with the raw details of the TCP messages. For example,
in Java, one can simply use a URL object to “get” the content of a
remote resource, as was done in Figure 4.

3.2 Test Data Generation
Different techniques have been proposed in order to generate unit

tests automatically. Random test generators like RANDOOP [2],
AUTOTEST [10] and JCRASHER [11] are able to automatically
synthesise method sequences for a given CUT. Dynamic symbolic
execution based tools (e.g., [3, 12, 13]) use constraint solvers to
generate primitive input data, but rely on heuristic approaches to
generate sequences of calls (e.g., [14]). Search-based approaches
use meta-heuristic algorithms to optimize sequences of calls [4].
Various tools such as TESTFUL [15] or EVOSUITE [7] implement
different flavours of search algorithm.

The techniques presented in this paper are implemented and evalu-
ated in the context of the EVOSUITE unit test generation tool, which
combines SBST and DSE, using a Genetic Algorithms (GA). A
GA works by mimicking the natural process of evolution: Given a
population of individuals, the best individuals are selected (survival
of the fittest), and combined with operations such as crossover and
mutation to produce offspring. This iterative process continues until
all search goals are covered, or the computational resources at hand
are exhausted. Then, one of the best individuals is reported as the
result of the search.

EVOSUITE applies a GA guiding the evolution of whole test
suites towards some selected criterion (e.g., branch coverage). In
EVOSUITE, individuals are entire test suites. Starting from an initial
population of test suites (this initial population can be seeded or
randomly created), EVOSUITE will evolve these whole test suites
towards the selected criterion. Some of the criteria implemented cur-
rently in EVOSUITE include optimizing branch coverage [7], data-
flow coverage [16] and killing the highest number of mutants [17].

Besides combining whole test suites using crossover, single test
cases can be mutated with a certain probability. This modification
may include (non-deterministically) adding a new statement, remov-
ing an existing statement or modifying the argument on an existing
statement.

3.3 Environment Mocking
Mocking is an approach to isolate a class from its dependencies by

using replacements of classes instead of original ones. In common
terminology, a stub is a replacement with a fixed (usually default)
behavior, while a mock not only replaces the original class, it also

has some partial behavior (mimicking the intended behavior of the
class) that needs to be configured, usually during the preparation of
the test execution. In this paper, we use “mocks” as synonym for
some common terms like fakes, dummies or test doubles.

There are many industrial frameworks that allow a developer to
manually write her own mock classes by specifying which behav-
ior they should have. Some examples for Java include Mockito1,
EasyMock2 and JMock3. Although it is a good practice to isolate a
class from its dependencies for unit-testing, doing so also adds an
additional problem as the behavior of the mock classes should be
kept in sync with the real implementation. None of the aforemen-
tioned frameworks can automatically create mock objects, it is the
user who is expected to declare how the mock behaves.

Perhaps not surprisingly, most of the research towards automat-
ically creating mock objects has been done to enhance automatic
test case generation. For example, DSC+MOCK [18] automatically
creates mock objects for interfaces with no implementing concrete
class while using the symbolic execution tool DSC. If formal pre
and post-conditions are given, it is possible to synthesize more re-
alistic mocks satisfying the method’s specification [19]. In turn,
these mocks are used as input data for parameterized unit tests.
Some specific techniques have been presented to improve code cov-
erage of automatic test generators by mocking interactions with
databases [20] and file systems [21]. The Moles framework [22]
works together with the PEX [23] automatic test generator, Moles
not only allows mocking of classes, it also enables redirecting calls
by using code instrumentation. Finally, (although not directly re-
lated to automatic test generation) Saff and Ernst [24] created mock
objects to replace components with long execution times.

In previous work [8] we extended the EVOSUITE test gener-
ator to handle classes with environment dependencies. When a
user-class is loaded into memory, it is automatically instrumented
to isolate the class from its environment. This is done by redi-
recting invocations accessing environment-dependant data (such as
System.currentTimeMillis) and by mocking classes that
interact with the environment (e.g., java.io.File for handling
the file system or System.in for the console). In turn, search
operators are enabled to allow the GA to update the environment
dependencies that were used during the test execution. However,
that extension did not handle test-data generation for classes with
network accesses, used a simpler instrumentation that was neither
applicable to final classes nor allowed to control when mocked
or regular behavior was needed, nor was any systematic study on the
impact of networking for automatically generating tests presented.

4. A VIRTUAL NETWORK FOR TESTING
In order to make it possible for automated test generators to tar-

get classes with networking dependencies, we propose a technique
that uses mocking to replace the networking libraries of the Java
standard library with custom, mocked versions. These replacement
classes do not access the real network interfaces, but instead access
a simulated, virtual network, the state of which is determined by the
test generation tool. The virtual network simulates remote hosts, all
the communications between the remote and the local host, host-
name resolution, choice of ephemeral ports by the operating system,
etc. In this section, we describe the two main components of this
solution: First, we look at which parts of the standard library need
to be replaced. Second, we describe how a test generation tool can
be extended in order to manipulate the state of the virtual network.

1http://code.google.com/p/mockito, accessed March 2015
2http://www.easymock.org, accessed March 2015
3http://jmock.org, accessed March 2015
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1public class MockSocket extends Socket
2 implements OverrideMock {
3 // ...
4 @Override
5 public InetAddress getLocalAddress() {
6 if(! MockFramework.isEnabled())
7 return super.getLocalAddress();
8 if (!isBound())
9 return MockInetAddress.anyLocalAddress();

10 // ...
11 }
12 // ...
13}

Figure 7: An override mock for java.net.Socket; all methods
are overriden and ensure that the virtual network is used.

4.1 Network Mocking

4.1.1 Mocked Classes
In order to make the CUT use the virtual network instead of the

real one, we extended the mocking technique presented in [8], which
was originally used to mock the file system and the CPU clock. The
extension introduces different types of mocks to allow mocking of
final classes, as well as instrumentation to conditionally activate
the mocked behavior, or restore the un-mocked behavior. Using
instrumentation does not require any changes in the CUT, but by
using an instrumenting classloader we can automatically modify the
CUT code when it is loaded into memory. Every time a network
related class is accessed, we rather load a mocked version that is
semantically equivalent but operates on the virtual network. Each
program behavior, exhibited when a mock class is used, should be
possible also with the original program, provided that the environ-
ment is properly set up for the execution. In other words, mocked
classes should not introduce infeasible behavior. The state of the vir-
tual network is reset after each test execution to avoid dependencies
among tests.

To handle Java programs using network features, we needed to
mock the following classes from the java.net package:

• InetAddress
• NetworkInterface
• InetSocketAddress
• DatagramSocket
• ServerSocket

• Socket
• SocketImpl
• URL
• URLStreamHandler
• URI

Mocking a class means providing implementations for each of
its methods. For example, the method getByName in the class
InetAddress returns the IP address for the given hostname, by
making a DNS lookup. In our case, we implemented a method
that queries a virtual DNS in memory that, for each request, de-
cides whether to return an IP address in valid form or state that the
hostname is invalid.

Each mock class needs to be implemented only once, and has
to be part of the test data generation framework. The final user
should not be needed to write any mock classes. However, it is
essential that the implemented mocks are semantically equivalent to
the classes they are mocking. The CUT should not behave differently
depending on whether a mock or its original class is used. At the
end of day, EVOSUITE is used to generate test cases that can be
used for debugging, and it would not be helpful for this purpose if
the CUT would behave different from expectations.

We distinguish between two different kinds of environment mocks
to achieve this, which we call Override Mocks and Static Replace-
ment Mocks.

4.1.2 Override Mocks
Given a Java API class X to mock (e.g., java.net.Socket),

an override mock is a class that extends X (see Figure 7) and

1public class MockNetworkInterface
2 implements StaticReplacementMock {
3 // ...
4 public static boolean isLoopback(NetworkInterface ni)
5 throws SocketException {
6 return VirtualNetwork.getInstance()
7 .getNetworkInterfaceState(ni.getName())
8 .isLoopback();
9 }

10 // ...
11}

Figure 8: A static replacement mock for
java.net.MockNetworkInterface: For each method
and constructor of the class URL there is one static method with the
same name and signature, except for the additional first parameter
that represents the instance of the mocked object.

overrides every single of its methods and constructors. All those
overriden methods will operate on the virtual network. Every sin-
gle static method will be replicated in the mock with the same
signature (note: in Java the static methods are not overridden).
When a CUT is loaded in the JVM, we instrument it (using a
Java Agent) in a way that each constructor for X will be re-
placed by a constructor of its mock with same signature (e.g.,
new Socket(...) is replaced by new MockSocket(...)).
Every static call will be replaced by a static call of the mock,
e.g., each call to Socket.setSocketImplFactory(...) is
replaced by MockSocket.setSocketImplFactory(...).
If the CUT extends X , then it will rather extend the mock, e.g.,
class Foo extends Socket will be replaced by class
Foo extends MockSocket. When instances of X are needed
in the test cases as input for the CUT, we rather use the mock.
For example, if the CUT has a method to test public void
foo(Socket input), then EVOSUITE will only instantiate a
MockSocket to give as input to the method foo.

4.1.3 Static Replacement Mocks
Unfortunately, it is not always possible to create an override mock

for the Java APIs. For example, a final class cannot be overridden.
Likewise, classes with no public constructors cannot be overrid-
den either. In those cases, we use a static replacement mock. A
static replacement mock for a Java API class X will not override
it, but rather provides a static method for each method/constructor
in X . For each non-static method, the mock will need to provide a
static one with same name and, a reference to X as first parameter,
followed by all the remaining parameters of the mocked method.

For example, given a method void foo(int v), the mock
will need to implement static void foo(X x, int v).
Then, when the CUT is loaded, each x.foo(...) will be replaced
by MockX.foo(x,...). There is the need to pass the reference
of x to be able to change its state (e.g., by reflection if there are
no appropriate setters) accordingly to the semantics of the mocked
method foo. For each constructor, the mock will need to implement
a static method with same input signature and returning an instance
of X . Then, the instrumentation will replace each construction call
new X(...) with MockX.X(...), which will have signature
static X X(...). Finally, static methods in X will be treated
like they are treated in an override mock. Note, in the case of a static
replacement mock, by definition we will not have cases of CUTs ex-
tending it, e.g., class Foo extends X. Figure 8 shows the ex-
ample static mock for class java.net.NetworkInterface,
which contains a mocked method for each method and construc-
tor. For example, method isLoopback() is mocked using
isLoopback(NetworkInterface), and accesses the virtual
network to determine the status of the simulated device.

159



1@Test public void test1() throws Throwable {
2 EvoSuiteLocalAddress evoSuiteLocalAddress0 = new

EvoSuiteLocalAddress("192.168.0.1", 596);
3 Example_UDP_TCP example_UDP_TCP0 = new

Example_UDP_TCP();
4 boolean boolean0 = NetworkHandling.sendMessageOnTcp(

evoSuiteLocalAddress0, "HAND_SHAKE");
5 String string0 = example_UDP_TCP0.getMessage(596);
6 assertEquals("HAND_SHAKE", string0);
7}

Figure 9: Test generated by EVOSUITE with networking support on
the class in Figure 1:

Technically, each override mock could be rewritten as a static
replacement mock. So, why two different kinds of mocks instead
of making things simple by just always using the static replacement
one? The main reason is that at runtime we cannot instrument
Java API classes that have already been loaded in memory by the
boot-classloader. Assume the CUT creates an instance x of a Java
API class X for which we have defined the mock MockX . This
instance is given as input to another Java API class Y which is not
mocked, like for example by calling Y.foo(x). If MockX is an
override mock, then all the calls in Y.foo on x will be done on the
virtual network. On the other hand, if MockX is rather a static
replacement mock, then all the calls in Y.foo will be on the original
version of X , and not the mocked one, as Y cannot be instrumented.
In this case, an override mock is a better option.

4.1.4 Switching between mocked and original be-
havior

Another essential feature of our framework is the ability to roll-
back the behavior of a mock to its original unmocked class. This
became a major requirement when running EVOSUITE in industry,
as automatically generated tests could be run together with the ex-
isting manually written ones. This was a typical case in continuous
integration servers when build programs like Maven are used, and
all tests are run in sequence with a “mvn test” call at each new
build. Once the CUT has been instrumented when running an EVO-
SUITE test, all tests afterwards will use that instrumented version.
Depending on how the manual tests are written (e.g., depending on
an actual remote host to connect to, like for example a web-service),
some manual tests could fail because they would now be running
on a virtual network that has not been properly initialized for such
tests. Those failing tests would be time consuming false positives,
as the user would not know whether these tests fail due to a bug
before actually spending time in debugging them. Therefore, in
our framework we use a flag: each time we instrument a CUT, we
automatically wrap each mock call in an if statement. If the flag
is true, then the mock is used, otherwise the original class is rather
used. The flag is activated before each EVOSUITE test (done a in a
@Before call), and de-activated afterwards (in an @After call).

This approach would handle all instrumentation cases but one:
the extends of a mock class, e.g., class Foo extends MockX.
Once the class is loaded, its hierarchy cannot be changed, e.g., rolled
back to class Foo extends X. Therfore, in an override mock
we need to manually implement each single method with its own
rollback behavior based on such a flag. This is important when
instances of that Foo are given as input to Java API classes that
cannot be instrumented. See for example Line 6 in Figure 7.

4.2 Network as Test Data
Using a virtual network has many advantages, like avoiding DNS

resolutions, and preventing port binding conflicts. However, it also
enables the creation of remote servers/resources on the fly to be able
to better test the CUTs. For this purpose, we created methods to mod-

1@Test public void test2() throws Throwable {
2 EvoSuiteURL evoSuiteURL0 = new EvoSuiteURL(
3 "http://www.evosuite.org/index.html");
4 Example_URL example_URL0 = new Example_URL();
5 boolean boolean0 = NetworkHandling.

createRemoteTextFile(evoSuiteURL0, "<html>");
6 boolean boolean1 = example_URL0.checkURL();
7 assertTrue(boolean1);
8}

Figure 10: Tests generated by EVOSUITE on the class in Figure 4.

1@Test public void test3() throws Throwable {
2 Example_UDP_TCP example_UDP_TCP0 = new

Example_UDP_TCP();
3 try {
4 example_UDP_TCP0.getMessage(0);
5 fail("Expecting exception: IOException");
6 } catch(IOException e) {
7 // Simulated exception on waiting server
8 }
9}

Figure 11: Additional test generated by EVOSUITE with networking
support on the class in Figure 1.

ify the virtual network, which is accessed by the mocked networking
classes, directly in the test cases. For a search-based tool like EVO-
SUITE, those methods will be part of the search, like any other
method of the CUT. See for example the usage of the EVOSUITE
framework class NetworkHandling in the automatically gener-
ated test case in Figure 9 and Figure 10. There, TCP messages are
sent with sendMessageOnTcp, whereas remote resources can be
created on the virtual network with createRemoteTextFile.

However, being able to generate network events as test data is not
enough. For example, there is no point in sending a TCP message
on a port that the CUT is not listening on, or in creating remote
resources that the CUT never tries to access. Even more, there is no
point at all in using any method from NetworkHandling if the
CUT does not do any networking. Generating such test data would
be just a waste of time.

To overcome these issues, when tests are generated and evaluated
as part of the search (e.g., the generations of the genetic algorithm),
we keep track of what the CUT tries to access. If the CUT opens a
UDP listening socket on a port X , then we will enable in the search
the usage of methods to simulate the sending of UDP packets to port
X . Likewise, if the CUT accesses a remote resource via a HTTP
URL, then we will enable the search to use the methods to create
only those remote resources. This drastically reduces the search
space of possible test cases to only those relevant ones.

On the other hand, if no incoming connection is registered in the
test case, in our virtual network we can just simulate the throwing
of a valid IOException (this is the default behavior if no incoming
connection is registered), as shown in Figure 11 at Line 7.

Another key aspect of these helper methods in
NetworkHandling is that they are asynchronously buffered.
For example, consider the case of a CUT listening for an incoming
TCP connection (e.g., recall Line 21 in Figure 1). Creating an
incoming connection before the CUT calls the method accept
would fail, as there is no listening socket yet. Trying to create an
incoming connection after accept is called would not work either,
as accept would block the JUnit execution until a connection
is accepted. One would have have to create a second, separated
thread from which to initiate the TCP connection, and synchronize
it properly.

To avoid the complications of handling different threads in a JUnit
test, we chose a different approach. Because we have full, complete
control over the virtual network, every TCP connection or UDP
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1@Test public void test2() throws Throwable {
2 EvoSuiteLocalAddress evoSuiteLocalAddress0 = new

EvoSuiteLocalAddress("192.168.0.1", 26);
3 boolean boolean0 = NetworkHandling.sendMessageOnTcp(

evoSuiteLocalAddress0, "");
4 Example_UDP_TCP example_UDP_TCP0 = new

Example_UDP_TCP();
5 // Undeclared exception!
6 try {
7 example_UDP_TCP0.getMessage((int) (byte)26);
8 fail("Expecting NoSuchElementException");
9 } catch(NoSuchElementException e) {

10 // No line found
11 }
12}

Figure 12: Additional test generated by EVOSUITE with networking
support on the class in Figure 1.

1@Test public void test1() throws Throwable {
2 EvoSuiteURL evoSuiteURL0 = new EvoSuiteURL(
3 "http://www.evosuite.org/index.html");
4 boolean boolean0 = NetworkHandling.

createRemoteTextFile(evoSuiteURL0, "");
5 Example_URL example_URL0 = new Example_URL();
6 // Undeclared exception!
7 try {
8 boolean boolean1 = example_URL0.checkURL();
9 fail("Expecting NoSuchElementException");

10 } catch(NoSuchElementException e) {
11 // No line found
12 }
13}

Figure 13: Test generated by EVOSUITE on the class in Figure 4.

packet sent by the test case is buffered. This allows the creation
of network test data before the CUT is executed. When the CUT
open a listening port, then we check if in the virtual network there
is any buffered incoming connection. If yes, then we immediately
established the connection. If not, there is no point in keeping the
CUT hanging on a blocking call until the test case timeouts, as no
further incoming connection would be possible. Therefore, to save
precious time that can be used to evaluate new test cases, we hence
simulate an immediate error on the network, by throwing a valid
IOException.

4.3 Detecting Faulty Networking Code
Besides generating high coverage test suites, EVOSUITE can also

identify faults in the CUT, e.g., when undeclared exceptions are
thrown [25]. In both examples, Figure 1 and Figure 4, there is the
same kind of fault: reading a line from a stream without first check-
ing if such a line exists at all (e.g., with the method hasNextLine
in the class Scanner). EVOSUITE can generate input data (in this
case, network messages) that manage to crash the CUTs by getting
them to throw an undeclared NoSuchElementException (see
Line 9 in Figure 12 and Line 10 in Figure 13).

5. EMPIRICAL STUDY
Intuitively, using a virtual network for unit testing has many

immediate benefits. Whether the virtual network is of benefit in
automated test data generation is a more difficult question: Will
it be sufficient to achieve full code coverage, or is more research
needed to develop new techniques to better choose how to generate
the network events? Formally, in this section we want to give an
answer to the following research questions:

RQ1: How common is network communication in open-source
Java classes?

RQ2: What cases of networking code can our mocking technique
handle?

RQ3: How much does coverage improve when using a virtual
network?

1class ClientHelper {
2 static void send(String command, String server, String

port) {
3 try {
4 doSend(command, server, port);
5 }
6 catch (IOException e) {
7 e.printStackTrace();
8 }
9 }

10

11 static void doSend(String command,
12 String server,
13 String port)
14 throws IOException {
15 Socket socket = new Socket(server,
16 Integer.parseInt(port));
17 OutputStream os = socket.getOutputStream();
18 BufferedOutputStream out =
19 new BufferedOutputStream(os);
20 out.write(command.getBytes());
21 out.write(’\r’);
22 out.flush();
23 socket.close();
24 }
25}

Figure 14: Snippet code from ClientHelper in jiprof.

1public class Clear {
2 public static void main(String[] args) {
3 ClientHelper.send("clear", args[0], args[1]);
4 }
5}

Figure 15: Snippet code from Clear in jiprof.

5.1 Case Study
We used the SF110 corpus of classes [6] for evaluation. The

SF110 is composed of 100 projects randomly selected from Source-
Forge, which is one of largest web repositories for open-source
software. Furthermore, to also take into account programs that
are popular, the SF110 corpus includes the 10 most downloaded
software. For example, these include the peer-to-peer bitorrent
downloading tool Vuze (formerly called Azureus), and the web-
portal Liferay. In total, the SF110 corpus consists of 23,886 Java
classes, spanning over 6.6 millions of lines of code.

To carry out more detailed experiments, we also selected 42 Java
classes coming from 14 different software projects in the SF110
corpus; the smaller number permits more repetitions, which is help-
ful for the statistical analysis. Those classes were chosen manually,
based on different criteria: We first looked at experiments on the
whole SF110 to see which classes ask for network permissions. We
then searched for keywords (e.g., URL and Socket) in the source
code, and identified interesting classes making use of network fea-
tures. We tried to have at least one class for each major network
component we simulate (e.g., UDP, TCP and HTTP via URL). We
avoided classes that, albeit using some network features, were only
marginally depending on those. Finally, we only selected a relatively
small amount (42 classes) as we had to look at their source code
manually, and wanted to present their results in more details. Note,
to answer RQ3, there would not be much point in using classes
without network features.

The selected classes are not independent, but rather parts of larger
software projects. Therefore, looking at metrics like lines of code
can be misleading when evaluating the complexity of such classes.
For example, a CUT might be relatively short and not doing any
direct network access. On the other hand, such a class might call
other classes that do a lot of networking, and that hence require to
generate several network events in the test cases. This was the case
for many of the analyzed CUTs; for example, consider the class
ClientHelper from the project jiprof, listed in Figure 14. To
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fully cover such a class, one has to create a remote server listening
on the specified TCP port, beside providing the right input value to
the send method. Now, consider the trivially small class Clear
from the same SF110 project, listed in Figure 15. This class has
practically just one statement that calls ClientHelper. Still,
beside the need to create a string array with at least two elements,
one representing a valid IP address, and the other a valid integer
port, one has still to create a remote listening server. Otherwise,
when a security manager is used, the method send will throw a
security exception and not return properly.

5.2 Experiments
To give an answer to our research questions, we ran several ex-

periments with EVOSUITE considering two different configurations:
with and without the virtual network (VNET). When EVOSUITE is
run without the virtual network (i.e., the “Base” default configura-
tion), we employ a security manager to prevent potentially harmful
operations [6].

First, we ran the Base configuration once on all 23,886 classes in
SF110, to determine which classes try to access the network. Each
search was left running for two minutes. From this run, we deter-
mined 2,642 classes using the network by analysing the network
permissions they asked for. Then, we ran both configurations on
those 2,642 classes. To take the randomness of the algorithms into
account, each experiment was repeated five times with different
random seeds, for a total of 2,642× 2× 5 = 26,420 runs. Finally,
on the manually chosen 42 classes, we ran both configurations 30
times, for a total of 42 × 2 × 30 = 2,520 runs. All experiments
were run with an HPC cluster [26].

The results of these experiments were analyzed following the
guidelines in [27]. In particular, we used a Wilcox-Mann-Whitney
U-test to check statistical difference among the two analyzed config-
urations. Effect sizes were measure with the standardized Vargha-
Delaney Â12 statistics. A value Â12 = 0.5 means no difference
between two compared configurations, whereas Â12 = 1 means the
first configuration always obtained better results, and the other way
round for Â12 = 0. In other words, the Â12 statistics is a measure of
the probability of a run with the first configuration obtaining higher
values (e.g., better coverage) than using the second configuration.

5.3 RQ1: How common is networking?
By using a custom Java security manager, we can track each time a

CUT attempts to access the network, because this results in the CUT
asking for either a SocketPermission or a NetPermission.
In our previous exploratory experiments [6], in which we monitored
all the Java permissions, it turned out that network permissions were
asked in 30% of the classes in SF110. However, after a more in
detail analysis carried out in this paper, we found out that such a
high number is misleading.

There are many classes in SF110 that are GUI based (e.g.,
using Swing components). Widgets extend the abstract class
JComponent. To draw a widget, its frame window needs
to know the size of such a component. To our greatest sur-
prise, a call to getPreferredSize() leads to network ac-
cess in Java! In particular, getPreferredSize() leads
to a call to getFontMetrics(), which ends up in the
sun.font.FcFontConfiguration class where the method
getFcInfoFile() uses a InetAddress to resolve the lo-
cal host address. If a security exception is thrown, then
getFcInfoFile() just defaults to using the loopback address.
Note, although we mock InetAddress, we cannot instrument
Java API classes that are loaded by the boot-classloader.

As resolving the local host does seem relatively harmless, and
at any rate we do mock InetAddress in the CUTs and all third-
party libraries it uses, we hence relaxed the security manager to
grant this permission. A new run of experiments with the relaxed
security manager identified 2,642 classes accessing the network, i.e.,
11% of all classes.

RQ1: 11% of all classes in SF110 access the network.

5.4 RQ2: What is handled by EvoSuites’s
mocking?

To determine whether a specific networking interaction was suc-
cessfully mocked, we can again make use of the security manager:
Networking related permissions should only be requested by stan-
dard networking code, mocked networking code will not ask permis-
sion, and instead uses the virtual network. After running EVOSUITE
with the virtual network mocking on the 2,642 classes that origi-
nally asked for network related permissions, it turned out that, in
1,672 cases, no network permission was asked. This means that
our techniques managed to handle all cases of network access in
those classes. In other words, our technique fully handled 63% of all
classes in which networking is involved. Note that for the remaining
37% classes there are likely also several networking aspects that are
handled, but in each of these classes there was at least one attempt
to access the actual network.

Why was 100% not achieved? By manually looking at some
of the classes that were not handled, we can identify at least two
reasons. First, it turned out that there are further classes in the
Java API related to networking, which we did not create mocks for.
Beside the java.net package, there are networking classes like
ServerSocketChannel in the java.nio.channels, and
the whole java.rmi package (Remote Method Invocation). In
principle, this can be solved by extending the virtual network to also
mock all those classes.

Second, mocking has limitations when “final” classes are in-
volved. For example, the class URL is final. Mocking that class
cannot be simply done by subclassing, and so we need to replace
every single of its occurrences with our mock (i.e., we need to use
a static replacement mock, recall Section 4.1.3). If the CUT calls
a method of one class in the Java API that takes a URL as input
(an example we saw in the experiment logs was one of the con-
structors in the Swing class ImageIcon), then we cannot make
those replacements in classes that have been already loaded by the
boot-classloader. Fully solving such issues would require to mock
all those Java API classes (e.g., ImageIcon) to make them use our
virtual network (e.g., by rather using our MockURL class). Doing
this for the whole Java API would most likely be too complicated
and time consuming. However, it would be reasonable to do it for a
few selected classes that are widely used in practice.

RQ2: Mocking java.net fully covers 63% of the selected
classes, but misses cases involving the RMI and NIO packages.

5.5 RQ3: How much does code coverage im-
prove?

To measure coverage increase, we focus on line coverage instead
of the more commonly used branch coverage, for practical reasons:
Most Java bytecode based coverage measurement tools measure
branch coverage in terms of the outcomes of conditional statements,
without considering coverage on non-branching code; that is, in
practice, branch coverage does not subsume statement coverage [28].
As many operations on the network results in either blocking method
calls (e.g., waiting for an incoming connection) or calls that throw
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Table 1: Results of the experiments on the whole SF110.

CUTs using network: 2,642
CUTs handled by VNET: 1,672
Coverage for Base: 29.1%
Coverage for VNET: 50.8%
# Better: 917
# Equal: 515
# Worse: 240
Paired U-test p-value: ≤ 0.001

exceptions (e.g., trying to connect to a non-existing remote host),
we argue that line coverage would be a better measure to evaluate
improvements on the handling of network related CUTs.

Table 1 shows the results on the SF110 case study. On the 1,672
classes for which the virtual network was successfully used, aver-
age line coverage increased from 29.1% (Base) to 50.8% (VNET):
a +21.7% improvement. There are 515 classes in which VNET
brought no improvement: likely these are cases in which network
access happened when generating input parameters to the CUT, but
those inputs were not needed to achieve higher coverage. Improve-
ments are obtained on 917 classes, whereas there are 240 in which
VNET led to worse results.

A paired U-test on the average line coverage for each class (i.e.,
1,672 pairs) resulted in a very low p-value (< 0.01). In other words,
there is strong statistical evidence that VNET leads to a higher
number of classes in which there is improvement compared to the
cases in which it has a negative effect. There are at least three
complementary hypotheses to explain why using a virtual network
led to worse results in 240 cases: (1) randomness of the algorithm,
which also applies to the 917 cases with improvements; (2) the
network is not really needed to achieve higher coverage (e.g., it
is accessed by unnecessary calls on input data to the CUT), and
expanding the search to create network events increases the search
space with no benefit; (3) bugs in the virtual network. However,
it can be misleading to look at classes in isolation, as the average
values are only based on five runs.

Table 2 shows the results of our empirical study on the 42 selected
classes. As we have 30 runs per class, results are shown and analyzed
for each class in isolation. In most cases, line coverage vastly
increases, with strong statical significance. On average, it increases
from 31.8% to 76.6%: a +44.9% improvement, more than double.
The average standarized Â12 is extremely high: 0.97. This means
that, even when taking the randomness of the algorithm into account,
in 97 out 100 times using a virtual network leads to higher coverage.

The largest coverage increases seem to be related to code
that without virtual networking is completely inaccessible: For
example, for project lilith there are several classes with
0% code coverage, that with virtual network achieve up to
100% line coverage. In these cases, the network is al-
ready accessed in the constructor of the classes: The super-
class AbstractServerSocketEventSourceProducer at-
tempts to listen on a ServerSocket, which the security manager
prohibits. Even when it is possible to instantiate networking-related
classes, much of the code may be inaccessible due to a network-
ing dependency at method entry. An example for this are classes
ClientHelper and Clear from jiprof (see Figure 14), both
of which have substantial increases of coverage.

However, code that can only be executed with a vir-
tual network is likely to have further networking depen-
dencies beyond class instantiation: For example, once a
SerializingMessageBasedServerSocketEvent-
SourceProducer is instantiated, it requires TCP data on to

the server socket it is listening on, which EVOSUITE successfully
does. Class BlockingUDPClient in project quickserver
mainly consists of methods related to sending and receiving
networking data, and although it can be instantiated without virtual
network, the achieved coverage doubles once network traffic
can be simulated. As another example, class HttpMonitor in
project quickserver reads content from a remote HTTP server,
and reports whether the remote machine appears to be active or
down, depending on whether the content transmitted via HTTP
matches expected content. EVOSUITE created 11 tests on average
that explore several different scenarios, including simulated data
matching and not matching the expected content, leading to a
coverage increase of 23%.

RQ3: On average, the virtual network increases line coverage by
more than 20% on classes dealing with networking. For classes
heavily depending on it, we observed an increase of over 40%.

6. THREATS TO VALIDITY
Threats to internal validity come from how the experiments were

carried out. All techniques discussed in this paper have been imple-
mented as part of the EVOSUITE tool. Although the tool has been
intensively tested, no system is guaranteed to be error free. Further-
more, because EVOSUITE is based on randomized algorithms, each
experiment has been repeated several times (either 5 or 30), and the
results have been evaluated with rigorous statistical methods.

Threats to construct validity come from what measure we chose
to evaluate the success of our techniques. To measure improvements
on testing effectiveness, we considered the achieved line coverage.
When dealing with methods that either are very likely to throw ex-
ceptions, or block the caller until an external event happens (e.g.,
an incoming TCP connection), we argue that this measure is more
revealing than looking at more common measures like branch cover-
age. However, to get a better picture, there would also be the need
to look at measures like mutation testing score. Furthermore, code
coverage does not tell us how easy it will be for the final user to
understand the generated test cases (which is needed for debugging).

Even if we can numerically quantify the benefits in terms of
increased line coverage, it is hard to quantify all the other benefits
that a virtual network gives. Such benefits are for example avoiding
test cases failing due to opening ports that are already bound by other
unrelated processes, or due to a WiFi network being temporarily
down for few seconds, etc. Whether those benefits address very
common or rare problems is hard to quantify in an objective way.

Threats to external validity come from how well the results gen-
eralize to other case studies. To reduce this threat, we used the
SF110 corpus, which is a statistically valid random sample of 100
projects from SourceForge, plus its 10 most downloaded ones. That
corpus is large, consisting of more than 6.6 millions of lines of code.
There is hence reasonable expectance that our virtual network might
successfully work as well on other open-source software.

7. CONCLUSIONS
Generating unit tests for real-world software is not only a mat-

ter of instantiating classes with the right input objects, and having
sequences of function calls on them. Real-world software often inter-
acts with their environment, as for example the file system, graphical
user interfaces, the CPU clock, databases, etc. Environment events
are part of what is needed to effectively unit test classes.

In this paper, we have proposed a novel approach to handle net-
work communications (e.g., UDP messages, TCP connections, or
host name resolutions). Our approach is based on semantically
equivalent mock classes interacting on a virtual network, and on
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Table 2: Results of EVOSUITE with (VNET) and without (Base) the virtual network. For each of the 42 Java classes, we report the obtained
average line coverage, standardised Â12 effect sizes and p-values of the statistical tests.

Project Class Base VNET Difference Â12 p-value

vuze TranscodePipeStreamSource 0.0% 31.0% +31.0% 1.00 ≤ 0.001
CLCacheDiscovery 55.5% 70.5% +15.0% 0.97 ≤ 0.001
NatCheckerServer 23.1% 48.0% +24.9% 1.00 ≤ 0.001
PRHelpers 56.5% 82.2% +25.7% 0.96 ≤ 0.001
TRBlockingServer 29.2% 52.4% +23.2% 0.92 ≤ 0.001
SocketServer 6.5% 26.4% +20.0% 1.00 ≤ 0.001

freemind EditServer 29.1% 66.9% +37.8% 0.97 ≤ 0.001
liferay IPDetector 47.5% 80.8% +33.3% 1.00 ≤ 0.001

WhoisWebCacheItem 33.3% 85.7% +52.4% 1.00 ≤ 0.001
dsachat CServer 7.1% 48.7% +41.5% 1.00 ≤ 0.001

ServerMain 66.7% 100.0% +33.3% 1.00 ≤ 0.001
gangup ServerConnectionListener 15.8% 70.6% +54.8% 1.00 ≤ 0.001
lilith AbstractServerSocketEventSourceProducer 6.8% 82.5% +75.6% 1.00 ≤ 0.001

AccessEventProtobufServerSocketEventSourceProducer 0.0% 99.2% +99.2% 1.00 ≤ 0.001
LoggingEventProtobufServerSocketEventSourceProducer 0.0% 97.5% +97.5% 1.00 ≤ 0.001
SerializingMessageBasedServerSocketEventSourceProducer 0.0% 98.7% +98.7% 1.00 ≤ 0.001
LilithXmlMessageLoggingServerSocketEventSourceProducer 0.0% 96.2% +96.2% 1.00 ≤ 0.001
LilithXmlStreamLoggingServerSocketEventSourceProducer 0.0% 60.0% +60.0% 1.00 ≤ 0.001
AbstractLogbackServerSocketEventSourceProducer 0.0% 100.0% +100.0% 1.00 ≤ 0.001
LogbackAccessServerSocketEventSourceProducer 0.0% 100.0% +100.0% 1.00 ≤ 0.001

summa SolrSearchNode 55.0% 64.6% +9.5% 0.96 ≤ 0.001
jiprof Clear 50.0% 100.0% +50.0% 1.00 ≤ 0.001

ClientHelper 15.4% 97.6% +82.2% 1.00 ≤ 0.001
File 50.0% 99.0% +49.0% 1.00 ≤ 0.001
Finish 50.0% 100.0% +50.0% 1.00 ≤ 0.001
Start 50.0% 100.0% +50.0% 1.00 ≤ 0.001
Stop 50.0% 100.0% +50.0% 1.00 ≤ 0.001
RemoteController 63.2% 83.1% +19.8% 0.88 ≤ 0.001

hft-bomberman TestDriver 66.7% 100.0% +33.3% 1.00 ≤ 0.001
ForwardingObserver 35.6% 40.1% +4.5% 0.53 0.767
ClientQuitRunningSessionMsg 37.5% 62.5% +25.0% 1.00 ≤ 0.001
PlayerLeftMsg 66.7% 100.0% +33.3% 1.00 ≤ 0.001
BomberServer 24.2% 54.2% +30.0% 1.00 ≤ 0.001
ClientInfo 7.7% 51.1% +43.4% 1.00 ≤ 0.001
StopServer 33.3% 91.7% +58.3% 1.00 ≤ 0.001
ServerMsgReceiver 9.1% 61.3% +52.3% 1.00 ≤ 0.001

io-project Server 41.0% 45.8% +4.9% 0.67 0.050
at-robots2-j Client 42.9% 56.5% +13.6% 0.82 ≤ 0.001
jaw-br Update 47.1% 52.9% +5.9% 1.00 ≤ 0.001
quickserver BlockingUDPClient 47.6% 89.1% +41.5% 1.00 ≤ 0.001

HttpMonitor 65.4% 88.4% +23.0% 1.00 ≤ 0.001
falselight Services 49.0% 83.4% +34.4% 1.00 ≤ 0.001

Average: 31.8% 76.6% +44.9% 0.97

runtime bytecode instrumentation. To the best of our knowledge, no
other unit test generator can create network events as test data.

Our experiments suggest that networking is very common in open-
source Java software. In 110 projects (the SF110 corpus) consisting
of 23,886 Java classes, network accesses happened in 11% of the
classes. Our current implementation fully handles 63% of those
cases, leading to an average incease in line coverage of 20%. On
classes heavily depending on networking, average improvements
are in the range of 40%.

The increase in code coverage we observed indicates that our tech-
nique is effective at handling networking communications. However,
+21.7% coverage on 1,672 of the classes in SF110 translates to an
overall increase of coverage by 1.5% on SF110. Thus, there are still
several areas for further investigation, like for example:

Handling more interactions: We have not mocked all the Java
API classes involved in networking. Our virtual network can be
extended to cover the most common remaining cases.

Improving input data: Although we can generate input data
coming through a network channel, how to best do it is open to
improvements. For example, if a class reads a byte stream from
a remote host, and then later on it uses such data to deserialize
an object instance, it would be hard to generate valid bytes using

traditional methods like dynamic symbolic execution or search-
based testing. Most likely there would be the need to do static
analyses to catch the occurrence of those cases, and improve the
data generation algorithms accordingly to exploit such information.

Enhancing readability: If one wants to obtain test cases that
are useful for debugging and regression purposes, there is the need
generate readable tests. Test case readability is a very important
topic that is still largely unexplored in the literature. We can expect
that adding environment events in the generated tests will only
exacerbate this problem further.

Framework reuse: Our mocked framework could also be used
as a standalone library for helping the writing of manual tests, and/or
be integrated in other test data generation tools.

All techniques discussed in this paper have been implemented
as part of the EVOSUITE test data generation tool, which is freely
available to download. To learn more about EVOSUITE, please visit
our website at: http://www.evosuite.org.
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