
Pockets: A Tool to Support Exploratory Programming
for Novices and Educators

Erina Makihara
Nara Institute of Science and Technology, Japan

makihara.erina.lx0@is.naist.jp

ABSTRACT
Exploratory programming is one of the programming tech-
niques, and it is considered to be an effective way to improve
programming skills for novices. However, there is no existing
system or programming environment educating exploratory
programming for novices. Therefore, we have developed a
tool, named as Pockets, to support novice’s exploratory pro-
gramming. Through Pockets, educators are able to identify
where and when novices experience difficulties during ex-
ploratory programming. In addition, it is possible to assist
educators’ mentoring by referring collected logs through the
proposed system. We have also conducted a case study and
evaluated the usefulness of the tool. As a result, Pockets
makes novices’ exploratory programming more efficient, and
also allows more accurate advice by educators.

Categories and Subject Descriptors
K.3.2 [Computer and Education]: Computer and Infor-
mation Science Education—Computer science education

Keywords
programming education, exploratory programming, coding
process visualization

1. INTRODUCTION
When expert software developers deal with unfamiliar pro-

gramming languages and APIs, they usually perform the
technique of exploratory programming for solving their prob-
lems[7]. Most existing research are focusing on supporting
expert software developer’s exploratory programming, aim-
ing at improving their working efficiency[6, 5]. On the other
hand, some other research have revealed that repetition of
altering a portion of source code and checking the results
after changes, which is being conducted in the manner of
exploratory programming, is considered as a good practice
of novices to improve programming skills[1, 3, 9].

In this research, since we regard exploratory program-
ming as an effective way for improving novice programmer’s
skills, we propose Pockets, a web-based tool to support effi-
cient exploratory programming for novices. In Pockets, we
specifically focus on the feature of ‘backtracking’, regarded
as one of the characteristics of exploratory programming.
Backtracking means as “going back at least partially to an
earier state either by removing inserted code or by restoreing
removed code”[9]. Our system visualizes the programming
process as a sequence of thumbnails, which shows a times-
tamp and an execution result when a user performs actions
such as save, compile and run. Users could easily revert to
earlier revision by clicking a corresponding thumbnail.

We evaluated our tool by conducting a case study, in
which we asked novices to work on some provided program-
ming exercises. As a result, novices who used our sys-
tem perform exploratory programming more often than their
counterparts who did not use the tool. In addition, we
found that novices often conduct exploratory programming
not only when they met compile or runtime error, but also
when they got different results from correct outputs. The
novices were very likely to spend much time for exploratory
programming regardless of whether they caused errors. This
indicates that educators should understand and support ex-
ploratory programming in introductory programming course.

2. BACKGROUND AND RELATED WORK
In software development, when developers need to deal

with unfamiliar programming languages, APIs or new al-
gorithms, they often develop by trial-and-error, in which
they repeat many cycles of implementations and then evalu-
ations. Rosson et al. investigated the main behaviors of soft-
ware developers during their developments[4]. They reveal
that developers follow the continuous progress of program-
ming, executing and testing the program, then evaluating
whether the program works as expectation or not. Brandt
et al. shows that developers often revert their source code
to earlier state, aiming at trying many more possible solu-
tions based on results from their experiments[2]. This pro-
gramming style that progresses through various attempts at
running multiple implementations of source code, together
with their respective evaluations is called the ‘Exploratory
Programming[7]’.

Sandberg et al. and Myers et al. described that it is
important to evaluate frequent changes of code pattern re-
peatedly for keeping a high-quality software design[1, 6]. In
addition, it desires for novices to conduct exploratory pro-
gramming when they learn new knowledge. They also insist

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the Owner/Author.
Copyright is held by the owner/author(s).

ESEC/FSE’15, August 30 – September 4, 2015, Bergamo, Italy
ACM. 978-1-4503-3675-8/15/08
http://dx.doi.org/10.1145/2786805.2807564

1066



that exploratory programming is highly recommended for
novices who are learning techniques and knowledge for pro-
gramming.

3. APPROACH AND UNIQUENESS
We developed a web-based tool, named as Pockets, to

support exploratory programming for novices. Yoon et al.
developed selective undo that is a major feature for IDE
supporting ”backtracking”while a user performs exploratory
programming. However, we consider that even though their
proposed system, named as AZURITE, is effective to im-
prove smoothness of software development, but it is not
designed to educate users to perform exploratory program-
ming. Because AZURITE has too much functions, it will
lead novices into confusing[8].

Pockets consists of three main areas, as shown in Fig. 1.
The details of these areas are as follows:

Programming Area It allows users to write, save, compile
or run his/her source code and check the results from
the bottom dialog box.

List of Revision Area Whenever a user press the button
of save, compile or run, a thumbnail is appended to
the right to the List of Revisions Area. A thumb-
nail represents a revision of source code. The border
color of thumbnail corresponds to the mentioned ac-
tions such as save(blue), compile(yellow) or run(red).
Also thumbnail contains, (1) the time when the action
is performed, (2) the corresponding result indicating
whether compile or runtime errors occurred or not, and
(3) ID.

Differences View Area This area displays the differences
of source code and output between the newest revision
and previous revisions. It allows users to check conve-
niently what characters, variables or sentences being
added/deleted, and also the what results or outputs
being produced in the corresponding revision.

Usage scenarios of Pockets are as follows:

Step 1 User programs her/his assignments in programming
area.

Step 2 When the user presses the save, compile or run but-
ton, a thumbnail representing the newest revision is
appended to the right to the List of Revisions Area.

Figure 1: The UI of Pockets

Table 1: Number of backtracking(The number indi-
cates the times of performed backtracking by using
our implemented function while the number inside
the parenthesis refers to backtracking without using
the function. )

Subject
Provided Features sub1 sub2

All 2(2) 4(1)
Only programming Area 0 1

At the same time, a corresponding box which shows
the difference information is created in the Difference
View Area.

Step 3 Whenever a user wants to revert her/his source code
to previous revision, she/he can use the backtracking
function. By simply clicking the thumbnail in the List
of Revisions Area or the arrow icon in the Difference
View Area, the current source code is reverted to the
corresponding previous revision.

4. RESULT AND CONTRIBUTION
We performed a small-scale case study for investigating

how Pockets promotes exploratory programming for novices.
In the case study, we separated ten novices into two groups,
Group A and Group B, as each group consists of five novices.
We prepared two program assignments(sub1 and sub2), and
both of them only required basic programming skills such
as array, loop function and conditional statement for solv-
ing. Both groups tackled sub1 simultaneously, as students
of Group A works in Pockets with full functionalities, while
Pockets being used by Group B only has the Programming
area, indicating no convenient backtracking function. By
the time when both groups solved sub2, they swapped their
programming environment.

Table 1. shows the result of case study. Compared to
the environment with only Programming area, novice per-
forms more exploratory programming while using Pockets.
Furthermore, according to the detailed logs gathered during
backtracking, novices reverted to 1 or 2 revisions without
using the function of Pockets. On the other hand, novices
reverted to more previous revision with using Pockets, which
is difficult to revert by using normal undo1 function. This
result indicates that Pockets helps novices to perform their
exploratory programming.

Based on the results, we summarized two main contribu-
tions of Pockets for novices and educators as follows:

Novices can perform exploratory programming more con-
veniently than regular programming environment.

Educators can collect data about the timing when novices
use exploratory programming and which revision they
revert to. Such data are helpful hints for educators to
provide more corresponding supports to novices.

As a future work, we are planning to perform a larger
scale experiment to collect more concrete data, and a com-
parative experiment with undo command to understand how
novices usually backtrack and what method is most desired
for novice’s backtracking.

1It erases the last change and reverts to one older state.

1067



5. REFERENCES
[1] Variations to support exploratory programming.

http://www.exploratoryprogramming.org/.

[2] J. Brandt, P. J. Guo, J. Lewenstein, M. Dontcheva, and
S. R. Klemmer. Two studies of opportunistic
programming: Interleaving web foraging, learning, and
writing code. In Proc. SIGCHI Conference on Human
Factors in Computing Systems, pages 1589–1598, 2009.

[3] B. A. Myers, S. Oney, Y. Yoon, and J. Brandt.
Creativity support in authoring and backtracking. In
Proc. Workshop on Evaluation Methods for Creativity
Support Environments at CHI, pages 40–43, 2013.

[4] M. B. Rosson and J. M. Carroll. The reuse of uses in
smalltalk programming. ACM Transactions on
Computer-Human Interaction, 3(3):219–253, 1996.

[5] J. Sametinger, A. Stritzinger, and J. Kepler.
Exploratory software development with class libraries.
In Proc. 7th Joint Conference of the Austrian

Computer Society and the John von Neumann Society
for Computing Sciences, pages 24–31, 1992.

[6] D. W. Sandberg. Smalltalk and exploratory
programming. ACM SIGPLAN Notices, 23:85–92,
October 1988.

[7] B. Sheil. Environments for exploratory programming.
Datamation, 29(7):131–144, July 1983.

[8] H. Tamada, A. Ogino, and H. Ueda. A framework for
programming process measurement and compiling error
interpretation for novice programmers. In Proc. Joint
Conference of the 21st International Workshop on
Software Measurement and 6th International
Conference on Software Process and Product
Measurement, pages 233–238, 2011.

[9] Y. Yoon and B. A. Myers. Supporting selective undo in
a code editor. In Proc. 37th International Conference
on Software Engineering, pages 223–233, 2015.

1068


