
Automated Attack Surface Approximation
Christopher Theisen

North Carolina State University
Department of Computer Science

890 Oval Drive, #8206 Raleigh, North
Carolina, United States

+1 919 515 2858
crtheise@ncsu.edu

ABSTRACT
While software systems are being developed and released to
consumers more rapidly than ever, security remains an important
issue for developers. Shorter development cycles means less time
for these critical security testing and review efforts. The attack
surface of a system is the sum of all paths for untrusted data into
and out of a system. Code that lies on the attack surface therefore
contains code with actual exploitable vulnerabilities. However,
identifying code that lies on the attack surface requires the same
contested security resources from the secure testing efforts
themselves. My research proposes an automated technique to
approximate attack surfaces through the analysis of stack traces.
We hypothesize that stack traces user crashes represent activity
that puts the system under stress, and is therefore indicative of
potential security vulnerabilities. The goal of this research is to
aid software engineers in prioritizing security efforts by
approximating the attack surface of a system via stack trace
analysis. In a trial on Mozilla Firefox, the attack surface
approximation selected 8.4% of files and contained 72.1% of
known vulnerabilities. A similar trial was performed on the
Windows 8 product.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics – complexity metrics,
process metrics, product metrics

General Terms
Management, Measurement, Design, Economics, Security.

Keywords
Stack traces, crash dumps, attack surface.

1. INTRODUCTION
Howard et al. introduced the concept of an attack surface,
describing entry points to a system that might be vulnerable along
three dimensions: targets and enablers, channels and protocols,
and access rights [1]. Later, Manadhata and Wing [2] formalized
the notion of attack surface, including methods, channels,
untrusted data, and a direct and indirect entry and exit point
framework that identifies methods through which untrusted data
passes.

We still lack a practical means of identifying the parts of the
system that are contained on the attack surface. If generating the
attack surface of a system was a more straightforward process,

security professionals could focus their efforts on code on the
attack surface because it contains vulnerabilities that are
reachable, and therefore exploitable, by malicious users. Code not
on the attack surface may contain latent vulnerabilities, but these
are unreachable by malicious users. By prioritizing security
efforts for code on the attack surface, security professionals could
find vulnerabilities more efficiently.

We propose attack surface approximation, an automated approach
to identifying parts of the system that are contained on the attack
surface through stack trace analysis. We parse stack traces, adding
all code found in these traces onto the attack surface
approximation. Code that appears in stack traces caused by user
activity is on the attack surface because it appears in a code path
reached by users. The goal of this research is to aid software
engineers in prioritizing security efforts by approximating the
attack surface of a system via stack trace analysis.

We hypothesize that stack traces from user-initiated crashes have
three desirable attributes for measuring attack surfaces: (a) they
represent user activity that puts the system under stress; (b) they
include both direct and indirect entry points; and (c) they provide
automatically generated control and data flow graphs. We seek to
assess the degree to which these attributes of stack traces support
the identification of attack surfaces. We call our approach attack
surface approximation because code entities will only be added to
the attack surface when a crash has occurred. As such, the attack
surface approximation will evolve over time. We assess our
approach by analyzing the percentage of actual reported
vulnerabilities in the code and whether they occur in our
approximated attack surface.

2. BACKGROUND AND RELATED WORK
In this section, we provide a brief overview of related work.

2.1 Attack Surface
Howard et al. [1] provided a definition of attack surface using
three dimensions: targets and enablers, channels and protocols,
and access rights. Not all areas of a system may be directly or
indirectly exposed to the outside. Some parts of a complex
system, e.g. Windows OS, may be for internal use only and
cannot be reached or exploited by an attacker. For example,
installation routines are left in the system, but they are never
accessed again and are unlikely to have security implications.

Manadhata et al. [17] describe how an attack surface might be
approximated by looking at API entry points. However, this
approach does not cover all exposed code. Specifically, internal
flow of data through a system could not be identified. While the
external points of a system are a useful place to start, they do not
encompass the entirety of exposed code in the system. These
intermediate points within the system could also contain security
vulnerabilities. Further, their approach to measuring attack
surfaces required expert judgment and manual effort.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the Owner/Author.
Copyright is held by the owner/author(s).

ESEC/FSE’15, August 30 – September 4, 2015, Bergamo, Italy
ACM. 978-1-4503-3675-8/15/08
http://dx.doi.org/10.1145/2786805.2807563

1063

2.2 Using Crash Reports
The use of crash reporting systems, including stack traces from
the crashes, is becoming a standard industry practice1 [8][10]. Bug
reports contain information to help engineers replicate and locate
software defects. Liblit and Aiken [4] introduced a technique
automatically reconstructing complete execution paths using stack
traces and execution profiles. Later, Manevich et al. [5] added
data flow analysis information on Liblit and Aiken’s approach.
Other studies use stack traces to localize the exact fault location
[6][7][8]. Lately, an increasing number of empirical studies use
bug reports and crash reports to cluster bug reports according to
their similarity and diversity, e.g. Podgurski et al. [9] were among
the first to take this approach. Other studies followed [10][11].
Not all crash reports are precise enough to allow for this
clustering. Guo et al. [12] used crash report information to predict
which bugs will get fixed. Bettenburg et al. [13] assessed the
quality of bug reports to suggest better and more accurate
information helping developers to fix the bug.

With respect to vulnerabilities, Huang et al. [14] used crash
reports to generate new exploits while Holler et al. [15] used
historic crashes reports to mutate corresponding input data to find
incomplete fixes. Kim et al. [16] analyzed security bug reports to
predict “top crashes”—those few crashes that account for the
majority of crash reports—before new software releases. As
mentioned previously, we expanded on previous studies by
exploring the correlation between code appearing in a stack trace
and having historical vulnerabilities [1].

3. APPROACH
Stack traces are used in attack surface approximation to determine
what code is on the attack surface. If a code artifact appears on
any stack trace produced by user activity on a system, than then
that code artifact is placed on the attack surface approximation. A
visualization of this effect is seen in Figure 1. Consider the entire
graph as a representation of a call graph of a software system,
while the red nodes on the graph are code that is seen on stack
traces for the system. Security efforts should therefore be targeted
towards the area that is under threat.

Why stack traces? Stack traces represent user activity that puts the
system under stress. Stack traces are already used by attackers to

1 http://www.crashlytics.com/blog/its-finally-here-announcing-

crashlytics-for android/

determine where to focus penetration testing efforts. If a section
of a system can be reliability crashed, there is a flaw on that path.
That path might also contain an exploitable security flaw.

In order to accomplish our goal of an automated attack surface
approximation technique, the approach needs to be simple,
repeatable, and demonstrably effective on multiple software
systems. A feasibility study has already been performed [1], and
there is ongoing effort to further expand on the attack surface
metrics developed during that work.

4. CURRENT RESULTS
In the previous attack surface approximation study [1], we found a
correlation between code artifacts that appear on stack traces
generated by the system and where historical vulnerabilities
discovered by security professionals have been fixed in code. The
attack surface correlation could be useful to security professionals
when targeting security reviews. By targeting security efforts at
these exposed areas instead of the entire codebase, security
professionals could save many engineering hours. In the previous
study, it was found that 48.4% of binaries in Windows contained
94.8% of historically seen vulnerabilities [1]. Limiting security
engineering efforts to half of the codebase while still finding the
majority of potential bugs is a tradeoff teams can make.

Attack surface approximation has also been replicated for a
publication under review on the Mozilla Firefox product. In Table
1, we see the results of the Firefox study. We set five cutoffs for
minimum number of appearances on stack traces for inclusion on
the attack surface approximation, then determine what percentage
of vulnerabilities are in the approximation. As seen in the table,
increasing the cutoff shrinks our approximation, causing fewer
vulnerabilities to appear on the approximation. However, the
density of these vulnerabilities increases. This suggests that stack
trace frequency may be a good metric for security efforts, not just
reliability efforts. During the course of this work, the value of
visualizations of the attack surface of a system has become
apparent when talking to professionals in the field. To that end,
we have developed a series of visualizations, including the graph
representation previously seen in Figure 1.

5. CONTRIBUTIONS
Attack surface approximation may create several positive impacts
on the software engineering community. An automated approach
to attack surface generation could save many engineering hours
for organizations, as they would not need to tie up resources
developing the understanding of the attack surface themselves.
For organizations without a security team at all, automatic attack
surface approximation gives them the first steps toward targeting
what limited security resources they have internally or externally.

Figure 1: A visual representation of what an attack surface is for
a system; the shaded area is the attack surface, where input flows
through the system.

Table 1: Results of our attack surface approximation analysis
for Mozilla Firefox

 files flaws %files %flaws Precision Recall

>= 1 4998 282 8.4% 72.1% 0.056 0.721

>= 10 2691 239 4.5% 61.1% 0.089 0.611

>= 30 1853 210 3.1% 53.7% 0.113 0.537

>= 77 1244 187 2.1% 47.8% 0.150 0.478

>= 140 969 162 1.6% 41.4% 0.167 0.414

All 59437 391 - - - -

1064

6. REFERENCES
 [1] C. Theisen, K. Herzig, P. Morrison, B. Murphy, and L.

Williams, “Approximating Attack Surfaces with Stack
Traces”, in Companion Proceedings of 37th
International Conference on Software Engineering,
2015.

[2] P. Manadhata and J. Wing, "An Attack Surface Metric,"
Software Engineering, IEEE Transactions on, vol. 37,
no. 3, pp. 371-386, 2011.

[3] M. Howard, J. Pincus and J. M. Wing, "Measuring
Relative Attack Surfaces," in Computer Security in the
21st Century, Springer US, 2005, pp. 109-137.

[4] B. Liblit and A. Aiken, "Building a Better Backtrace:
Techniques for Postmortem Program Analysis,"
University of California, Berkeley, Berkeley, 2002.

[5] R. Manevich, M. Sridharan, S. Adams, M. Das and Z.
Yang, "PSE: Explaining Program Failures via
Postmortem Static Analysis," in Proceedings of the 12th
ACM SIGSOFT Twelfth International Symposium on
Foundations of Software Engineering, Newport Beach,
CA, USA, 2004.

[6] W. Jin and A. Orso, "F3: Fault Localization for Field
Failures," in Proceedings of the 2013 International
Symposium on Software Testing and Analysis, 2013.

[7] R. Wu, H. Zhang, S.-C. Cheung and S. Kim,
"CrashLocator: Locating Crashing Faults Based on
Crash Stacks," in Proceedings of the 2014 International
Symposium on Software Testing and Analysis, 2014.

[8] S. Wang, F. Khomh and Y. Zou, "Improving bug
localization using correlations in crash reports," in
Mining Software Repositories (MSR), 2013 10th IEEE
Working Conference on, 2013.

[9] A. Podgurski, D. Leon, P. Francis, W. Masri, M. Minch,
J. Sun and B. Wang, "Automated support for classifying
software failure reports," in Software Engineering,
2003. Proceedings. 25th International Conference on,
2003.

[10] Y. Dang, R. Wu, H. Zhang, D. Zhang and P. Nobel,
"ReBucket: A Method for Clustering Duplicate Crash
Reports Based on Call Stack Similarity," in Proceedings
of the 34th International Conference on Software
Engineering, 2012.

[11] S. Kim, T. Zimmermann and N. Nagappan, "Crash
graphs: An aggregated view of multiple crashes to
improve crash triage," in Dependable Systems Networks
(DSN), 2011 IEEE/IFIP 41st International Conference
on, 2011.

[12] P. J. Guo, T. Zimmermann, N. Nagappan and B.
Murphy, "Characterizing and Predicting Which Bugs
Get Fixed: An Empirical Study of Microsoft Windows,"
in Proceedings of the 32th International Conference on
Software Engineering, 2010.

[13] N. Bettenburg, S. Just, A. Schröter, C. Weiss, R.
Premraj and T. Zimmermann, "What makes a good bug
report?," in SIGSOFT '08/FSE-16: Proceedings of the
16th ACM SIGSOFT International Symposium on
Foundations of software engineering, 2008.

[14] S.-K. Huang, M.-H. Huang, P.-Y. Huang, H.-L. Lu and
C.-W. Lai, "Software Crash Analysis for Automatic
Exploit Generation on Binary Programs," Reliability,
IEEE Transactions on, vol. 63, pp. 270-289, March
2014.

[15] C. Holler, K. Herzig and A. Zeller, "Fuzzing with Code
Fragments," in Proceedings of the 21st USENIX
Conference on Security Symposium acmid = 2362831,
2012.

[16] D. Kim, X. Wang, S. Kim, A. Zeller, S. Cheung and S.
Park, "Which Crashes Should I Fix First?: Predicting
Top Crashes at an Early Stage to Prioritize Debugging
Efforts," Software Engineering, IEEE Transactions on,
vol. 37, no. 3, pp. 430-447, 2011.

[17] Manadhata, P., Wing, J., Flynn, M., & McQueen, M.
(2006, October). Measuring the attack surfaces of two
FTP daemons. In Proceedings of the 2nd ACM
workshop on Quality of protection (pp. 3-10). ACM.

1065

