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ABSTRACT 
While software systems are being developed and released to 
consumers more rapidly than ever, security remains an important 
issue for developers. Shorter development cycles means less time 
for these critical security testing and review efforts. The attack 
surface of a system is the sum of all paths for untrusted data into 
and out of a system. Code that lies on the attack surface therefore 
contains code with actual exploitable vulnerabilities. However, 
identifying code that lies on the attack surface requires the same 
contested security resources from the secure testing efforts 
themselves. My research proposes an automated technique to 
approximate attack surfaces through the analysis of stack traces.  
We hypothesize that stack traces user crashes represent activity 
that puts the system under stress, and is therefore indicative of 
potential security vulnerabilities. The goal of this research is to 
aid software engineers in prioritizing security efforts by 
approximating the attack surface of a system via stack trace 
analysis. In a trial on Mozilla Firefox, the attack surface 
approximation selected 8.4% of files and contained 72.1% of 
known vulnerabilities. A similar trial was performed on the 
Windows 8 product.  

Categories and Subject Descriptors 
D.2.8 [Software Engineering]: Metrics – complexity metrics, 
process metrics, product metrics 

General Terms 
Management, Measurement, Design, Economics, Security. 

Keywords 
Stack traces, crash dumps, attack surface. 

1. INTRODUCTION 
Howard et al. introduced the concept of an attack surface, 
describing entry points to a system that might be vulnerable along 
three dimensions: targets and enablers, channels and protocols, 
and access rights [1]. Later, Manadhata and Wing [2] formalized 
the notion of attack surface, including methods, channels, 
untrusted data, and a direct and indirect entry and exit point 
framework that identifies methods through which untrusted data 
passes.  

We still lack a practical means of identifying the parts of the 
system that are contained on the attack surface. If generating the 
attack surface of a system was a more straightforward process, 

security professionals could focus their efforts on code on the 
attack surface because it contains vulnerabilities that are 
reachable, and therefore exploitable, by malicious users. Code not 
on the attack surface may contain latent vulnerabilities, but these 
are unreachable by malicious users. By prioritizing security 
efforts for code on the attack surface, security professionals could 
find vulnerabilities more efficiently. 

We propose attack surface approximation, an automated approach 
to identifying parts of the system that are contained on the attack 
surface through stack trace analysis. We parse stack traces, adding 
all code found in these traces onto the attack surface 
approximation. Code that appears in stack traces caused by user 
activity is on the attack surface because it appears in a code path 
reached by users. The goal of this research is to aid software 
engineers in prioritizing security efforts by approximating the 
attack surface of a system via stack trace analysis. 

We hypothesize that stack traces from user-initiated crashes have 
three desirable attributes for measuring attack surfaces: (a) they 
represent user activity that puts the system under stress; (b) they 
include both direct and indirect entry points; and (c) they provide 
automatically generated control and data flow graphs. We seek to 
assess the degree to which these attributes of stack traces support 
the identification of attack surfaces.  We call our approach attack 
surface approximation because code entities will only be added to 
the attack surface when a crash has occurred.  As such, the attack 
surface approximation will evolve over time.  We assess our 
approach by analyzing the percentage of actual reported 
vulnerabilities in the code and whether they occur in our 
approximated attack surface. 

2. BACKGROUND AND RELATED WORK 
In this section, we provide a brief overview of related work. 

2.1 Attack Surface 
Howard et al. [1] provided a definition of attack surface using 
three dimensions: targets and enablers, channels and protocols, 
and access rights. Not all areas of a system may be directly or 
indirectly exposed to the outside. Some parts of a complex 
system, e.g. Windows OS, may be for internal use only and 
cannot be reached or exploited by an attacker. For example, 
installation routines are left in the system, but they are never 
accessed again and are unlikely to have security implications. 

Manadhata et al. [17] describe how an attack surface might be 
approximated by looking at API entry points. However, this 
approach does not cover all exposed code. Specifically, internal 
flow of data through a system could not be identified. While the 
external points of a system are a useful place to start, they do not 
encompass the entirety of exposed code in the system. These 
intermediate points within the system could also contain security 
vulnerabilities. Further, their approach to measuring attack 
surfaces required expert judgment and manual effort. 
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2.2 Using Crash Reports 
The use of crash reporting systems, including stack traces from 
the crashes, is becoming a standard industry practice1 [8][10]. Bug 
reports contain information to help engineers replicate and locate 
software defects. Liblit and Aiken [4] introduced a technique 
automatically reconstructing complete execution paths using stack 
traces and execution profiles. Later, Manevich et al. [5] added 
data flow analysis information on Liblit and Aiken’s approach. 
Other studies use stack traces to localize the exact fault location 
[6][7][8]. Lately, an increasing number of empirical studies use 
bug reports and crash reports to cluster bug reports according to 
their similarity and diversity, e.g. Podgurski et al. [9] were among 
the first to take this approach. Other studies followed [10][11]. 
Not all crash reports are precise enough to allow for this 
clustering. Guo et al. [12] used crash report information to predict 
which bugs will get fixed. Bettenburg et al. [13] assessed the 
quality of bug reports to suggest better and more accurate 
information helping developers to fix the bug. 

With respect to vulnerabilities, Huang et al. [14] used crash 
reports to generate new exploits while Holler et al. [15] used 
historic crashes reports to mutate corresponding input data to find 
incomplete fixes. Kim et al. [16] analyzed security bug reports to 
predict “top crashes”—those few crashes that account for the 
majority of crash reports—before new software releases. As 
mentioned previously, we expanded on previous studies by 
exploring the correlation between code appearing in a stack trace 
and having historical vulnerabilities [1]. 

3. APPROACH 
Stack traces are used in attack surface approximation to determine 
what code is on the attack surface. If a code artifact appears on 
any stack trace produced by user activity on a system, than then 
that code artifact is placed on the attack surface approximation. A 
visualization of this effect is seen in Figure 1. Consider the entire 
graph as a representation of a call graph of a software system, 
while the red nodes on the graph are code that is seen on stack 
traces for the system. Security efforts should therefore be targeted 
towards the area that is under threat. 

Why stack traces? Stack traces represent user activity that puts the 
system under stress. Stack traces are already used by attackers to 

                                                                    
1 http://www.crashlytics.com/blog/its-finally-here-announcing-

crashlytics-for android/ 

determine where to focus penetration testing efforts. If a section 
of a system can be reliability crashed, there is a flaw on that path. 
That path might also contain an exploitable security flaw. 

In order to accomplish our goal of an automated attack surface 
approximation technique, the approach needs to be simple, 
repeatable, and demonstrably effective on multiple software 
systems. A feasibility study has already been performed [1], and 
there is ongoing effort to further expand on the attack surface 
metrics developed during that work. 

4. CURRENT RESULTS 
In the previous attack surface approximation study [1], we found a 
correlation between code artifacts that appear on stack traces 
generated by the system and where historical vulnerabilities 
discovered by security professionals have been fixed in code. The 
attack surface correlation could be useful to security professionals 
when targeting security reviews. By targeting security efforts at 
these exposed areas instead of the entire codebase, security 
professionals could save many engineering hours. In the previous 
study, it was found that 48.4% of binaries in Windows contained 
94.8% of historically seen vulnerabilities [1]. Limiting security 
engineering efforts to half of the codebase while still finding the 
majority of potential bugs is a tradeoff teams can make. 

Attack surface approximation has also been replicated for a 
publication under review on the Mozilla Firefox product. In Table 
1, we see the results of the Firefox study. We set five cutoffs for 
minimum number of appearances on stack traces for inclusion on 
the attack surface approximation, then determine what percentage 
of vulnerabilities are in the approximation. As seen in the table, 
increasing the cutoff shrinks our approximation, causing fewer 
vulnerabilities to appear on the approximation. However, the 
density of these vulnerabilities increases. This suggests that stack 
trace frequency may be a good metric for security efforts, not just 
reliability efforts. During the course of this work, the value of 
visualizations of the attack surface of a system has become 
apparent when talking to professionals in the field. To that end, 
we have developed a series of visualizations, including the graph 
representation previously seen in Figure 1. 

5. CONTRIBUTIONS 
Attack surface approximation may create several positive impacts 
on the software engineering community. An automated approach 
to attack surface generation could save many engineering hours 
for organizations, as they would not need to tie up resources 
developing the understanding of the attack surface themselves. 
For organizations without a security team at all, automatic attack 
surface approximation gives them the first steps toward targeting 
what limited security resources they have internally or externally. 

 
Figure 1: A visual representation of what an attack surface is for 
a system; the shaded area is the attack surface, where input flows 
through the system. 
 

Table 1: Results of our attack surface approximation analysis 
for Mozilla Firefox 

  files flaws %files %flaws Precision Recall 

>= 1 4998 282 8.4% 72.1% 0.056 0.721 

>= 10 2691 239 4.5% 61.1% 0.089 0.611 

>= 30 1853 210 3.1% 53.7% 0.113 0.537 

>= 77 1244 187 2.1% 47.8% 0.150 0.478 

>= 140 969 162 1.6% 41.4% 0.167 0.414 

All 59437 391 - - - - 
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