
Improving Energy Consumption in Android Apps

Carlos Bernal-Cárdenas
The College of William and Mary, Williamsburg, VA, USA

cebernal@cs.wm.edu

ABSTRACT
Mobile applications sometimes exhibit behaviors that can
be attributed to energy bugs depending on developer imple-
mentation decisions. In other words, certain design decisions
that are technically “correct” might affect the energy perfor-
mance of applications. Such choices include selection of color
palettes, libraries used, API usage and task scheduling order.
We study the energy consumption of Android apps using a
power model based on a multi-objective approach that mini-
mizes the energy consumption, maximizes the contrast, and
minimizes the distance between the chosen colors by com-
paring the new options to the original palette. In addition,
the usage of unnecessary resources can also be a cause of
energy bugs depending on whether or not these are imple-
mented correctly. We present an opportunity for continuous
investigation of energy bugs by analyzing components in the
background during execution on Android applications. This
includes a potential new taxonomy type that is not covered
by state-of-the-art approaches.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Tech-
niques

General Terms
User interfaces

Keywords
Energy consumption, mobile applications, empirical study

1. MOTIVATION
Due to the large volume of mobile applications (apps),

now numbering more than 1.5 million according to App-
brain [2], and the resource constrained environment of mod-
ern smart devices energy consumption is a popular research

topic. Apps address users’ needs through the implementa-
tion of numerous features aimed at making life easier. How-
ever, these features can sometimes implement more func-
tionality than they should. This leads to apps that drain
battery unnecessarily due to the overuse of device resources,
and the incorrect implementation and usage of components.
In general, analyzing different aspects about implementa-
tions of Android apps can lead to a better understanding of
potential energy bugs. Our approach focuses on the analy-
sis of GUI components and their usages, as well as hidden
behaviors that are not triggered by users.

2. RELATED WORK
Previous work has focused on detecting energy bugs in

mobile applications using several different strategies:

API Calls: Vekris et al. [12] presents an approach fo-
cused on detecting the usage of the WakeLock API that
forces components to no-sleep (e.g. keeping the screen awake)
by performing an inter-procedural data flow analysis. Zhang
et al. [13] compares the similarities of energy bugs for An-
droid, iOS, and Windows platforms in order to check whether
the approach for handling energy bugs in one platform works
for the other. Finally Linares-Vasquez et al. [6] investigate
patterns of energy-greedy API calls that consume unnesse-
cary energy in Android applications.

Bytecode: Liu et al. [8] presents a work that analyzes
the bytecode of Android apps in order to check whether a
listener for a sensor usage does not unregister it. This work
systematically diagnoses inefficient usages of sensor data.

Data flow: Pathak et al. [10] perform a data flow
analysis to look for no-sleep code paths detecting possible
energy bugs. In their approach, detecting how wakelocks are
used helps to mitigate unnecessary resource consumption.

Objects: Zhang et al. [14] present an approach called
ADEL that automatically detects energy leaks using dy-
namic taint-tracking analysis. This approach focuses on un-
necessary network communication.

Third Party Libraries: Rasmussen et al. [11] ana-
lyze energy consumption of ads on mobile apps. It uses
ad-blocking software to investigate the gain that these types
of programs introduce in terms of energy. In addition they
compared different types of ad-blocking programs resulting
in many cases that lead to higher energy consumption.

3. APPROACH
This section presents the work of improving energy con-

sumption in Android apps by performing two different types

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the Owner/Author.
Copyright is held by the owner/author(s).

ESEC/FSE’15, August 30 – September 4, 2015, Bergamo, Italy
ACM. 978-1-4503-3675-8/15/08
http://dx.doi.org/10.1145/2786805.2807558

1048



of analysis: First, on GUI components that are instantiated
on the screen minimizing the energy consumed by SUPER
AMOLED screens. Second, an ongoing work of analyzing
components in the background during execution of Android
apps.

3.1 GUI ANALYSIS
Our approach is called GEMMA (Gui Energy Multi-objective

optiMization for Android apps) and generates color composi-
tion solutions, which optimizes the energy consumption and
contrast while staying consistent with the original palette
using multi-objective optimization [7]. The GEMMA ap-
proach is divided into multiple phases:

Estimating Power Consumption: This phase builds
a power model for a SUPER AMOLED screen (1080 × 1920
pixels) of a Samsung Galaxy S4. We collected energy con-
sumption using a Power Monitor [3] on the idle state of the
screen for primary and black colors changing the RGB com-
ponent level from 1 to 255 for 30 seconds at each. Using
these measurements we are able to build a linear RGB (i.e.
read, green, blue) function that simplifies the construction
of the model [5]. To compute the total energy consumed
for a specific screen we need to sum the power consumption
values for each GUI component according to pixel’s position
(e.g. (x, y)), linear RGB values.

Extracting Color Composition: The next phase dy-
namically extracts the color composition of GUI elements on
the screen. This uses a tool provided in the Android SDK
called UIAutomator [4] in order to detect the position of the
components and assign the pixels that correspond to each
GUI element. We use two structures to achieve this; bag-of-
color-pixels (BOCP) and bag-of-color-components (BOCC).
BOCP is a set of pixels with the same color and BOCC is a
set of components with the same GUI color. We automati-
cally take a screen shot, then extract the tree representation
from the xml using UIAutomator tool which includes di-
mensions, properties and location. Finally we traverse the
tree using a bottom-up approach to assign the pixels. This
means starting from the biggest component we start assign-
ing pixels to its children and then repeat the process with
each child.

Then we extract the histogram of each component with
the top colors avoiding gradients, fonts, and shadows. Fi-
nally using the centroids of the histogram we apply quanti-
zation by assigning the colors to the closest quantized color
to the original one. As a result we obtain an association of
pixels for each component(i.e. BOCP) and the BOCC which
is the mapping between quantized color and components as-
sociated to pixels with this color.

Multi-objective optimization: This phase is based on
a genetic algorithm technique called Nondominated Sort-
ing Genetic Algorithm (NSGA)-II. It produces a pareto-
optimal set of solutions that minimizes the energy consump-
tion, maximizes the contrast, and minimizes the distance be-
tween the chosen colors by comparing the original palette.
In addition to avoid trivial solutions (i.e. low contrast) we
added a constraint that influences the tournament selection
of the NSGA-II.

3.2 BACKGROUND ANALYSIS
In addition we want to analyze the behavior of apps that

execute components in the background in order to identify
possible causes of energy bugs when implementing features
on Android apps. According to the official Android API
documentation [1], there are different components that are
able to run in the background:

Services: This is an application component that can as-
sume a longer-running time when the user is not interacting
with it. This type of processes keeps running while the de-
vice has enough memory to execute it. Services usually run
actions that users care about like playing music.

Broadcast Receivers: This type of process exists at any
time during application execution. This receives intents and
transforms them into actions that usually notify the user
when a specific event occurs.

Threads: This type of process is used when a developer
needs to execute actions in the background. However, they
should terminate instantaneously in order to avoid blocking
the main UI thread.

Workers: This is a type of thread that is used in the
case a developer needs to perform operations that take a
long period of time without blocking the main UI thread. In
addition, when using multiple threads, handlers should be
used to send a message to communicate between threads.

AsyncTask: This allows worker threads to enable the
proper manipulation of the main UI thread. Moreover, it
helps to perform background updates to the GUI without
manipulating handlers or threads.

These are the different ways for implementing components
that execute actions in the background that could lead to
energy bugs if the implementation is not appropriate. Ac-
cording to Pathak et al. [9, 10] taxonomy there is no classi-
fication that fits on this types of energy bugs. Pathak et al.
focused on analyzing wakelocks however this is not the only
case of apps consuming unnecessary resources.

4. RESULTS AND CONTRIBUTIONS
We have used GEMMA in generating solution palettes

for 25 Android apps that reduces the energy consumption.
We surveyed 85 mobile user developers and three compa-
nies, one manager for each company. As a result, solutions
with highest energy consumption are not preferred by the
participants, because these solutions involve palettes that
contains only dark colors in most of the cases. However,
GEMMA generates solutions acceptable by participants that
also consumes 42% less energy on average than the origi-
nal composition. Managers of the three different companies
agree that this can be used in future releases of its own
products, confirming that GEMMA should be considered
for developers in companies for commercial products. Using
a multi-objective approach GEMMA is able to balance the
energy consumption, contrast, and closeness to the original
composition generating solutions palettes that are energy-
friendly. The lack of analysis in the background execution
of actions on Android apps gives an opportunity to investi-
gate the causes that can help to detect unnecessary usage of
resources. Performing such an analysis can potentially help
to locate the origins of energy bugs other than those previ-
ously explored namely: analyzing usage patters, wakeLocks,
data flow, bytecode, and objects.

1049



5. REFERENCES
[1] Android documentation.

http://developer.android.com/guide/components/

processes-and-threads.html.

[2] Appbrain. http://www.appbrain.com/stats.

[3] Monsoon-solutions. power monitor. http://www.
msoon.com/LabEquipment/PowerMonitor/.

[4] UIAutomator.
https://developer.android.com/tools/testing-

support-library/index.html#UIAutomator.

[5] M. Dong and L. Zhong. Chameleon: a color-adaptive
web browser for mobile oled displays. Mobile
Computing, IEEE Transactions on, 11(5):724–738,
2012.

[6] M. Linares-Vásquez, G. Bavota, C. Bernal-Cárdenas,
R. Oliveto, M. Di Penta, and D. Poshyvanyk. Mining
energy-greedy api usage patterns in android apps: an
empirical study. In Proceedings of the 11th Working
Conference on Mining Software Repositories, pages
2–11. ACM, 2014.

[7] M. Linares-Vásquez, G. Bavota, C. Bernal-Cárdenas,
R. Oliveto, M. Di Penta, and D. Poshyvanyk.
Optimizing energy consumption of guis in android
apps: A multi-objective approach. In Proceedings of
10th Joint Meeting of the European Software
Engineering Conference and the 23rd ACM SIGSOFT
Symposium on the Foundations of Software
Engineering, 2015.

[8] Y. Liu, C. Xu, and S. Cheung. Where has my battery
gone? finding sensor related energy black holes in
smartphone applications. In Pervasive Computing and
Communications (PerCom), 2013 IEEE International
Conference on, pages 2–10. IEEE, 2013.

[9] A. Pathak, Y. C. Hu, and M. Zhang. Bootstrapping
energy debugging on smartphones: a first look at
energy bugs in mobile devices. In Proceedings of the
10th ACM Workshop on Hot Topics in Networks,
page 5. ACM, 2011.

[10] A. Pathak, A. Jindal, Y. C. Hu, and S. P. Midkiff.
What is keeping my phone awake?: characterizing and
detecting no-sleep energy bugs in smartphone apps. In
Proceedings of the 10th international conference on
Mobile systems, applications, and services, pages
267–280. ACM, 2012.

[11] K. Rasmussen, A. Wilson, and A. Hindle. Green
mining: energy consumption of advertisement blocking
methods. In Proceedings of the 3rd International
Workshop on Green and Sustainable Software, pages
38–45. ACM, 2014.

[12] P. Vekris, R. Jhala, S. Lerner, and Y. Agarwal.
Towards verifying android apps for the absence of
no-sleep energy bugs. In Proceedings of the 2012
USENIX conference on Power-Aware Computing and
Systems, pages 3–3. USENIX Association, 2012.

[13] J. Zhang, A. Musa, and W. Le. A comparison of
energy bugs for smartphone platforms. In Engineering
of Mobile-Enabled Systems (MOBS), 2013 1st
International Workshop on the, pages 25–30. IEEE,
2013.

[14] L. Zhang, M. S. Gordon, R. P. Dick, Z. M. Mao,
P. Dinda, and L. Yang. Adel: An automatic detector
of energy leaks for smartphone applications. In
Proceedings of the eighth IEEE/ACM/IFIP
international conference on Hardware/software
codesign and system synthesis, pages 363–372. ACM,
2012.

1050


