
Increasing the Efficiency of Search-Based Unit Test
Generation using Parameter Control

Thomas White
The University of Sheffield, Department of Computer Science

Regent Court, 211 Portobello
Sheffield, S1 4DP, United Kingdom

tdwhite1@sheffield.ac.uk

ABSTRACT
Automatically generating test suites with high coverage is of
great importance to software engineers, but this process is
hindered by the vast amount of parameters the tools use to
generate tests. Developers usually lack knowledge about the
workings of the tools that generate test suites to set the pa-
rameters to optimal values, and the optimal values usually
change during runtime. Parameter Control automatically
adapts parameters during test generation, and has shown to
help solve this problem in other areas. To investigate any
improvements parameter control could have in search-based
generation of test suites, we adapted multiple methods of
controlling mutation and crossover rate in EvoSuite, a tool
that automatically generates unit test suites. Upon evalua-
tion, clear benefits to controlling parameters were found, but
surprisingly, controlling some parameters can sometimes be
more harmful to the search than beneficial through increased
computation costs.

Categories and Subject Descriptors. D.2.5 [Software
Engineering]: Testing and Debugging – Testing Tools;

Keywords. Parameter control, genetic algorithm, testing,
test suite generation, search based software engineering

1. INTRODUCTION
Object-oriented classes can be automatically tested using

Search-Based Software Testing (SBST) [6]. One such way
to achieve this is by using Genetic Algorithms (GA) [9]. A
genetic algorithm follows Darwin’s theory of Natural Selec-
tion [3] to solve a complex problem; searching through an in-
finite search space with only a function that evaluates an in-
dividuals fitness as guidance on which way the search should
go.
Algorithms like GAs use numerous parameters which ef-

fect runtime. Arcuri and Fraser found that setting these pa-
rameters to poor values leads to inadequate results [2], and
this was reinforced by Sayyad et al. [10]. Tuning these pa-
rameters to an optimal setting before the algorithm starts
is difficult, and most software developers usually lack the

knowledge to set these parameters to a suitable value. Fur-
thermore, the optimal values are also likely to fluctuate dur-
ing runtime, not remain constant [2, 7].

Solving the parameter problem would lead to an increase
in efficiency of search-based test generation. This would im-
prove the quality of output from the search-based test gen-
eration tools. An example of an improvement would be a
higher code coverage on unit tests produced. Research on
Parameter Control (PC) aims to automatically adapt pa-
rameters throughout the search [4,7]. As parameter control
was successfully applied in other domains, this raises the
question whether it could also be applied to search-based
test generation [1].

During this project, we adapted and applied different pa-
rameter control methods to unit test generation, specifically
the EvoSuite [5] search-based unit test generator, and eval-
uated any observations found during runtime.

When controlling the parameters in EvoSuite, some meth-
ods of parameter control outperformed others, leading to an
increase in the final fitness of the output (unit test suite)
produced. This was observed to increase code coverage on
unit tests produced by as high as 13%. In these cases, we can
imply that the genetic algorithm is more efficient with pa-
rameter control. Surprisingly, we discovered that controlling
the different parameters in EvoSuite can also lead to com-
plications, such as increased fitness evaluation costs which
countered the positive effects of having improved parameters
leading to a decrease in code coverage. Further research is
needed to take into account the extra computation time re-
quired when controlling parameters. The full findings are
published in [9].

2. PARAMETER CONTROL
There are two major forms for setting parameters, pa-

rameter control (PC) and parameter tuning [4]. Parameter
control modifies parameters during runtime of a program
whereas parameter tuning finds some static optimal value
before the run starts and never changes them. More on pa-
rameter tuning can be found in [2] but it can be deduced that
changing parameters dynamically during runtime finds more
suitable values than tuning or manual assignment [4, 11].

There are three main types of parameter control [4]. Firstly,
deterministic, which uses no feedback from the algorithms
current state and commonly only uses current resource vs
maximum resource (e.g. current iteration vs maximum it-
eration) to control parameters. Deterministic excels where
there is a pattern for a parameter to follow to increase the ef-
fectiveness the parameter has. An example of this would be

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the Owner/Author.
Copyright is held by the owner/author(s).

ESEC/FSE’15, August 30 – September 4, 2015, Bergamo, Italy
ACM. 978-1-4503-3675-8/15/08
http://dx.doi.org/10.1145/2786805.2807556

1042



mutation rate, which benefits from starting high to diversify
individuals (exploration), and finishing low to construct the
best individual from the current population (exploitation).
The second type is adaptive which works by tweaking pa-

rameter values every iteration depending on the fitness im-
pact of the parameter. If one parameter is outperforming
another, then it will be rewarded with greater impact in the
genetic algorithm, and if it is under-performing, punished
with a negative change. An example of an adaptive method
is by Ming et al [8], and computes the crossover rate based
on two individuals and their similarity. Ming et al aimed
to limit crossover from contrasting individuals as when this
happened, less fit offspring were produced [8].
The third type is self adaptive, where parameters are as-

signed to each individual. Self adaptive works due to in-
dividuals with more suitable parameters evolving superior
and surviving longer in the genetic algorithm, allowing their
parameters to spread to other individuals through crossover.
Self adaptive is useful in that it can control any number
of parameters easily. This was taken advantage of when
comparing control of mutation to crossover rate. We ran
3 self adaptive experiments, one controlling only mutation
rate, one only crossover rate and one which controlled both
simultaneously.

3. PARAMETER CONTROL IN SBST
We implemented multiple different methods of parame-

ter control into EvoSuite, a Search-Based Software Testing
(SBST) tool [5], to observe the effect on runtime that the
different methods had. The implementation also required
several adaptations specifically for EvoSuite. One example
is that the deterministic method relied on current iterations
vs maximum iteration and needed a constant individual size.
We adapted this to rely on time alone and as EvoSuite uses
variable length individuals, this constant individual size was
substituted for other values [9]. Secondly, EvoSuite did
not use a mutation rate, so multiple experiments were done
to find the best way to implement mutation rate into Evo-
Suite. We found that using a mutation strength, which
controls the quantity of mutations, would be best for this
project [9]. Experiments undertaken were aimed at solving
the following research questions:

1. Does PC improve the fitness of the result over baseline
given a time limitation?

2. Which factors of PC in test generation have the most
impact?

3. Which is the best suited method of PC in SBST?
Five experiments were undertaken using a modified version
of EvoSuite, which included a deterministic, adaptive and
the three self adaptive experiments mentioned in Section 2.
The experiments ran 50 times on 10 classes randomly se-
lected from the Apache Commons library [12]. Mutation
and crossover rates were controlled during EvoSuite’s run-
time, and the result used to determine if parameter control
could increase efficiency when testing object-oriented classes.
The success rate was measured by the fitness of the best in-
dividual during runtime, which had a value of 1 for an unfit
individual, scaling to 0 for an optimal individual.

4. RESULTS
The experiments show that controlling parameters does

influence the effectiveness of search-based software testing,

●

0e+00 1e+05 2e+05 3e+05 4e+05 5e+05 6e+05

0.
85

0.
90

0.
95

1.
00

Time (milliseconds)

N
or

m
al

is
ed

 fi
tn

es
s 

va
lu

e

Self Adaptive (Crossover)
Baseline

Figure 1: Average fitness of the best individual com-
pared to baseline using Self Adaptive controlling
only crossover across 50 runs on 10 classes. [9]

but with the complex individuals in the genetic algorithm
and the increased cost of fitness evaluations per mutation, it
was found that when a parameter control method increased
mutation rate, the computation time per iteration also in-
creased [9]. This caused less evolution to happen when
running for a constant time, resulting in less fit individuals
produced and negating the goal of parameter control. De-
spite this, the deterministic control method increased the
efficiency of EvoSuite in seven out of 10 classes. The
self adaptive method was most effective when controlling
only crossover rather than mutation or both, as crossover re-
quired less fitness evaluations than mutation. Figure 1 shows
the average fitness of the results across all 10 classes from the
Apache Commons library. The adaptive method performed
poorly, which could be due to the adaptive method consis-
tently increasing mutation rate to a high value. This lead
to eight out of 10 classes achieving lower overall fitness [9].
Overall, the results varied per class and PC worked better
on some classes than others.

5. CONCLUSION
In conclusion to the project, the three types of parameter

control were adapted and implemented into EvoSuite. We
found some methods did give an increase in efficiency, such
as deterministic. We also found that, as mentioned in Sec-
tion 4, controlling different parameters gives varied results,
as some increase computation time per iteration which could
negate the effect of parameter control [9].

As future research, we plan to research into ways to con-
trol how individuals are mutated, as opposed to just chang-
ing mutation strength [9]. Furthermore, the current meth-
ods of parameter control will need to be adapted, taking
into account increased computation cost of different param-
eter values, as this lead to drawbacks through less iterations
in the algorithm at runtime.

6. ACKNOWLEDGEMENTS A special thanks to
other project members, D. Paterson, J. Turner and G. Fraser.

1043



7. REFERENCES
[1] A. Aleti and L. Grunske. Test data generation with a

kalman filter-based adaptive genetic algorithm. The
Journal of Systems & Software,
103(Complete):343–352, 2015.

[2] A. Arcuri and G. Fraser. Parameter tuning or default
values? an empirical investigation in search-based
software engineering. Empirical Software Engineering,
18(3):594–623, 2013.

[3] C. Darwin. The origin of species. Wordsworth
Editions Ltd, Hertfordshire, 1998.

[4] A. Eiben, R. Hinterding, and Z. Michalewicz.
Parameter Control in Evolutionary Algorithms. IEEE
Transactions on Evolutionary Computation,
3(2):124–141, July 1999.

[5] G. Fraser and A. Arcuri. EvoSuite: Automatic Test
Suite Generation for Object-Oriented Software. In
ACM Symposium on the Foundations of Software
Engineering (FSE), pages 416–419, 2011.

[6] G. Fraser and A. Arcuri. Whole Test Suite Generation.
IEEE Transactions on Software Engineering (TSE),
39(2):276–291, 2013.

[7] G. Karafotias, M. Hoogendoorn, and A. Eiben.
Parameter control in evolutionary algorithms: Trends
and challenges. IEEE Transactions on Evolutionary
Computation, 19(2):167–187, April 2015.

[8] L. Ming, Y. ming Cheung, and Y.-P. Wang. A
dynamically switched crossover for genetic algorithms.
In Proceedings of 2004 International Conference on
Machine Learning and Cybernetics, 2004., volume 5,
pages 3254–3257 vol.5, Aug 2004.

[9] D. Paterson, J. Turner, T. White, and G. Fraser.
Parameter Control in Search-based Generation of Unit
Test Suites. In Proceedings of Symposium on
Search-Based Software Engineering, 2015., 2015. To
appear.

[10] A. S. Sayyad, K. Goseva-Popstojanova, T. Menzies,
and H. Ammar. On parameter tuning in search based
software engineering: A replicated empirical study. In
3rd International Workshop on Replication in
Empirical Software Engineering Research (RESER),
2013., pages 84–90. IEEE, 2013.

[11] J. Smith and T. Fogarty. Self adaptation of mutation
rates in a steady state genetic algorithm. In
Proceedings of IEEE International Conference on
Evolutionary Computation, 1996., pages 318–323, May
1996.

[12] The Apache Software Foundation. Apache commons
released components.
http://commons.apache.org/components.html, 2015
(last accessed March 2015).

1044


