
Vehicle Level Continuous Integration in the Automotive
Industry

Sebastian Vöst
ISTE, University of Stuttgart

Universitätsstrasse 38, Stuttgart, Germany
sebastian.voest@informatik.uni-stuttgart.de

ABSTRACT
Embedded systems are omnipresent in the modern world.
This naturally includes the automobile industry, where elec-
tronic functions are becoming prevalent. In the automotive
domain, embedded systems today are highly distributed sys-
tems and manufactured in great numbers and variance. To
ensure correct functionality, systematic integration and test-
ing on the system level is key.

In software engineering, continuous integration has been
used with great success. In the automotive industry though,
system tests are still performed in a big-bang integration
style, which makes tracing and fixing errors very expensive
and time-consuming. Thus, I want to investigate whether
and how continuous integration can be applied to the auto-
motive industry on the system level.

Doing so, I present an adapted process of Continuous In-
tegration including methods for test case specification and
selection. I will apply this process as a pilot project in a pro-
duction environment at BMW and evaluate the effectiveness
by gathering both qualitative and quantitative data. From
the gained experience, I will derive possible improvements
to the process for future implementations and requirements
on test hardware used for Continuous Integration.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation—Validation; D.2.5 [Software Engineering]: Test-
ing and Debugging; K.6.3 [Management of Computing
and Information Systems]: Software Management—Soft-
ware Maintenance, Software Process

General Terms
Management, Verification

Keywords
Automotive, embedded, testing, continuous integration

1. INTRODUCTION
Within the last decade, embedded software systems have

been on the rise more than ever. Nowadays, microprocessors
can be found everywhere in our daily life. The automobile
industry is no exception to this.

Quite the contrary, it is a domain which has seen excessive
growth when it comes to functionality based on software. In
a modern car, software is present in a unprecedented diver-
sity with a range from engine control systems to navigation
and entertainment systems. These systems are spread over
up to 100 individual control units with very different speci-
fications, many of which are involved in a singular function
simultaneously. Summed up, the software integrated in a
vehicle is a conglomerate of highly distributed embedded
systems with very distinct requirements.

The same can be said about the avionics industry, but
unlike airplanes, cars are a mass product and are often pro-
duced and sold in numbers of hundreds of thousands. To
make things worse, today’s customers expect high customiz-
ability in their vehicles, so that control units and software
components alike exist in different variants, each offering
different functionality. Many of these can be combined, so
in the end, several hundred different configurations are sold
in a single product line. This implies a different approach
to the development, but even more so to the testing process
compared to other domains.

1.1 Problem Statement
In software engineering, continuous integration has been

adopted by many software projects and has made regu-
lar system testing a common sight. This technique orig-
inates from Extreme Programming and applying it essen-
tially means that the software is fully integrated and tested
after every change. This reduces risks in software projects,
most notable in this case, the late discovery of defects [1].

Yet, system integration in automotive embedded software
is performed in a rather late stage today. Integrations of
several software components that run on the same control
unit might be performed earlier, but with regards to the
high distribution and variance, system integrations become
more and more important.

This is not without reason, though. As of now, frequent
integrations are hindered by several problems.

Due to the proximity to hardware, the test cases need to
be run on the actual control units. Thus, test cases take
a very long time to execute in comparison to pure software
tests and require significant effort to be run automatically.
In addition, we are facing organizational problems, because

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ESEC/FSE’15, August 30 – September 4, 2015, Bergamo, Italy
ACM. 978-1-4503-3675-8/15/08...$15.00
http://dx.doi.org/10.1145/2786805.2803193

1026

the development of software for a vehicle can be considered
an extremely large project with hundreds of developers dis-
tributed over dozens of teams in different companies.

Even more problematic is the design of test suites. Run-
ning tests on the hardware makes them expensive, so we
have to select the tests that are actually relevant. Effec-
tively, we have to design the test suite dynamically based
on the tested change. The same applies to the selection of
variant combinations, on which tests are executed.

To guide the selection, we have to define goals that we
try to reach in every integration we perform so that we can
select the test cases and variants most suitable. As of now,
there is no clarity about which goals are at all practical and
which of these provide the best results. We will also have to
apply these goals to the specification of test cases to make
sure the necessary test cases are available.

The tests would finally be executed on special hardware,
so-called test benches that represent a certain part of a ve-
hicle with respect to electronic components. We have to
take these test benches into account and figure out what re-
quirements they have to fulfill with regard to flexibility and
automation.

1.2 Research Objective
The overall objective of my thesis is to investigate how

the application of continuous integration on the vehicle level
can be made possible in the automotive domain. This in-
cludes the adaptations of the process itself, as well as test
case design, selection, variance management and hardware
requirements.

1.3 Context
I have been working on my thesis internally at BMW in

cooperation with the University of Stuttgart. Thus, I am
involved in internal projects that aim to improve the inte-
gration process, will have access to exemplary productive
data and I am able to perform empirical studies investigat-
ing the practical application of the presented concepts.

2. RELATED WORK
Papers on the application of continuous integration in the

automotive industry in particular are scarce. However, the
broader field of agile methods and embedded systems in gen-
eral has been investigated quite thoroughly.

In their paper, Shen et al. [5] have investigated about 50
studies regarding the adoption of agile development tech-
niques to embedded software development. They found that
the majority of methods applied originated in XP, which is
the origin of continuous integration. They did not explic-
itly differentiate between the specific XP techniques though.
Overall, they concluded that agile development is not at a
very mature stage in the embedded domain, but that the
majority of developers noticed a positive impact. None of
the papers they investigated had an explicit focus on the
automotive domain, however.

One of the major problems in the automotive industry
is the organizational size and the distribution of developer
teams. With regard to continuous integration, this problem
can be found similarly in very large software projects. In-
deed, Roberts [4] has proposed a modified approach called
Enterprise continuous integration (ECI) that can be ap-
plied to the automotive domain. ECI is composed of mul-
tiple stages, in which integration results from small teams

are later integrated with binary dependencies developed by
other teams. Since system integration in the automotive
industry is usually done with pre-compiled software compo-
nents, and developer teams or suppliers often perform their
own integration anyway, a similar process seems suitable.

Some research in the automotive industry has been per-
formed by Richenhagen [3] on continuous integration of pow-
ertrain systems. In his dissertation, he proposed a frame-
work to continuously integrate embedded software in the au-
tomotive domain. However, Richenhagen took an approach
from the developers’ point of view, concentrating on low-
level integration and did not take a partial or full system
level into consideration. Besides, he focused on powertrain
components exclusively. Some of his ideas could be trans-
ferred to a more holistic approach, however.

We can find lots of interesting approaches to the design of
test suites in the automotive industry in a paper by Lach-
mann and Schaefer [2]. They cover the entire testing process,
from test case specification to test selection and tackle many
concrete problems specific to the automotive industry. For
example, they describe an interesting solution to streamline
test cases written in natural language, which is very com-
mon in the domain. Other methods to provide a structured
test suite include highly automatic test selection based on
machine learning or redundancy removal based on compa-
rable test cases. Lachmann and Schaefer address black-box
testing as done in system testing, however they do not take
a continuous testing approach into account, but their re-
search is rather based on the prevalent strategy, in which
tests are executed only after certain development steps have
been reached. Also, they do not provide any detailed algo-
rithms that can be reused, but many of their ideas provide
a good starting point for my own research.

3. APPROACH
Follwing up, I will present my approach to achieve my

general research objective and derive more specific research
questions from this approach, since a major part of my work
is the empirical evaluation of the developed concepts.

3.1 Terminology
First of all, let us clarify the used nomenclature. In the

introduction, I used the term Integration. In the context
of this work, an integration includes every step performed
automatically after a software change has been made. This
may include static code analysis, compilation of binaries and
flashable packages, flash tests and the execution of test cases
for verification. An integration in this context does not in-
clude manual tests or crash tests. I will use the terms Test
Platform and Integration Platform as synonyms. Both refer
to a certain type of test bench that is able to run the soft-
ware under test and execute certain test cases on it. The test
bench is a well-defined part of a full system (a vehicle) and
physics and hardware are either fully (Software-in-the-Loop)
or partially simulated (Hardware-in-the-Loop). A test suite
in this context is part of an integration. It contains a set
of test cases and a number of hardware variants on which
these have to be performed. A test suite always refers to a
certain test platform.

3.2 Automotive Continuous Integration
If we want to focus testing on continuous system testing

in a domain, where no holistic concept of continuous in-

1027

Figure 1: Staged Continuous Integration

tegration exists, we first have to create a clear context in
which the different testing levels can be investigated sepa-
rately from each other.

Thus, we split the involved parties in a Continuous In-
tegration Backbone and several different levels, as shown in
Fig. 1 with three exemplary levels.

There can be several test platforms linked to the backbone
on each level, so long as they provide a given interface which
specifies input and output artifacts for each stage.

In the vehicle stage, the input artefacts would be pre-
compiled software containers specific to a certain ECU. These
can be delivered by an earlier stage which produces these
containers as output. Since we assume the system level to
be the last stage, our output artefacts do not contain any
software but merely the reports and evaluations of executed
test cases.

The backbone triggers action on a certain level when a
more recent version of any input artefact is delivered either
externally or as result of a previous level. The backbone will
generate one or more test suites for the affected levels and
distribute the tasks over the associated platforms.

To prevent a permanent blockade of the integration server
by broken commits, we let go of the traditional notion of
breaking the build as it is. Whenever a change causes an
error on some stage, the build will not simply fail and cause
all following changes to inevitably fail as well until the error
is fixed. Instead, the change will be rejected on all levels
and the responsible team will be notified. Following builds
will be performed based on a revision prior to all possibly
erroneous changes.This means in fact, that a software ver-
sion can always only be finally accepted into the repository
of a stage when it has successfully passed through all stages.

I want to investigate whether or not this process is appro-
priate, so the first research question is:

• RQ1: Is a staged and modular CI process effective and
applicable in the automotive industry?

3.3 Test Suite Design
This process would rely heavily on individual integration

platforms that automatically generate their test suites based
upon a change. Prerequisite for this is a large set of test cases
that are specified to achieve the best results in an integra-
tion. However, the nature of these results, the integration
goals need to be defined. These may vary for each stage,
but in this case we want to focus on the system stage exem-
plarily.

Coverage criteria like code coverage are often used as met-
rics for the quality of a testing environment. On a system
level, we do not have access to the source code and assume
that this aspect has been checked adequately in previous
stages. However, we can define similar criteria.

On the system level, the artefacts that we want to check
are the user-visible functions. These functions are described
by a number of requirements. Only if every requirement of a

user-visible function is covered by test cases, we can decide
whether or not the function is working correctly after an
integration was performed. Thus, the first suitable criterion
seems to be requirements coverage.

Variance coverage could serve as a second criterion. The
problem of a high number of variations in ECU’s and there-
fore their software was introduced in section 1. A focus of
the system level is to detect faults in the communication
between two components in a distributed function, so we
need to ensure that the function was tested in all relevant
hardware variants.

Finally, the general goal should be to maximize error de-
tection. This criterion rather aims at a continuous improve-
ment rather than a first-time-right approach. Error detec-
tion can be maximized e.g. by analysis of errors that were
found in other test instances (like manual testing) or even in
serial operation. Regression tests can be derived from such
errors and adapted to components that are prone to similar
errors.

• RQ2: Are Requirements Coverage, Variance Coverage
and Error Detection suitable criteria to drive test case
specification and test suite design?

The effort for a full integration will likely increase to a
level where it is hard to impossible to maintain within a
continuous integration process and with a realistic budget.
In any case, a high degree of automation will be necessary,
but this might not suffice.

• RQ3: How can appropriate coverage of these criteria
be achieved in a continuous integration process? Is
this possible at all within a realistic budget?

3.4 Integration Platforms
Finally, we want to investigate if there are existing test

platforms that can support this process. At BMW, there
are several candidate test benches that could be used as
test platforms for different stages. These include a highly
automated Hardware-in-the-Loop concept that allows the
electronic components of a whole vehicle to be run in a sim-
ulated environment. Thus, virtual driving is possible in the
laboratory and test cases can be run fully automated.

• RQ4: Can Continuous Integration be implemented on
existing platforms in the automotive industry and what
are possible improvements for future platforms?

3.5 Research Plan
I plan to finish my dissertation by December, 2017. Within

the first year, I will be performing most of the planning
work. I am designing the continuous integration and test
suite design processes and will gather possible partners to
implement them in a pilot project. The second important
field I have been and will be working on in the first year is to
enable a test platform to support a continuous integration
process. For this, I am designing a framework for automatic
control of a test platform which will be implemented and
operative by early 2016.

In my second year, I will spend most of the time rolling
out the designed processes. The goal is to set up a project in
which a couple of software development teams as well as inte-
gration platforms on different stages take part. During this
time, I will collect first data about the technical and organi-
zational difficulties one encounters when implementing such

1028

a process at an original equipment manufacturer (OEM).
Also, I will be able to collect quantitative and qualitative
data about the efficiency and acceptance of the automated
testing framework.

In my final year, I will mostly do evaluation of the imple-
mented processes. I will collect data on test runs, achieved
test coverage and code quality where possible to answer my
research questions and write up the results.

4. EXPECTED CONTRIBUTIONS
The general contribution of my work is an adapted con-

tinuous integration process for embedded systems that can
be practically applied by OEMs in the automobile industry.

In order to evaluate its effectiveness, I will design two
frameworks implementing it. One general integration back-
bone, which handles changes, distributes them to appropri-
ate test platforms, interprets test results.

The second one is a test platform manager. The frame-
work’s purpose is to automatically generate the test suite
for its designated test platform based on a given changeset
and subsequently execute them on the associated hardware.
The test suite generation includes test case selecetion aim-
ing for maximum coverage of the criteria referenced in RQ2
und RQ3 within a limited timeframe.

These frameworks are necessary to conduct the studies
that will allow me to estimate whether or not the proposed
process and the driving criteria are valid, they can be cov-
ered appropriately and to learn about imposed requirements
on the executing hardware.

5. PLAN FOR EVALUATION
As mentioned before, I am working on my dissertation as

a part of BMW’s own research projects, so I will have many
opportunities to gain empirical results.

I will support the design and establishment of a company-
wide continuous integration process and evaluate it in the
form of a case study. For this, I will select several appropri-
ate integration platforms and software development teams.
In a qualitative analysis using interviews with participating
developers and integrators, I want to provide insight on the
acceptance of the process and find strengths and weaknesses
for further improvement.

To estimate whether or not the selected criteria are valid, I
intend to measure the error escape rate and compare it with
traditional means of guided testing. In addition to this, I
will review the achieved test results with experts in order to
uncover possible gaps.

I will try to judge whether or not the process is effective by
a quantitative analysis that takes into account the average
time needed for integrations and the overall satisfaction of
the coverage criteria. If the criteria are not met sufficiently,
I will try to extrapolate the remaining effort to answer the
second part of RQ3.

If possible, I will perform a qualitative and quantitative
analysis on software quality. Possible metrics include the
comparison of the number of detected errors over the dif-
ferent development phases with continuous and traditional
integration.

I will perform a similar case study with a focus on the
adaptation at a certain stage. This part will have a more
technical nature and I will try to figure out how well the
requirements of the continuous integration process can be

applied by the integrating business units. This study par-
ticularly aims to identify the requirements on the hardware
in use.

6. RESULTS SO FAR
Based upon several previous works including Roberts’ [4],

I proposed the process of automotive continuous integration
[6], which allows a modular implementation of the process
on independent stages.

Quantitative or qualitative results cannot be presented
yet. However, the general response from developer teams at
BMW is positive so far and some teams are very eager to
participate in a pilot project as proposed.

7. CONCLUSION
System level integration in the automotive industry is a

challenging task and imposes many problems that are not
very well researched yet, at least not in an automotive or
embedded context. The lack of papers on the application of
continuous integration strategies in the automotive indus-
try clearly indicates that this field of research needs to be
investigated more thoroughly.

With this work, I want to provide a first approach to
a holistic continuous integration for automobile embedded
software. This approach will be developed and established
at BMW such that I will be able to provide empirical results
first-hand from a realistic and operative environment.

At the end, I aim to provide to the community a better
insight on how a modern and concrete technique like con-
tinuous integration can be applied to the complex field of
embedded automotive systems as a holistic integration ap-
proach.

8. REFERENCES
[1] P. M. Duvall, S. Matyas, and A. Glover. Continuous

integration: improving software quality and reducing
risk. Pearson Education, 2007.

[2] R. Lachmann and I. Schaefer. Towards efficient and
effective testing in automotive software development. In
44. Jahrestagung der Gesellschaft für Informatik,
Informatik 2014, Big Data - Komplexität meistern,
pages 2181–2192, 2014.

[3] J. M. Richenhagen. Entwicklung von
Steuerungs-Software für den automobilen
Antriebsstrang mit agilen Methoden. dissertation,
Rheinisch-Westfälischen Technischen Hochschule
Aachen, 2014.

[4] M. Roberts. Enterprise continuous integration using
binary dependencies. In 5th International Conference,
Proceedings, Extreme Programming and Agile Processes
in Software Engineering, XP 2004, pages 194–201,
2004.

[5] M. Shen, W. Yang, G. Rong, and D. Shao. Applying
agile methods to embedded software development: A
systematic review. In SEES 2012, Zurich, Switzerland.
Proceedings, pages 30–36, 2012.

[6] S. Voest. Use of concepts from continuous integration in
the automotive industry in the context of
e/e-development. Master’s thesis, Technische
Universität München, 2014.

1029

	Introduction
	Problem Statement
	Research Objective
	Context

	Related Work
	Approach
	Terminology
	Automotive Continuous Integration
	Test Suite Design
	Integration Platforms
	Research Plan

	Expected Contributions
	Plan for Evaluation
	Results so far
	Conclusion
	References

