
Requirements, Architecture, and Quality in

a Mission Critical System: 12 Lessons Learned
Aapo Koski

Insta DefSec Oy
Tampere, Finland

aapo.koski@insta.fi

Tommi Mikkonen
Tampere University of Technology

Tampere, Finland

tommi.mikkonen@tut.fi

ABSTRACT

Public tender processes typically start with a comprehensive

specification phase, where representatives of the eventual owner

of the system, usually together with a hired group of consultants,

spend a considerable amount of time to determine the needs of the

owner. For the company that implements the system, this setup

introduces two major challenges: (1) the written down

requirements can never truly describe to a person, at least to one

external to the specification process, the true intent behind the

requirement; (2) the vision of the future system, stemming from

the original idea, will change during the specification process –

over time simultaneously invalidating at least some of the

requirements. This paper reflects the experiences encountered in a

large-scale mission critical information system – ERICA, an

information system for the emergency services in Finland –

regarding design, implementation, and deployment. Based on the

experiences we propose more dynamic ways of system

specification, leading to simpler design, implementation, and

deployment phases and finally to a better perceived quality.

Categories and Subject Descriptors

D.2.1 [Software Engineering]: Requirements/Specifications –

Elicitation methods, Methodologies.

General Terms

Design, Human Factors, Verification.

Keywords

Vision; requirements; user stories; architecture; external quality;

internal quality; process quality.

1. INTRODUCTION
Public tender processes of information systems – almost

regardless of the target and characteristics of the system itself –

start with a comprehensive specification phase. During this phase,

the representatives of the future owner of the system, typically

together with hired consultants, spend a considerable amount of

time to precisely define the exact needs the owner has in mind for

the system. Once requirements are fixed, it is up to developers,

usually employees of another company, to create a design to meet

the requirements.

In the agile era, where interactions between developers and other

stakeholders are advocated, this traditional view is challenged.

Characteristics other than implementing requirements only are to

be considered, which calls for improved setup as well as mindset

for the development. In general, neither the customer nor the

developing organization has an off-the-shelf solution. Rather,

joint work is required to find functional practices for cooperation.

In this paper, we present real-life experiences based on ERICA, an

information system for the emergency services in Finland, serving

the emergency call-taking and dispatching emergency tasks to

police, ambulances, fire department, border guard and social

services, made available to end users as a service. ERICA is large,

multi-million euro construction. The presented experiences have

been gathered over several years, and they cover various aspects,

such as project and requirement management, architectural

design, development process improvement, quality management,

and end-user involvement.

2. NEEDS AND REQUIREMENTS
Proper requirements are essential ingredients in producing high-

quality software. These define, one by one, a specification that

stems from the original vision of the needed solution.

In the specification phase, the people involved spend a

considerable effort and a period of time thinking thoroughly the

exact needs the future system must satisfy. For instance, in the

ERICA project, the customer started specification of the project

more than two years prior to the start of the procurement phase,

resulting in a pile of documentation describing the system from

many points of view, but having a strong emphasis on the

functional aspects. The specification produced lists of hundreds of

requirements, written carefully in IEEE 830 requirement format

[1]. These requirements were reviewed over and over, they were

amended and refined, some of them got rejected and new ones

were introduced. Finally a set of requirements were accepted as

the basis for the development.

Accepted requirements serve as the most appreciated artifact for

the following steps in the information system’s design and

development – the ultimate “truth” to which one can refer to when

debating system features or characteristics and by which the

customer eventually assesses the progress and the quality of the

system. They are offered to potential vendors for estimating the

time and cost to implement a system that could perform or behave

as stated by the requirements. Retrospectively, for our project it

would have been valuable, instead of just getting the list of final

requirements, to be able also to see the process leading to the final

requirements, including older versions and rejected ones.

When specifying the requirements as described above, we make –

partly consciously, partly unconsciously – some assumptions. For

instance, we assume that the representatives set to specify the

system have all the knowledge required to do the job and that they

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

ESEC/FSE’15, August 30 – September 4, 2015, Bergamo, Italy
c© 2015 ACM. 978-1-4503-3675-8/15/08...$15.00

http://dx.doi.org/10.1145/2786805.2804436

1018

are capable of expressing the needs in a written format that cannot

be understood in a wrong or incomplete way and leave as little

space as possible for vagueness. We also assume that the

understanding on the needs we have will not change significantly

during the specification process. We further assume that the

requirements can be written in the same way regardless of whether

a requirement specifies a functional feature or a quality issue and

that the requirements are expressed in such detail that the

potential vendors can reliably estimate the time and costs required

to implement each requirement. Finally, since information

systems are nowadays created in an agile – although a more

appropriate term in public tender projects is agilish – way, the

requirements should be written in a way that allows incremental

development. Ideally, the requirements are completely

independent of each other and can therefore be implemented in

any order.

As anyone involved in information system design and

development can verify, the fixed set of requirements is already a

problem in itself. If not adjusted and refined in a continuous

manner, the requirements will lead to an implementation that does

not correspond to the actual needs of the system owner.

Moreover, even if the requirements itself were complete and

reflect the needs of the system owner, the form and the language

used in the writing of the requirements often leaves a lot of room

for interpretation. This problem is emphasized when the project is

large in size, since the same requirement are interpreted

differently in different phases of the project, when scrutinized by

different people playing different roles in the development.

When considering the origin of requirements, three distinct

sources can be identified: 1) system sponsors, defining the

business, integration with other systems, security, schedule, and

effort or cost; 2) system users, specifying the required

functionality, usability, availability, learnability, performance, and

administration; and 3) authorities, defining laws, regulations,

contractual obligations, industry standards, and applicable

practices. Reflecting these sources to the ERICA system

development, the system users were obviously the ones who best

got their voice heard, whereas system sponsors’ and authorities’

opinions were not taken into account in full.

Lesson #1: Even if the client and the contractor both wish to

execute a project in an agile fashion, joint practices

and processes must be carefully agreed upon.

Lesson #2: The stakeholder that the developer hears best (“the

loudest voice”) may not be the most important

stakeholder.

Lesson #3: Feature management system is not a replacement for

interactions with end-users and other stakeholders.

3. SPECIFYING REQUIREMENTS
Capturing requirements is in general difficult; however, capturing

significant requirements for a mission critical system is

particularly difficult. A critical system is a system whose failure

could threaten human life, the system’s environment or the

existence of the organization which operates the system. The

concept of criticality introduces special needs on the way the

system is specified, planned, designed, implemented, tested and

finally deployed to use. It is important to notice that failure in this

context does not mean just a failure to conform to a specification.

Rather, such failure means any potentially threatening system

behavior, be it within specified functions or not. This fact puts the

developers of mission critical systems in a very different position

than the developers of less critical software when considering the

design and eventual acceptance of the system into production. In

particular, conformance to a set of requirements is not enough.

For better or worse, agile practices have also become a part of

building mission critical information systems (see e.g. [2], [3]). In

contrast to mission criticality, agility in our mind should mean

only three things [4]: user involvement, iterative and incremental

development and constant adaptation to the situation at hand.

To ensure the preservation of dependability throughout the

development, special attention must be placed on mission

criticality in the design of the system itself as well as tools,

techniques, and processes that are used during the implementation

as well as testing and other validation activities.

Finally, for an end-user of a mission critical system, criticality

does not only mean that system functionalities are up and

responding swiftly. It is also critical that the user interfaces

support the user in executing her tasks and make her as effective

and informed as possible. Consequently, the developers must

understand the characteristics and the behavior of the end-users.

Understanding regarding these emerges gradually when

developers and end-users co-operate.

In the ERICA project, due to its size and length of the project, we

encountered many occasions where the original requirements

alone would have resulted in an incomplete or unreliable solution.

We also had to do many changes due to regulations and laws that

for some reason were not fully taken into account in the

specification phase.

Since the project was executed in a close co-operation with the

end-users, we received a lot of feedback on the functional quality

aspects. When doing this, we were not careful enough to avoid the

feature creep. However, the responsibility on keeping the scope

set by the system owner should not be on the development teams

but on the customer representatives and end-users. It seems to be

somehow many times forgotten that keeping the feature creep

under control is of the highest interest for all stakeholders. In case

feature creep takes place, the whole project is immediately in

danger and in the worst case no system will be ever created.

Lesson #4: New features are easy to invent; each feature should

be associated with explicit stakeholder value.

Lesson #5: To avoid feature creep, one needs to perform rigorous

and visible change management. Learning to say “No”

in a nice way to end-users is obligatory.

Lesson #6: Criticality is a part of every requirement, not a part

that can be isolated.

4. ARCHITECTURE DESIGN
Architecture in a system can be defined as everything that is hard

to change. Architecture is the “load-bearing walls” around which

the rest of the software can be designed [5]. Consequently, the

architecture cannot stem from the same requirements that define

the functionality, as those requirements usually evolve over time.

When the requirements are defined in the fashion described

earlier, the architecture of the system typically plays only a minor

role or no role at all in the process. This is, of course,

understandable – the people involved in the specification are

mostly concerned on the functional features of the system to be

1019

developed, since that is what these people are requested when

they interact with end-users and other stakeholders. Although

some of the requirements can be categorized as architecturally

significant requirements, the main features and required

characteristics of the system architecture remain largely

unspecified and vague. Especially now at the agile era, where

room is typically left for later fine-tuning and revisions,

requirements that are specified up-front in the project lead easily

to a so-called emerging architecture. Emergent architecture in

itself sounds acceptable – and indeed is acceptable for various

projects – but for long-lasting systems, such an approach means

that the system architecture has to be rethought many times during

the project. This in turn costs money, makes the system

development slower, limits the options, forces one to make sub-

optimal compromises and brings about a lot of confusion.

It has long been recognized that system architecture has a strong

influence over the life cycle of a system [6]. However, until

relatively recently, hardware issues have tended to dominate

architectural thinking and software related aspects of architecture

– if considered at all in the first place – have often been the first

thing to be compromised under the pressures of development.

In ERICA, the original sketches of the architecture and the final

design surely resemble each other. However, the reason for this is

not comprehensive pre-implementation specification phase, but

merely high cost of architectural changes. Due to the time, amount

of work, and schedule related to the needed changes, we have

spent a lot of time to finding ways to bend the architecture to

make at least some minor mandatory changes possible. At the

same time, some original requirements, which in themselves are

fully justified but not easily implemented with the current

architecture, were interpreted in a way better compliant with it.

Lesson #7: A verifiably satisfying architecture for a mission

critical system simply does not emerge; it must be

explicitly designed and validated.

Lesson #8: Architecture is not a concern of any of the

representatives of the system’s owner. Therefore, the

developers should be extremely concerned on its

design.

Lesson #9: Limits of the architecture will be met in any case;

create a strategy for managing overarching

requirements.

5. QUALITY
Quality is a topic of great interest to all stakeholders involved

with an information system, including also the developers and

end-users. Moreover, quality is what the system owner and all

stakeholders are really looking for, instead of fulfillment of

requirements. To avoid mismatches and false expectations, the

definition of the term quality should be the same on both sides of

the table when negotiating and discussing with the customer.

Moreover, the same definition must be applicable also at the point

of delivery and deployment.

There is no lack of definitions or specifications regarding what

quality means (see e.g. [7]) and from which points-of-view the

quality of a system should be assessed. In addition to external

quality issues, comprising of both functional and non-functional

issues, also the internal quality (which reflect e.g. the testability

and the supportability of the system) and the process quality

(which ensures the project is on time and on budget) needs to be

taken seriously into account when assessing the overall quality.

The functional quality should be straightforward to measure, since

if we have a representative of an end-user at hand, we can provide

her the system as it is, tell her what features are already

implemented, how the features can be used and ask her, is she

seeing and experiencing by the use of the system such things that

qualify as the final features delivered to the production.

Unfortunately, this kind of behavior did not take place in ERICA

project and rarely does. Instead, we far more typically find that

instead of getting feedback on what are the most important issues

missing from the system, we get masses of defect reports, ranging

from irrelevant comments on the look or behavior of the user

interface to reported bugs on features not in scope.

Lesson #10: Defect reports are no replacement for true

interaction with representative end users.

Lesson #11: Test automation is a necessity for agile

development.

Lesson #12: Quality in the large cannot be validated with

technical tests only; instead, end-user involvement is

needed.

6. DISCUSSION
Based on the above lessons, it is obvious that when doing the

classic waterfall-style [8] system development, the system owner

and other stakeholders have no control over quality. In contrast,

when playing by the rules of agile development, the playground

the requirements, the system architecture, the quality and the

acceptance testing form a diagram depicted in Figure 1.

Figure 1. Roles and relations in an “agilish” approach.

Even doing the project in an incremental and iterative way, the

system owner still does not have any guarantee that the provided

system, with fixed time and cost, will converge to what is actually

needed within the budgeted time and money. The achieved quality

is more or less a surprise – sometimes possibly a positive one but

typically less than was expected – and restricted by the emergently

created architecture. Taking into account these problems, the

development should preferably follow the enhanced process

presented in Figure 2.

The project needs to start with some clear quality needs,

consisting not only of functional quality aspects, but covering all

the quality aspects the system owner and her representatives have

1020

in mind. The format of the quality need should be that of a user

story, stating who needs something and why. The system

architecture should build on these quality needs and reflect the

up-to-date understanding of the required system quality.

Figure 2. Roles and relations as they should be.

The acceptance testing should be done against the required quality

aspects as they are at the moment of testing. The testing should

concentrate on the validation of the implemented quality aspects

and give a lot of feedback on all tested quality features, guiding

the next development and testing efforts. The requirements – if

required for example for contractual reasons – can be defined and

written on the basis of the implemented quality and the results

from the acceptance testing. Important aspect is that the

requirements here emerge iteratively and allow us to monitor and

analyze the way the system is evolving.

Finally, the requirements, the architecture, and the original needs

or vision of the system to be developed and taken into use give us

three points-of-view into the system. These views are not

necessarily similar views, however. Ideally, these three elements,

complemented with the acceptance testing criteria or test cases,

should support and reinforce each other and together give any

stakeholder a clear view on what are we developing, how the

development is progressing and how well it satisfies the needs we

have.

7. CONCLUSIONS
The era of the development model where we try to specify the

information systems by writing down a set of requirements in

short format has lasted for a long time. During that time it has

been proven over and over again that by such process we do not

end up with results that satisfy the system owners; we either end

up providing a system that does not include the features really

needed, or we do not converge in the development effort to the

right system solution within budgeted time and budgeted cost.

This fact is emphasized with mission critical systems because of

their special nature – they just simply cannot behave is a way that

causes threat to human life or property, no matter the

requirements are fulfilled or not.

In general, functional quality specifications should be written by

someone who is not involved in any other aspect of the project

developing the system. The writer should be familiar with user

interface issues and web design (if required), familiar enough with

the used technology to know the possible limitations and

capabilities, and someone who is a very skilled communicator and

definitely a good writer. While writing a specification, the writer

should spend a great deal of time imagining how a user might use

a certain feature and how they may navigate their way through the

software. The functional specification writers' main concern

should be marrying the user experience with the various business

logic requirements of the project.

The non-functional quality specifications should be also written

by someone who is not involved in any other aspect of the

development project. This time, however, the writer should be

fully aware of the required system capabilities, acceptable

performance criteria, number of users, events and transactions, the

needs for scaling the system and of any limitations set to the

system development, like the characteristics of the environment or

existing regulations or laws.

To conclude, we strongly feel that the system owners are not to

blame for the problems encountered in large-scale information

system development projects. It is the people who design,

develop, test and deploy the system who are responsible to

educate the system owners how high quality information systems

should be put together. Starting from quality needs instead of

requirements enables right solutions to the true needs, longer

system lifespan, and eventually happier customers.

8. ACKNOWLEDGMENTS
We thank Insta DefSec Oy for the opportunity to report on the

experiences gained in this large-scale mission critical project.

9. REFERENCES
[1] IEEE Std 830-1998 (Revision of IEEE Std 830-1993), IEEE

Recommended Practice for Software Requirements

Specifications.

[2] Bowers, J., May, J., Melander, E., Baarrman, M., and Ayoob,

A. "Tailoring XP for large system mission critical software

development." Extreme Programming and Agile Methods—

XP/Agile Universe 2002. Springer Berlin Heidelberg, 2002.

100-111.

[3] Drobka, J., Noftz, D. and Raghu. R. "Piloting XP on four

mission critical projects." IEEE Software, 21.6 (2004): 70-

75.

[4] Koski, A. and Mikkonen, T. “Rolling out a mission critical

system in an agilish way,” In Proceedings of 2nd

International Workshop on Rapid Continuous Software

Engineering, May 2015.

[5] Perry, D. E., and Wolf, A. "Foundations for the study of

software architecture." ACM SIGSOFT Software Engineering

Notes 17.4 (1992): 40-52.

[6] Gacek, C. Abd-Allah, A., Clark, B., and Boehm, B.. "On the

definition of software system architecture." Proceedings of

the First International Workshop on Architectures for

Software Systems. Seattle, Washington, USA 1995.

[7] ISO/IEC 25010:2011, Systems and software engineering --

Systems and software Quality Requirements and Evaluation

(SQuaRE) -- System and software quality models.

[8] Royce, W. "Managing the development of large software

systems." Proceedings of IEEE WESCON. Vol. 26. No. 8.

1970.

1021

