
Semantic Degrees for Industrie 4.0 Engineering
Deciding on the Degree of Semantic Formalization to Select Appropriate Technologies

Chih-Hong Cheng, Tuncay Guelfirat, Christian Messinger,
Johannes O. Schmitt, Matthias Schnelte, Peter Weber

ABB Corporate Research Center, Germany
{firstname.lastname}@de.abb.com

ABSTRACT
Under the context of Industrie 4.0 (I4.0), future production systems
provide balanced operations between manufacturing flexibility and
efficiency, realized in an autonomous, horizontal, and decentralized
item-level production control framework. Structured
interoperability via precise formulations on an appropriate degree
is crucial to achieve software engineering efficiency in the system
life cycle. However, selecting the degree of formalization can be
challenging, as it crucially depends on the desired common
understanding (semantic degree) between multiple parties. In this
paper, we categorize different semantic degrees and map a set of
technologies in industrial automation to their associated degrees.
Furthermore, we created guidelines to assist engineers selecting
appropriate semantic degrees in their design. We applied these
guidelines on publicly available scenarios to examine the validity
of the approach, and identified semantic elements over internally
developed use cases concerning plug-and-produce.

Categories and Subject Descriptors
D.2.12 [Software Engineering]: Interoperability; I.2.1 [Artificial
Intelligence]: Applications and Expert Systems – industrial
automation

Keywords
Embedded software, design space exploration and evaluation
guidelines, Industry 4.0 engineering, semantic degree

1. INTRODUCTION
Industrial manufacturing companies are facing strong demands to
improve their production process, not only on the shop-floor but
throughout the complete value chain. These demands arise from
requests such as growing productivity expectations, increasing
number of product variants, reducing lot sizes, etc. It is widely
perceived that new information technologies will reshape
production processes via an integration into existing industrial
automation and communication technologies, from engineering to
commissioning to operation. The activity of Industrie 4.0 (I4.0, or
Industrial Internet of Things) is such an initiative to apply internet
of things (IoT) technologies to the manufacturing context.
Nevertheless, to enable automated interpretation and processing of
the interchanged information throughout the enterprise (from
machines to services), apart from basic physical communication
and data transmission, having a commonly understood information
for exchange is a premise. We refer the degree of common

understanding as the semantic degree. As realization of I4.0 is
largely via software technologies, a predefined semantic-degree
governs the underlying software engineering and commissioning
(e.g., implementation or configuration) efforts, as it is highly
associated with the amount of information to be revealed on the
functional interface. Therefore, to agree on a proper semantic
degree is crucial in early stage system design. The risk of improper
“selection of semantic degrees” can be observed by two extremes:
On one side, choosing a degree of no common understanding
implies that each component needs to implement its own parser to
understand the meaning of other components. On the other
extreme, having a degree where each component understands the
real world (in terms of physical equations) simply contains
unnecessary details and incurs huge reasoning effort.
In this paper, we categorize the exposed semantic degree (Section
2) by first considering whether the exchanged information is
structural or behavioral (i.e., the receiver needs to know the system
configuration which evolves over time). For structural information,
semantic degrees range from simple document repositories to
ontologies, while for dynamic information, finite automata, Petri
nets, or genetic programming language are used. With predefined
degrees, we further identify a set of guidelines that can be used as
a filtering procedure (Section 3), enabling engineers to select
appropriate semantic degrees in their system design.
In our evaluation (Section 4), we first review commonly seen
technologies used in I4.0 and associate these technologies with
concrete semantic levels. We then present internally-developed use
cases from different industrial segments which are transformed into
future I4.0 scenarios, and depict the underlying rationale of
selecting appropriate semantic degrees in the underlying software
development process. Lastly, we present our examination over 20
publicly available “I4.0 demonstrators” and identify the required
semantic degrees in order to fulfill the implemented features.

2. CATEGORIZATION CONCEPT
In order to categorize semantic degrees, we first distinguish
between structural and behavior modelling. While structural
modelling describes how (in which detail) information is exposed,
behavioral modelling describes what kind of information is
contained and knowledge about the information processing. These
two aspects can be seen as two dimensions with certain degrees.

Figure 1: Degrees of structural formalization, with industrial automation examples

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ESEC/FSE’15, August 30 – September 4, 2015, Bergamo, Italy
ACM. 978-1-4503-3675-8/15/08...$15.00
http://dx.doi.org/10.1145/2786805.2804434

1010

Based on the demands of transparency and collaboration that one
wants to achieve in the system, these degrees help engineers to
select an appropriate modelling method and technology.
Structural formalization: Our categorization of structural
information (Figure 1) is based on a refined set of criteria from the
work of Navigli and Velardi [12], ranging from document
repository to ontology. Table I provides their exposed information
and some applied industrial contexts. Notice that our definition of
the degree elements (e.g., glossary) are slightly altered to fit into
the industrial automation setup.
Starting from the lowest degree of formalization, a Repository can
be seen as a source for raw data (either structured or unstructured)
without additional semantics. This means that additional
knowledge is needed for interpreting the information. A
Terminology provides a set of vocabularies that is implicitly
controlled, agreed and specialized for the system under
investigation – which means that a term is well defined and unique.
This makes it possible to annotate elements with tags in order to
make information out of data. A data point for example can hold
the value: [33.3] and provide an additional tag: [Celsius] – a
controlled application of this tag allows for comparison with other
values of the same kind. A Glossary is an explicit, specialized list
of words and their associated definitions. Within industrial
contexts, it can be used for extending elements (tags) with a human
readable description, such as associate an alarm tag with its actual
meaning that can be shown in an HMI (e.g., associate tag
QI6202NO/AHY01 with meaning “nitrogen dioxide too high„).
Importantly, we assume that the use of basic words such as
measurement units (e.g., Kilogram, Meter), are considered as a
common knowledge in terminology. However, these words do not
need to be listed in a glossary, because of their roots in the
common-sense.

TABLE I. FEATURES PROVIDED BY STRUCTURAL DEGREE

Structural
Degree Exposed Information Industrial Context

S0: Repository Unstructured/structured data Devices catalogues,
file structure,

S1: Terminology Controlled vocabulary Tags, annotations

S2: Glossary Description over vocabularies Human readable
documentation, HMI

S3: Thesaurus Basic relationships (association),
similarities

Profile mapping,
technology Integration

S4: Taxonomy Tree Structure, parent-child
relations, classifications

Abstraction (typing),
device classification

S5: Ontology Typed elements and relations Interfaces, inheritance,
topologies

A Thesaurus (or a Topic Map) is used to describe similarities
between tags and to assign a single, well-defined term to all
occurrences (e.g. from [Temperature Sensor] to [Bluetooth-
Device_000A3A58F310]). It can also be used to map different
technology terms from different vendors to avoid
misunderstandings. Taxonomies are used to define parent-child
relations and to build up tree structures, which are used in
structuring device classes (e.g. a dimmer is a switch, a switch is an
actuator). In contrast to taxonomies, an Ontology can have a full
mashed topology. An ontology provides typed elements, references
and enables the definition of type structures – which can be applied
for the definition of interfaces as known from object models.
Objects or object models (e.g. as used for the Common Information

1 The selection of elements in the behavioral degree is based on whether one can easily
find appropriate industrial contexts. E.g., one can also insert pushdown automata in
the behavioral degree, but as pushdown systems are rarely used, it is thus not listed.

Model – CIM [3]) can be also represented by an ontology (however
an object model typically has a fixed set of reference types).
Behavioral formalization: The entries in TABLE II. describe
behavioral aspects which may be required to be exposed by a
certain scenario in the industrial context1. Contents from B0 to B2
are more static – they are basic ingredients used to record the
snapshot of the system and to specify system invariants (conditions
where the system should hold in certain stages), while contents
from B3 to B6 target to expose dynamic information, i.e., they are
used when understanding how system evolves over time is needed.
The basic behavioral degrees are provisioning of Data and
Information. While the first degree provides only values, the
second extends the first with a meaning, which is needed to make
information out of data. Data can also include so called BLOBS
(binary large objects) - where also complex information can be
contained but however without any (machine interpretable) relation
to other parts of the model. Constraints can be used to formalize
logical requirements over the information such that they be
evaluated (to true or false) during commissioning or operation in
finite amount of time2. E.g., ConNO > THREA is a predicate
checking if the concentration of Nitro-Dioxide (ConNO) exceeds
a pre-defined threshold value (THREA). In an industrial context, a
system can use constraints to specify logical policies for their
installation (e.g. size, energy consumption) or structural policies for
their integration (e.g. allowed sub-modules or connectivity to other
systems). By exposing constraints, one is able to perform automatic
reasoning using state-of-the-art tools like SMT [5], SAT [2], or
DL[11] reasoning solvers.

TABLE II. FEATURES PROVIDED BY BEHAVIORAL DEGREE

Behavioral Degree Exposed Information Industrial Context

B0: Data Values Data Points

B1: Information Tags Self description, Data types

B2: Constraints (predicates
over information) as logic
formula

Requirements,
properties

Structural, logical policies,
conditions to trigger alarms, simple
logic (if-then-else rules)

B3: Finite automata States, events State machines

B4: Petri Nets Signals, concurrencies Concurrent/distributed processes,
queues

B5: Programming
Language

Flexible function set Scripting, coding

B6: Integrated simulation
model

Physical and logical
behavior combined

Virtual commissioning, run-time
optimization (e.g., MPC)

In some cases, exposing the information as a Finite automaton
(FA) can become relevant – e.g. if a machine is supposed to expose
its current state and potential state-changes to preceding or
subsequent machines in order to support them to react accordingly.
The state of a finite automaton, as presented in the Kripke structure,
can actually be evaluations over atomic propositions where each
atomic proposition is a constraint that can be algorithmically
evaluated. The degree of Petri Nets (PN) becomes relevant if
distributed or parallel processes have to be coordinated through the
information model because of shared resources. The almost highest
degree for the description of behavior is the use of a (general
purpose) Programming Language (PL), whose underlying model
of computation can be viewed as Turing machines.
Still, for modeling and correctly interacting with physical
environments, it is well known that models such as FA or PN lack
the explicit notion of time [10]. An Integrated Simulation Model

2 Precisely, we only consider fragments of logic having decidability results. Thus,
generic first-order logic (FOL) is considered as inappropriate, while decidable
fragments such as description logic [11]; used in OWL reasoning) is allowed.

1011

(ISM) combines the logic of a component like the programmable
behavior and the surrounding physical environment. Examples
include Modelica [8] or Ptolemy II [6]. With this degree, a system
can derive the behavior of the physical process and use this
knowledge in automatic decision support, such as the run-time
optimization via model-predictive control (MPC) [4].
Integration of structural and behavioral modelling: Structural
and behavioral modelling have to be integrated in order to allow for
the combination of their features. For example constraints from the
behavior model can make use of tags defined in the structural
model – a climate control can restrict its input for temperature
sensor values to [Celsius]. As another example automata in the
behavior model can be linked with sensor values of a specific data
type considering inheritance described by ontologies in the
structural model.

Figure 2: Tradeoff between modelling and integration efforts

TABLE III. EXAMPLARY GUIDELINES FOR SELECTING THE
APPROPRIATE DEGREES

Rule
Minimal degree
when the answer

is positive
Argument

R0: Is the scope of the system very
limited? E.g. one vendor, only few
entitities, static setup

S0: Repository
B0: Data

Hard coding with less
effort than modelling

R1: Have multiple parties the need to
exchange standardized knowledge -
which can be intuitevly understood
(such as units) ?

S1: Terminology
B1: Information

Necessity of well
defined terms.

R2: Have multiple parties the need to
coordinate the use of terms.

S2: Glossary
B1: Information

Human readable
description needed for a
common understanding

R3: Is it necessary to integrate
definition of terms of other parties

S3: Thesaurus
B1: Information

Mapping of different
definitions using a
Thesaurus

R4: Should the system provide a basic
type system and be extensible in terms
of lately added types?

S4: Taxonomy
B1: Information

Parent-Child relations
needed to classify types.

R5: Should the system be dynamic and
extensible – e.g. allow for modelling of
new elements during runtime?

S5: Ontology
B1: Information

Even the meaning of a
relationship can be
modelled

R6: Is it required to validate evolving
configurations during runtime?

S1: Terminology
B2: Constraints

Modelling of
requirements and a
controlled vocabulary
needed

R7: Shall a reasoning process
involving multiple parties be
supported?

S5: Ontology
B2: Constraints

Necessity to describe
complex and evaluable
relationships

R8: Is it necessary to
understand/modify the functionality
(e.g. logic) of another system?

S1: Terminology
B3:Automata
(and can up to B5)

Machine interpretable
description of logic
required

3. SELECTING APPROPRIATE DEGREES
In our semantic degree formulation, usually a model can be mapped
into a higher degree without the loss of information. The question
now could be – why not simply take the highest degree? As shown
in Figure 2, information modelling is a tradeoff between modelling
and integration efforts. One would like to reduce the cost of one-
time modeling efforts, while the result of modeling is still sufficient
to allow efficient integration and commissioning, which can appear
multiple times.
The decision process for the appropriate structural and behavior
modelling starts with the analysis of the requirements of the
application scenario. We provide some generic and exemplary
guidelines in TABLE III, such that an engineer can use it to analyze
its application scenario and derive the appropriate degree quickly.

Notice that when all elements that are unique or rarely used,
creating a detailed modeling for information exchange turns
inefficient (see also Rule R0).

4. EVALUATION
In this section, we first give a summary of technologies in industrial
automation and their corresponding semantic degrees. Then we
give an example how . Lastly, we present a summary of 20 publicly
available demonstrators and required semantic degrees. Due to
space limits, we refer readers to the extended version [1] for
complete details.
Evaluating technologies in industrial automation
For our proposed semantic degrees, we have examined existing
(software-related) technologies in industrial automation and
associate each technology with the corresponding degree. The
result is shown in Table IV; it can be used by software engineers in
industrial automation to quickly filter technologies to be used in
their I4.0 projects. E.g., if CAEX is used during the communication
of I4.0 entities, an ontology system is communicated underneath.

TABLE IV. TECHNOLOGIES IN AUTOMATION AND THEIR
CORRESPONDING SEMANTIC DEGREES

Automation Technologies Structural
Degree Behavioral Degree

GSD/GSDML/CFF/IODD/ESI/SCL S1: Terminology B1: Information
MQTT S0: Repository B0: Data

AutomationML

Collada S1: Terminology B1: Information (3D)
B6: ISM (due to kinematic
definition)

PLCOpen S5: Ontology B3: finite automata
CAEX S5: Ontology B2: Information

STEP S1: Terminology B1: Information
RFID S0: Respository B0: Data
ecl@ss S2: Glossary B1: Information
EDD S2: Glossary B1: Information
KNX S3: Thesaurus B1: Information
FDI S5: Ontology B1: Information
BACNet, Enocean / BT/ Zigbee
Profiles

S3: Thesaurus B1: Information

Hart / PNO / FF / SCL Profiles S3: Thesaurus B1: Information
RDF S4: Ontology B1: Information
RDFS S5: Ontology B2: Constraints (structural)
CIM S5: Ontology B1: Information
OPC UA S5: Ontology B1: Information

B3: Finite automata (partly
due to state machine/ filter)

OWL S5: Ontology B2: Constraints
(structural+ logical)

Domain Specific Language (DSL) S1: Terminology B3:Finite automata
(can go up to B6)

PackML S1: Terminology B1:Information,
B3:Automata

Applying semantic degrees in designing intelligent
manufacturing systems. We present an I4.0 internal case study
where we describe the targeted problem, the underlying mechanism
design, and summarize the corresponding rationale of choosing
appropriate semantic degrees using our guidelines. We have further
analyzed three internally developed examples in engineering
automation software, following the similar pattern. These examples
can also be found in the extended version [1].
Scenario: Semantically-enabled Plug-and-Sense In state-of-the-art
PLC programming, a PLC program is able to access the data of the
sensor via a global variable mapping process. However, the
engineer must know how to fetch data from a sensor connected to
the field bus, and later encode such information in the I/O mapping
file. All these activities are tedious and error prone. Whenever an
error appears in the I/O mapping process (e.g., one can accidentally
misplace a pressure sensor with the adjacent temperature sensor), it
is difficult to be detected. Furthermore, sensors need be configured

1012

differently (e.g., units) in order to support different project setups.
A solution to above problems is not only useful in PLC
programming but also for general I4.0 big data scenarios, as
companies now search for innovative methods to shorten the
integration time to bring data from edge devices to the cloud.
Targeting above problems, we have designed a demonstrator
system comprised of (1) web-based software services and (2)
component libraries for embedded software to be implanted on
existing sensors, actuators, and PLCs. The high-level setup is
shown in Figure 3 with entities master (PLCs), slave (smart sensors
or actuators), and I4.0-service as logical elements. For ease of
explanation, we explain the use-case scenario of inserting a
temperature sensor using the sequence diagram in Figure 4, where
the sensor is only able to read the temperature in Fahrenheit.

Figure 3: Intelligent devices supporting plug-and-sense, communicated under
industrial (Modbus TCP) communication protocol

Figure 4: Sequence diagram when temperature sensor is inserted (left), and the
returned ontological structure from as function composition (right)

Initially, by the time the engineer creates the I/O mapping, he also
specifies what the connected device is, together with measurement
units. Then the information is uploaded and stored to the I4.0-
service. When a sensor is plugged to the network, it first queries the
I4.0-service and examines whether itself is the desired device. For
the sensor in Figure 4, it enters a conditional acceptance mode and
queries the I4.0-service in order to obtain a unit converter.
The I4.0-service performs a reasoning based on transitive closures
in order to fulfill the request. This is because I4.0-service only
stores the three converters: (f1) from Fahrenheit to Kelvin, (f2)
from Kelvin to Celsius, and (f3) from Celsius to Fahrenheit. The
logic reasoned establishes the knowledge that to convert from
Fahrenheit to Celsius, one can first apply f1 on the sensed value,
then apply f2 on the previously computed value. The sensor thus
receives two converters f1 and f2, represented by the ontological
structure in Figure 4 (right). By interpreting the ontology, the
sensor converts 77 Fahrenheit to 25 Celsius via functional
composition f2(f1(77 Fahrenheit)), before sending it to the PLC.
In the actual implementation, we applied our guidelines to select
required semantic levels and corresponding technology ingredients.

Mininal Degree Applied Rule

S5: Ontologies R5: The system should be dynamic and extensible by new
devices and converters
R7: Reasoning should be supported (the returned two
functions f2 and f1 should be connected by a ontological
structure such that the sensor knows how to interpret it)

B2: Constraints R7: Reasoning should be supported (the sensor sends a
message: “find Celcius-Fahrenheit converter”, which can be
viewed as a logical constraint with existential quantification)

Evaluating publicly available I4.0 demonstrators
Based on above mentioned guidelines, we examine 20 publicly
available “I4.0 demonstrators” and identify the required semantic
degrees to fulfill the implemented features Due to space limits, we
refer readers to extended report [1] for details.
From our analysis, we observed that most demonstrators do not
demonstrate intelligence and reasoning on the device or system
level. Thus, scenarios using high semantic-degrees either
structurally (e.g., ontology) or behaviorally (e.g., integrated
simulation model) are limited, i.e., it is largely sufficient to use
glossary (controlled vocabulary) in the implementation.

5. OUTLOOK
In this paper, we identified semantic degrees and provided
guidelines for engineers to select appropriate semantic degrees in
their Industrie 4.0 projects. Our definition is accompanied by
concrete examples in industrial contexts, enabling automation
software engineers to grasp the underlying concept. Our created
guidelines allow engineers to quickly identify required semantic
degrees for their projects, while our evaluation over existing
technologies offers a single-stop for engineer to quickly understand
semantic degrees behind commonly used technologies. Our
investigation over publicly available demonstrators shows that
most demonstrators are still largely far from intelligent, so that
complex semantic degrees are not needed.
For future work, we will refine the rules and periodically update the
table with new technologies and their associated semantic degrees.
A decision support tool by utilizing the rules for engineering
software systems in building automation is also under planning.

6. REFERENCES
[1] Full version available at: http://arxiv.org/abs/1505.05625
[2] A. Biere, M. Heule, and H. van Maaren, eds. Handbook of

satisfiability. Vol. 185. IOS press, 2009.
[3] Common Object Model (CIM) http://www.dmtf.org/standards/cim
[4] E. F. Camacho and C. Bordons Alba. Model predictive control.

Springer Science & Business Media, 2013.
[5] L. De Moura, and N. Bjørner. Z3: An efficient SMT solver. In:

TACAS, pp. 337-340. Springer, 2008.
[6] J. Eker, J. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludvig, S. Sachs, Y.

Xiong. Taming heterogeneity - the Ptolemy approach, Proceedings of
the IEEE, 91(1):127-144, January 2003.

[7] A. Fisher, C. Jacobson, E. A. Lee, R. Murray, A. Sangiovanni-
Vincentelli, E. Scholte. Industrial Cyber-Physical Systems-iCyPhy.
In: CSD&M, Springer, pp. 21-37, 2013.

[8] P. Fritzson. Principles of object-oriented modeling and simulation
with Modelica 2.1. John Wiley & Sons, 2010.

[9] International Journal of Knowledge and Learning 4.1 (2008): 93-108.
[10] E. A. Lee. Computing needs time. Communications of ACM 52(5):

70-79 (2009)
[11] D. Nardi, and R. J. Brachman. An Introduction to Description Logics.

Description logic handbook. 2003.
[12] R. Navigli, and P. Velardi. From glossaries to ontologies: Extracting

semantic structure from textual definitions. Ontology Learning and
Population Knowledge (2008): 71-87 .

1013

	1. INTRODUCTION
	2. CATEGORIZATION CONCEPT
	3. SELECTING APPROPRIATE DEGREES
	4. EVALUATION
	5. OUTLOOK
	6. REFERENCES

