
Evaluating a Formal Scenario-Based Method for the
Requirements Analysis in Automotive Software

Engineering

Joel Greenyer and Maximilian Haase
Software Engineering Group
Leibniz Universität Hannover

Welfengarten 1, 30167 Hannover, Germany
greenyer@inf.uni-hannover.de,
maximilian.haase@stud.uni-

hannover.de

Jörg Marhenke and Rene Bellmer
IAV GmbH Gifhorn
Rockwellstraße 16,

38518 Gifhorn, Germany
dr.joerg.marhenke@iav.de,

rene.bellmer@iav.de

ABSTRACT
Automotive software systems often consist of multiple re-
active components that must satisfy complex and safety-
critical requirements. In automotive projects, the require-
ments are usually documented informally and are reviewed
manually; this regularly causes inconsistencies to remain
hidden until the integration phase, where their repair re-
quires costly iterations. We therefore seek methods for
the early automated requirement analysis and evaluated the
scenario-based specification approach based on LSCs/MSDs;
it promises to support an incremental and precise specifica-
tion of requirements, and offers automated analysis through
scenario execution and formal realizability checking. In a
case study, we used ScenarioTools to model and analyze
the requirements of a software to control a high-voltage cou-
pling for electric vehicles. Our example contained 36 require-
ments and assumptions that we could successfully formalize,
and we could successfully find specification defects by auto-
mated realizability checking. In this paper, we report on
lessons learned, tool and method extensions we have intro-
duced, and open challenges.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Require-
ments/Specifications; D.2.4 [Software Engineering]:
Software/Program Verification

General Terms
Design, Languages, Verification

Keywords
Automotive Software, Reactive Systems, Requirements
Analysis, Modal Sequence Diagrams, Realizability

1. INTRODUCTION
The increasingly advanced functions in today’s cars are

mainly realized by software. Automotive software systems
are complex embedded reactive systems with multiple soft-
ware components, sometimes distributed over several hard-
ware nodes, that must often handle concurrent sensor inputs
and user requests. Often, the software functions are safety-
critical and, moreover, the software usually controls elec-
tromechanical components, which requires interdisciplinary
expertise during its development.

The software development in the automotive industry fol-
lows the Automotive SPICE reference process model, an
automotive variant of the ISO/IEC 15504. It prescribes a
software requirements analysis where software requirements
are analyzed for technical feasibility and testability before
implementation. In automotive projects, the software re-
quirements are typically documented informally or semi-
formally (for example by state diagrams). The requirements
are then analyzed by manual reviews. In this process, how-
ever, requirement specification inconsistencies regularly re-
main hidden and are then only discovered in later develop-
ment phases, where their repair requires costly iterations.

At IAV, we therefore seek automated techniques that sup-
port us in the requirements analysis. In a case study in col-
laboration with the software engineering group in Hanover,
we tested and evaluated the scenario-based specification ap-
proach based on Live Sequence Charts (LSCs) [3, 8] resp.
Modal Sequence Diagrams (MSDs) [7], a recent variant of
LSCs. LSCs/MSDs allow us to model formally how a system
may, must, or must not react to external events.

Within the Eclipse-based ScenarioTools tool suite [16],
MSDs can be modeled as lightweight extension of UML, us-
ing the Papyrus UML editor. ScenarioTools supports the
modeling of software requirements as well as the modeling
of environment assumptions [2]. For analysis, Scenario-
Tools implements the play-out algorithm for executing the
scenarios [8, 2] and it can perform a thorough realizability
checking of the MSD specification [5].

Realizability checking, intuitively, analyzes whether there
exists a software controller that can react to all possible se-
quences of external events in a way that the specification is
satisfied. It does so by viewing the interaction of the soft-
ware and its environment as a two-player game where the
software tries to satisfy the specification while the environ-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ESEC/FSE’15, August 30 – September 4, 2015, Bergamo, Italy
ACM. 978-1-4503-3675-8/15/08...$15.00
http://dx.doi.org/10.1145/2786805.2804432

1002

flexible power
interface (flexPi)

HV battery

HV device
(e.g. cooling unit)

Figure 1: flexPi connects a cooling trailer to a hybrid
truck

ment tries everything to violate it. If there exists a strategy
for the system to win the game, this strategy can serve as an
implementation of the specification, which is thereby proven
realizable. If the software cannot keep the environment from
winning the game, the specification is unrealizable; it means
that the software can be forced into a state where it will
consequently violate contradicting requirements.

Our case study was the software for controlling a high-
voltage power interface for electric or hybrid vehicles. Elec-
trified vehicles are equipped with a high-voltage system
(400-600 Volts) that could serve as an energy supply for high
power devices. For example, as shown in Fig. 1, customers
would like to plug the cooling unit of a cooling trailer to
the high-voltage system of a hybrid truck. Therefore IAV’s
High-Voltage & Components department invented the flexPi

(flexible Power interface) [9]. Connecting and disconnecting
high voltage devices is not as harmless as it is with 12/24V
devices; disconnecting the plug under load causes an electric
arc that can cause deadly injuries. Therefore, a software sys-
tem is required for ensuring a safe operation of the interface.
The software must for example lock the plug in its socket
before the relays are closed.

The flexPi system is an IAV internal prototype project. A
specification of that project consisted of 120 requirements.
A student involved in this project, who had extensive knowl-
edge of the electromechanical and software parts, was then
asked to model 36 requirements1 that made up the core func-
tionality of the system as MSDs with ScenarioTools.

This study showed a high practical potential of the
LSC/MSD-based specification approach. Especially, using
the realizability checking feature, we could successfully un-
cover specification defects.

In this paper, we show a brief example and reflect on the
lessons learned. Specifically, we will summarize where we see
the main benefits of the approach, how automated analysis
techniques helped, and what obstacles we think keep this
approach from being applied in practice.

Structure: We first report on related work in Sect. 2.
We then show by a small example how requirements from
the flexPi project were formalized using MSDs in Sect. 3. In
Sect. 4 we show two of the specification defects found. Last,
we reflect on the lessons learned in Sect. 5.

1The remaining requirements were related to dealing with
faults of relays, the interlock system, or overheating. We
did not cover those in the limited time of the study, which
was conducted as part of the Bachelor thesis project of the
second author [6]. We are, unfortunately, not allowed to
disclose all the requirements; a subset of requirements can
be found in the thesis document [6] (in German).

2. RELATED WORK
The application of formal methods in automotive software

engineering has been studied previously (for example [10, 4,
13]), mostly focusing on formal verification of designs against
specifications. These modeling and verification techniques
can also uncover specification defects: if verification fails,
but the design looks good, the flaw may after all be in the
specification. In this paper, however, we instead focus on
analyzing specifications for inconsistencies before attempt-
ing to conceive a design. We can therefore detect problems
earlier in the development process.

Post et al. [15] report a study at BOSCH on formalizing
requirements in the automotive domain using natural lan-
guage patterns [11] that can be mapped to temporal logics.
They also propose a tool for finding unsatisfiable time con-
straints [14]. They, however, do not check the specification
realizability in an open system setting as in our case.

Löffler et al. [12] evaluate formal scenario-based require-
ments specification in healthcare applications. In this work,
however, a variant of Sequence Diagrams is used where ex-
plicit control-flow constructs determine the flow of events
through the scenarios. MSDs, by contrast, are activated,
progress, and synchronize through common events, which
allows for a more flexible modeling of concurrent tasks.

3. REQUIREMENTS FORMALIZATION
In the following we describe a set of requirements from

the flexPi project and their formalization using MSDs.
Unplugging the flexPi under load can cause fatal injuries.

The connection can be under load only if the relays are
closed. So the interface must prevent the plug from be-
ing pulled out of the socket if the relays are closed. This
is formulated by the requirement unplug forbidden shown in
Table 1. The socket is equipped with a locking mechanism
that can prevent the plug from being unplugged. This plug
locks automatically when the plug is plugged in (lock plug).

If the plug is not locked, the relays must not make contact
(make contact forbidden); this is to prevent a current from
flowing if a user inserts a screwdriver, for example.

The last requirement (start-button pressed) says that if the
start button is pressed, the relays must close the contact.

Table 1: Example requirements of the case study
name requirement.
unplug forbidden If a relay is closed, the plug must not be unplugged.
lock plug If the plug is plugged into the socket, then the

socket must lock the plug.
make contact for-
bidden

If the plug is not plugged or not locked then the
relays must not make contact.

start-button
pressed

If the start-button is pressed, then the relays have
to make contact.

Underlying the requirements is a description of the system
component architecture, naming the software components
of the system, their state variables and events they can ex-
change with the environment. This is also the starting point
for the formalization that is explained in the following.

We model the system structure using a composite struc-
ture diagram (top right of Fig. 2). The controller, socket,
and relay are software objects; the two latter being software
representatives of the physical socket and relay. The start
button and environment are environment objects.

1003

First, we model the requirement lock plug by the MSDs
PlugIn and IfPluggedThenLock (see Fig. 2). The MSD Plug-
In says that if an external plugIn event is detected by
the socket, then the controller must be informed. Mes-
sages in MSDs have different modalities. The message set-

Plugged(true), for example, is hot and executed, which
means that the message must be sent. For details on the
MSD semantics, see [7, 2, 5]. Messages of the form set-

〈attribute-name〉 messages also change the corresponding at-
tributes of the receiving objects; setPlugged(true) there-
fore sets the attribute c.plugged to true. Upon plugging in,
the socket must be locked. This is modeled by the MSD
IfPluggedThenLock. Upon a successful locking of the socket,
the attribute s.locked will be set to true; we omit the corre-
sponding part of the specification for brevity.

Following a similar pattern, the requirement start-button
pressed is modeled by the MSD IfStartPressedThenClose-
Contact. Again, we omit the part of the specification that
sets the attribute r.contactClosed to true if the relay’s con-
tact was successfully closed.

The requirement unplug forbidden is modeled by an anti-
scenario: IfRelayClosedUnplugForbbidden says that if unplug
occurs and the relay’s contact is closed, then this will be a
forbidden violation of the specification.

Similarly, we model the requirement make contact for-
bidden by the MSD IfNotPluggedAndLockedThenCloseRelay-
Forbidden; if closeContact occurs but the plug is not
plugged in or the socket is not locked, this is a violation.

c:Controller r:Relay

closeContact() h,e

IfStartPressedThenCloseContact

start:StartButton

startPressed()
c,m

s:Socket c:Controller r:Relay

closeContact()
c,m

not (c.plugged and s.locked)

violation

IfNotPluggedAndLockedThenCloseRelayForbidden

s:Socket r:Relay

unplug()c,m

r.contactClosed

violation

IfRelayClosedUnplugForbbidden

env:Environment

IfPluggedThenLock

s:Socket c:Controller

setPlugged(true)c,m
lock()h,e

PlugIn

s:Socket c:Controller

plugIn()
c,m

setPlugged(true) h,e

env:Environment

cold
(can be
violated)

hot
(must not be

violated)

monitored
(may happen)

executed
(must happen)

c,m

c,e

h,m

h,e

message
semantics:

FlexPi CSD

env:Environment

s:Socket r:Relay

c:Controller

start:StartButton

Figure 2: Some MSDs from the specification of the
high-voltage coupling system

4. ANALYZING THE SPECIFICATION
Based on a specification as shown above, we can use the

ScenarioTools’ realizability checking feature [5] to check
whether a software implementation exists that can react to
all environment events in a way that the specification is satis-
fied, i.e., that no violations ever occur and all events required
to occur do in fact eventually occur.

We could automatically detect two defects present in the
above specification:
Defect 1: The MSD IfStartPressedThenCloseContact speci-
fies that if the user presses the start button, the relay should
close the contact. This is true also if the plug is not inserted
or the socket is not locked. This again leads to a violation of
the MSD IfNotPluggedAndLockedThenCloseRelayForbidden.

Raising this issue to the author of the requirements specifi-
cation revealed that, implicitly, the requirement start-button
pressed was meant to have a lower priority, and should only
hold when none of the safety-related requirements demand
otherwise. To correct the defect in the MSD specification,
we added the condition“c.plugged and s.locked”between the
two messages in the MSD IfStartPressedThenCloseContact.
Defect 2: In our example, the plug can be inserted into the
socket and then the socket will be locked as well. Then, upon
pressing the start button, the relays can be closed safely.
Now, however, the specification allows the external event
unplug to occur, leading to a violation of the MSD IfRelay-
ClosedUnplugForbbidden. Here we have a case of an implicit
assumption made by the requirements engineer, namely that
the plug cannot be unplugged as long as the lock is engaged.
To capture this assumption, we added an assumption MSD,
modeled as an anti-scenario, that unplug while the socket
is closed will lead to the violation of the assumptions, effec-
tively meaning that such a behavior will not occur.

5. LESSONS LEARNED
What were the main benefits of the scenario-based

specification and analysis approach? We could suc-
cessfully model the core requirements of the flexPi system
using MSDs. Where the requirements were specified atom-
ically and following the “if 〈precondition〉 then (not) 〈post-
condition〉” pattern, usually a one-to-one mapping of the in-
formal requirements to MSDs was possible. The MSD spec-
ification contains more detail (extra MSDs with set- mes-
sages) where the informal requirements made implicit use
of state variables, such as remembering that the socket is
locked.

Some requirements that we encountered were not atomic
and ambiguous. Here, the student, with his knowledge of
the system, could successfully refine the specification and
add the necessary precision.—This is where we see one of the
main benefits of a formal approach: it forces requirements
engineers to specify precisely.

The other main benefit of the approach we see in the possi-
bility of automatic realizability checking. It successfully sup-
ported us in detecting specification defects as we introduced
them. As discussed in Sect. 4, we could successfully detect
inconsistencies (implicit priorities) in the specification. The
realizability checking procedure pessimistically analyzes ev-
ery possible sequence of environment events, which is im-
possible in a manual review even of small specifications.

Furthermore, we could successfully detect implicit as-
sumptions in the specification, as discussed in Sect. 4. Of-
ten, there is not sufficient knowledge and communication
about such hidden assumptions between experts from differ-
ent disciplines. Especially dangerous is over-optimistically
disregarding a possible environment behavior that can lead
to a safety-critical violation.

We also see the potential for using the formal specifica-
tion for example for automatically generating tests from the
specification, but we didn’t elaborate this direction yet.

1004

How did automated analysis techniques help? Dur-
ing specification, we applied the realizability checking func-
tion of ScenarioTools after every specification increment.
If the specification is unrealizable, the tool generates a la-
beled transition system that contains the information on
how a particular sequence of environment events inevitably
leads to a violation of the specification. This information
was very helpful for understanding and resolving the specifi-
cation defects that we had introduced. However, the transi-
tion system can become very large; in our case, it contained
over 400 states. ScenarioTools can generate a visual out-
put, but it becomes hard to read already when it contains
100 states or more.

We therefore introduced an extension to ScenarioTools.
First, we reduced the complexity of the graph by only show-
ing the environment events. This way, the engineer can see
which sequence of environment events leads to a violation,
but does not see the system steps. The system steps between
environment events are then extracted to further, separate
diagrams that the engineer can open on demand to under-
stand the behavior including the system steps in more detail.

We also made use of the play-out algorithm to execute the
scenarios in a step-by-step fashion. This helped especially
in understanding specification defects and demonstrate them
to others (requirements engineers or customers)

What are the main obstacles keeping this ap-
proach from being applied in practice? First, we must
often deal with timing requirements, which can be speci-
fied and played-out with ScenarioTools [1], but currently
cannot be checked for realizability.

Furthermore, in our experience, editing MSDs with the
Eclipse Papyrus UML editor was very time consuming. For
an industrial application, we would favor a textual specifi-
cation language, which has benefits in version control and
easier overall editing. Also, ScenarioTools is an academic
tool that is not sufficiently user friendly and self-explanatory
for industrial application.

For larger specifications, understanding specification de-
fects will become harder. Here it must be investigated if
there exist methods that support the engineer and which
scale with the specification complexity.

We could very well imagine to use the approach in inter-
nal projects. In projects where customer requirements may
not be in a shape that can be easily formalized with MSDs,
the payoff of a formal specification approach must still be
assessed. Being able to discuss with the customer defects in
their specification on the basis of a scenario-based specifica-
tion sounds intriguing. However, it could be that the effort
of formalizing the specification is higher than finding defects
in classical requirements analysis (by reviews) or the later
development (even if this may require iterations).

6. REFERENCES
[1] C. Brenner, J. Greenyer, J. Holtmann, G. Liebel,

G. Stieglbauer, and M. Tichy. ScenarioTools real-time
play-out for test sequence validation in an automotive
case study. In Proc. 13th Int. Workshop on Graph
Transformation and Visual Modeling Techniques
(GT-VMT 2014), volume 67. EASST, 2014.

[2] C. Brenner, J. Greenyer, and V. Panzica La Manna.
The ScenarioTools play-out of modal sequence
diagram specifications with environment assumptions.
In Proc.12th Int. Workshop on Graph Transformation

and Visual Modeling Techniques (GT-VMT 2013),
volume 58. EASST, 2013.

[3] W. Damm and D. Harel. LSCs: Breathing life into
message sequence charts. In Formal Methods in
System Design, volume 19, pages 45–80. Kluwer
Academic Publishers, 2001.

[4] Q. Fang and C. Zhang. Use of formal method in
construting safey-critical automotive software
component. In Software Engineering and Service
Science (ICSESS), 2014 5th IEEE Int. Conf. on,
pages 70–76, June 2014.

[5] J. Greenyer, C. Brenner, M. Cordy, P. Heymans, and
E. Gressi. Incrementally synthesizing controllers from
scenario-based product line specifications. In Proc. 9th
joint meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on
the Foundations of Software Engineering 2013, 2013.

[6] M. Haase. Erprobung einer formalen Methode zur
Anforderungsanalyse in der Automobil-
Softwareentwicklung am Beispiel einer Schnittstelle
für Hochvolt-Nebenaggregate. Bachelor’s Thesis,
Leibniz Universität Hannover, 2015.

[7] D. Harel and S. Maoz. Assert and negate revisited:
Modal semantics for UML sequence diagrams.
Software and Systems Modeling (SoSyM),
7(2):237–252, 2008.

[8] D. Harel and R. Marelly. Come, Let’s Play:
Scenario-Based Programming Using LSCs and the
Play-Engine. Springer, 2003.

[9] IAV GmbH. The 400-volt power socket for vehicles.
automotion, 2:36–37, June 2014.

[10] J. Kim, K. Larsen, B. Nielsen, M. Mikučionis, and
P. Olsen. Formal analysis and testing of real-time
automotive systems using uppaal tools. In M. Núñez
and M. Güdemann, editors, Formal Methods for
Industrial Critical Systems, volume 9128 of LNCS,
pages 47–61. Springer International Publishing, 2015.

[11] S. Konrad and B. Cheng. Real-time specification
patterns. In Software Engineering, 2005. ICSE 2005.
Proceedings. 27th International Conference on, pages
372–381, May 2005.

[12] R. Löffler, M. Meyer, and M. Gottschalk. Formal
scenario-based requirements specification and test case
generation in healthcare applications. In Proc. 2010
ICSE Workshop on Software Engineering in Health
Care, pages 57–67, New York, NY, USA, 2010. ACM.

[13] K. Pohl, H. Hönninger, R. Achatz, and M. Broy,
editors. Model-Based Engineering of Embedded
Systems – The SPES 2020 Methodology. Springer
Berlin Heidelberg, 2012.

[14] A. Post, J. Hoenicke, and A. Podelski.
rt-inconsistency: A new property for real-time
requirements. In D. Giannakopoulou and F. Orejas,
editors, Fundamental Approaches to Software
Engineering, volume 6603 of LNCS, pages 34–49.
Springer Berlin Heidelberg, 2011.

[15] A. Post, I. Menzel, J. Hoenicke, and A. Podelski.
Automotive behavioral requirements expressed in a
specification pattern system: a case study at BOSCH.
Requirements Engineering, 17(1):19–33, 2012.

[16] ScenarioTools website. http://scenariotools.org.
online, accessed 26-March-2015.

1005

