Data Bases II

Distributed Deadlock: Obermarck Algorithm

Michele Beretta

michele.beretta@unibg.it

Exercise E.1

Consider the following waiting conditions:

Node A: $E_D \to t_1$, $t_1 \to t_2$, $t_2 \to E_B$

Node B: $E_A \to t_2$, $t_2 \to t_4$, $t_4 \to E_C$

Node $C: E_B \to t_4$, $t_4 \to t_3$, $t_3 \to E_D$

Node D: $E_C o t_3$, $t_3 o t_1$, $t_1 o E_A$

Indicate whether there is a deadlock.

Exercise E.2

Consider the following waiting conditions:

- Node 1: $E_2 \to t_1$, $t_1 \to t_2$, $E_3 \to t_2$, $t_2 \to t_3$, $t_3 \to E_2$, $E_2 \to t_4$, $t_4 \to t_3$
- Node 2: $E_1 \to t_3$, $t_3 \to t_5$, $t_5 \to t_6$, $t_6 \to E_3$, $E_3 \to t_7$, $t_7 \to t_6$, $t_9 \to t_4$, $t_4 \to E_1$, $t_1 \to E_1$
- Node 3: $E_2 o t_6$, $t_6 o t_8$, $t_8 o t_2$, $t_2 o E_1$, $t_7 o E_2$

Indicate whether there is a distributed deadlock.

Exercise E.3

Suppose we have 3 nodes α , β , and γ , 6 transactions $t_1...t_6$, and 6 resources A...F. A, B, and C are on node α], D is on node β , and E and F are on node γ . Consider the following schedule

$$r_1(E)r_2(D)r_3(A)r_2(C)w_1(B)r_4(B)w_4(A)r_3(E) \\ r_5(D)w_1(C)w_3(F)r_6(D)w_5(E)w_6(D)$$

Assume each transactions begins on the node hosting the first used resource. Build the waiting conditions and simulate the Obermarck algorithm.