Data Bases II Warm Restart

Michele Beretta

michele.beretta@unibg.it

Exercise F.1

Describe the warm restart, indicating the progressive construction of the sets UNDO and REDO, and the recovery actions, given the following log configuration:

$$\begin{split} & \text{DUMP}, b(t_1), b(t_2), b(t_3), i(t_1, o_1, a_1), d(t_2, o_2, b_2), \\ & b(t_4), u(t_4, o_3, b_3, a_3), u(t_1, o_4, b_4, a_4), c(t_2), \\ & \text{CKPT}(t_1, t_3, t_4), b(t_5), b(t_6), u(t_5, o_5, b_5, a_5), a(t_3), \\ & \text{CKPT}(t_1, t_4, t_5, t_6), b(t_7), a(t_4), u(t_7, o_6, b_6, a_6), \\ & u(t_6, o_3, b_7, a_7), b(t_8), a(t_7), \text{FAILURE} \end{split}$$

Note: we are using the following notation

- b(t) = t begins
- i(t, o, a) = t inserts an object o with value a
- u(t, o, b, a) = t updates o from value b to value a
- d(t, o, b) = t deletes o, which had value b
- a(t) = t aborts
- c(t) = t commits
- $CKPT(t_i, ..., t_i) = t_i$ to t_i are alive at a checkpoint

How to do it:

- 1. Trace back the log until the last checkpoint and initialize UNDO and REDO sets:
 - ullet UNDO is composed of all the alive transactions at the CKPT
 - REDO is empty
- 2. Trace the log forward and
 - Add to UNDO all transactions with a begin record
 - Move from UNDO to REDO all transactions that commit
- 3. Trace the log backwards to the beginning and undo actions in the $\overline{\mathrm{UNDO}}$ set
- 4. Reapply actions in the REDO set (same order as the log)

1. Find the first checkpoint and initialize sets

$$\begin{aligned} \text{DUMP}, b(t_1), b(t_2), b(t_3), i(t_1, o_1, a_1), d(t_2, o_2, b_2), \\ b(t_4), u(t_4, o_3, b_3, a_3), u(t_1, o_4, b_4, a_4), c(t_2), \\ \text{CKPT}(t_1, t_3, t_4), b(t_5), b(t_6), u(t_5, o_5, b_5, a_5), a(t_3), \\ \text{CKPT}(t_1, t_4, t_5, t_6), b(t_7), a(t_4), u(t_7, o_6, b_6, a_6), \\ u(t_6, o_3, b_7, a_7), b(t_8), a(t_7), \text{FAILURE} \\ \\ \text{UNDO} &= \{t_1, t_4, t_5, t_6\} \\ \text{REDO} &= \{\} \end{aligned}$$

2. Update UNDO and REDO sets

$$\begin{aligned} & \text{DUMP}, b(t_1), b(t_2), b(t_3), i(t_1, o_1, a_1), d(t_2, o_2, b_2), \\ & b(t_4), u(t_4, o_3, b_3, a_3), u(t_1, o_4, b_4, a_4), c(t_2), \\ & \text{CKPT}(t_1, t_3, t_4), b(t_5), b(t_6), u(t_5, o_5, b_5, a_5), a(t_3), \\ & \text{CKPT}(t_1, t_4, t_5, t_6), b(t_7), a(t_4), u(t_7, o_6, b_6, a_6), \\ & u(t_6, o_3, b_7, a_7), b(t_8), a(t_7), \text{FAILURE} \\ & \text{UNDO} = \{t_1, t_4, t_5, t_6, t_7, t_8\} \\ & \text{REDO} = \{\} \end{aligned}$$

3. Trace back and undo actions

$$\begin{aligned} & \text{DUMP}, b(t_1), b(t_2), b(t_3), i(t_1, o_1, a_1), \\ & d(t_2, o_2, b_2), b(t_4), u(t_4, o_3, b_3, a_3), \\ & u(t_1, o_4, b_4, a_4), c(t_2), \\ & \text{CKPT}(t_1, t_3, t_4), b(t_5), \\ & b(t_6), u(t_5, o_5, b_5, a_5), a(t_3), \\ & \text{CKPT}(t_1, t_4, t_5, t_6), b(t_7), a(t_4), \\ & u(t_7, o_6, b_6, a_6), u(t_6, o_3, b_7, a_7), \\ & b(t_8), a(t_7), \text{FAILURE} \end{aligned}$$

$$\text{UNDO} = \{t_1, t_4, t_5, t_6, t_7, t_8\}$$

Actions

$$o_3 = b_7$$

$$o_6 = b_6$$

$$o_5 = b_5$$

$$o_4 = b_4$$

$$o_3 = b_3$$

$$delete(o_1)$$

4. Trace forward and redo actions.

In this case, the REDO set is empty, so we don't have to do anything.

Exercise F.2

Same as before.

$$\begin{split} & \text{DUMP}, b(t_1), u(t_1, o_1, b_1, a_1), b(t_2), b(t_3), \\ & u(t_3, o_3, b_3, a_3), i(t_2, o_2, a_2), c(t_2), \text{CKPT}(t_1, t_3), \\ & c(t_3), b(t_4), u(t_4, o_2, b_4, a_4), u(t_4, o_3, b_5, a_5), b(t_5), \\ & i(t_5, o_6, a_6), a(t_1), c(t_4), u(t_5, o_7, b_7, a_7), \\ & d(t_5, o_1, b_8), \text{FAILURE} \end{split}$$

1. Find the first checkpoint and initialize sets

$$\begin{split} \text{DUMP}, b(t_1), u(t_1, o_1, b_1, a_1), b(t_2), b(t_3), \\ u(t_3, o_3, a_3, b_3), i(t_2, o_2, a_2), c(t_2), & \text{CKPT}(t_1, t_3), \\ c(t_3), b(t_4), u(t_4, o_2, b_4, a_4), u(t_4, o_3, b_5, a_5), b(t_5), \\ i(t_5, o_6, a_6), a(t_1), c(t_4), u(t_5, o_7, b_7, a_7), \\ d(t_5, o_1, b_8), & \text{FAILURE} \\ \\ & \text{UNDO} = \{t_1, t_3\} \\ & \text{REDO} = \{\} \end{split}$$

2. Update UNDO and REDO sets

$$\begin{split} \text{DUMP}, b(t_1), u(t_1, o_1, b_1, a_1), b(t_2), b(t_3), \\ u(t_3, o_3, a_3, b_3), i(t_2, o_2, a_2), c(t_2), & \text{CKPT}(t_1, t_3), \\ c(t_3), b(t_4), u(t_4, o_2, b_4, a_4), u(t_4, o_3, b_5, a_5), b(t_5), \\ i(t_5, o_6, a_6), a(t_1), c(t_4), u(t_5, o_7, b_7, a_7), \\ d(t_5, o_1, b_8), & \text{FAILURE} \\ \\ & \text{UNDO} = \{t_1, t_5\} \\ & \text{REDO} = \{t_3, t_4\} \end{split}$$

3. Trace back and undo actions

$$\begin{array}{lll} \text{DUMP}, b(t_1), u(t_1, o_1, b_1, a_1), b(t_2), b(t_3), & \text{UNDO} = \{t_1, t_5\} \\ \\ u(t_3, o_3, a_3, b_3), i(t_2, o_2, a_2), c(t_2), & \text{Actions} \\ \\ \text{CKPT}(t_1, t_3), c(t_3), b(t_4), u(t_4, o_2, b_4, a_4), & o_1 = b_8 \\ \\ u(t_4, o_3, b_5, a_5), b(t_5), & o_7 = b_7 \\ \\ i(t_5, o_6, a_6), a(t_1), c(t_4), & \text{delete}(o_6) \\ \\ u(t_5, o_7, b_7, a_7), d(t_5, o_1, b_8), \text{FAILURE} & o_1 = b_1 \end{array}$$

4. Trace forward and redo actions

$$\begin{split} & \text{DUMP}, b(t_1), u(t_1, o_1, b_1, a_1), b(t_2), b(t_3), \\ & u(t_3, o_3, b_3, a_3), i(t_2, o_2, a_2), c(t_2), \\ & \text{CKPT}(t_1, t_3), c(t_3), b(t_4), u(t_4, o_2, b_4, a_4), \\ & u(t_4, o_3, b_5, a_5), b(t_5), \\ & i(t_5, o_6, a_6), a(t_1), c(t_4), \\ & u(t_5, o_7, b_7, a_7), d(t_5, o_1, b_8), \text{FAILURE} \end{split}$$

REDO =
$$\{t_3, t_4\}$$

Actions

$$o_3 = a_3$$

$$o_2 = a_4$$

$$o_3 = a_5$$