Data Bases |l
Distributed Deadlock: Obermarck Algorithm

Michele Beretta

michele.beretta@unibg.it

Unibg Seclab

O


mailto:michele.beretta@unibg.it
mailto:michele.beretta@unibg.it

Exercise E1

Consider the following waiting conditions:

Node A: Ep, — t. t; = t,, 1, = Ep
Node B: B4 — to, ty = 4.ty = B
Node C: Eg — t,, t, — ts. t3 = Ep
Node D: E, — tg3,t3 = 1.1 = E4

Indicate whether there is a deadlock.



Node A

Information is only sent “ahead”. That is, given

Node B

Ly

E

a

> T,

Node C

_>ED

Lp

(/

S e Y S

Node D

The message is sent to E, if i > j (this is an arbitrary choice).



Step 1: C' sends to D, and D sends to A.

Node A

Node B

Node C

Node D




Node A

—»EB

>
(5
<
GOt

Step 2: A sends to B, D sends to A.

Node B

Node C

Node D




Node A

—»EB

>
(5
<
GOt

Node B
(

(2
>

Node C

Step 3: Asends 4 — 2to B: acycleis found, there is a deadlock.

Node D




Exercise E.2

Consider the following waiting conditions:

« Node 1: By, —t, t; =15, B3 =1y, ty, = ts, t3 = By, By =1,
ty — tq

« Node 2: B, = t5,t5 = 1,1 = tg. tg — E5, By — to, t — 1,
tg =ty 1y — B, 0 = B

- Node 3: £, = 14, tg = tg, tg = 1o, 8o = By, t- = E,

Indicate whether there is a distributed deadlock.



Node 1 Node 2 Node 3

v
5
S

@

S
s
ole

b,

\J
IS

5
v
S

Step 1: node 1 sends 4 — 3 to node 2, node 2 sends 7 — 6 to node 3, node 3 sends 6 — 2 to node 1.



Step 2: node 1 sends 6 — 3 to node 2.

Node 2

N00C
g)ele




Node 1 Node 2

3 OO TEEE OO

There is a cycle, which means there is a deadlock.



Exercise E.3

Suppose we have 3 nodes a, 8, and v, 6 transactions ¢,...t;, and 6
resources A...F. A, B, and C are on node «a], D is on node 3, and
E and F' are on node ~. Consider the following schedule
r1(E)ro(D)r3(A)ra(Clwy (B)ry(B)wy(A)rs(E)
r5(D)wy (C)ws (F)re(D)ws(E)wg (D)



Assume each transactions begins on the node hosting the fir-
st used resource. Build the waiting conditions and simulate the
Obermarck algorithm.



A B C D E F

o Jole

P (E)ro(D)rs (A)ry(Chwy (B)ry(B)wy (A)rs(E)rs(D)w (C)ws (F)re(D)ws(E)wgs(D)

In blue, shared locks. In red, exclusive locks.



5 Hbld

r1(E)ry(D)r3(A)rs (Clwy (B)ry(B)wy(A)rs(E)rs(D)w; (C)ws (F)re(D)ws(E)wgs(D)



g iy

r1(E)ry(D)rs(A)ry(C)w, (B)r,(B)wy(A)rs(E)rs(D)w, (C)ws(F)re(D)ws (E)we(D)



D)ws(E)wg (D)



T (E)ro(D)rs(A)re (C)wy (B)ry (B)w, (A)rs (E)rs(D)w, (C)w, (F)re(D)ws (E)we(D)

1 %zé e o






Ignoring the situation such as t; on g with D (i.e., the same tran-
saction having a shared lock and asking for an exclusive lock),

there are no cycle.

Hence, no deadlock.



As a higher-level view, here is the graph without the resources, and only with transactions and dependencies.

B

©,
=ik




