Data Bases II Hierarchical Locking

Michele Beretta

michele.beretta@unibg.it

Exercise H.1

Consider the following schedule occurring on a system with hierarchical lock over a hierarchy where Pag_A contains tuples T_1 and T_2 :

$$r_1(\operatorname{Pag}_A)w_2(T_1)w_1(T_2)$$

Show the sequence of lock, unlock, lock escalation, and lock downgrade requests for transactions t_1 and t_2 , taking into account that the schedule has to be 2PL.

Hint: t_1 should immediately acquire all locks.

	Pag_A	T_2	T_1	
$\mathrm{SIXL}(\mathrm{Pag}_A)$	$SIXL_1$			
$\operatorname{SIXL}(T_2)$	$SIXL_1$	XL ₁		$r_1(\mathrm{Pag}_A)$
$\mathrm{U}\text{-}\mathrm{SL}_1(\mathrm{Pag}_A)$	IXL ₁	XL ₁		lock downgrade
$\mathrm{IXL}_2(\mathrm{Pag}_A)$	$\mathrm{IXL}_1, \mathrm{IXL}_2$	XL ₁		
$\operatorname{XL}_2(T_1)$	$\mathrm{IXL}_1, \mathrm{IXL}_2$	XL ₁	XL_2	$w_2(T_1)$
$\operatorname{U-XL}_2(T_1)$	$\mathrm{IXL}_1, \mathrm{IXL}_2$	XL ₁		
$\operatorname{U-IXL}_2(\operatorname{Pag}_A)$	IXL ₁	XL ₁		$\operatorname{commit}(t_2)$
$\boxed{\text{U-XL}_1(T_2)}$	IXL ₁			$w_1(T_2)$
$\fbox{U-IXL_1(\operatorname{Pag}_A)}$				$\operatorname{commit}(t_1)$

Exercise H.2

Given the schedule:

$$r_1(X)r_2(X)r_3(Y)w_3(Y)w_1(X)w_2(Y)\\$$

show the sequence of lock and unlock requests produced by the transactions in a 2PL execution, in a system providing the locks SL, UL and XL (where UL is the Update Lock).

NB: A convenient notation (to avoid ambiguity) could be

- $\operatorname{SL}_i(X)$ to state that transaction T_i requires a shared lock on resource X
- $rel(SL_i)$ to state that the same lock is released

In such a system, in order to avoid deadlocks due to interleaved lock upgrades, any upgrade of the kind $SL \rightarrow XL$ is forbidden.

Instead, transactions that want to read first and then update a resource must acquire an UL first, and then upgrade it to XL (UL \rightarrow XL is the only allowed upgrade).

Let's look at the schedule

 $r_1(X)r_2(X)r_3(Y)w_3(Y)w_1(X)w_2(Y)\\$

Transactions 1 and 3 do have to use a UL, while transaction 2 operates on different resources.

Moreover, for the system to be 2PL compliant, transaction 2 must anticipate the acquisition of the lock on Y (w.r.t. $w_1(X)$), so that it can release its lock on X early enough.

These	constraints c	an are satisfi	ed, e.q., by	the following	sequence

	X	Y
$r_1(X)$	UL_1	
$r_2(X)$	SL_2	
$r_3(Y)$		UL_3
$w_3(Y)$		${ m XL}_3$ (upgrade)
		$\operatorname{rel}(\operatorname{XL}_3)$
		XL_2
	$\rm rel(SL_2)$	
$w_1(X)$	${ m XL}_1$ (upgrade)	
	$\operatorname{rel}(\operatorname{XL}_1)$	
$w_2(Y)$		$\rm rel(XL_3)$