Data Bases II Schedules and Concurrency Control

Michele Beretta

michele.beretta@unibg.it

Exercise S.1

Classify the following schedule (CSR/VSR)

$$
\begin{aligned} r_1(X)r_4(X)w_4(X)r_1(Y)r_4(Z)w_4(Z)w_3(Y)\\ w_3(Z)w_2(T)w_2(Z)w_1(T)w_5(T) \end{aligned}
$$

If possible, add/remove/move one action in order to change the class of the schedule.

How to check if a schedule is CSR:

- *1. Split operations by resource*
- *2. Identify conflicts*
	- $w_x...w_y \Rightarrow x$ conflicts with y
	- $r_x...w_y \Rightarrow x$ conflicts with y
	- $w_x...r_y \Rightarrow x$ conflicts with y
- *3. Build the conflict graph*
- *4. The schedule is CSR if and only if there are no cycles*

 $r_{1}(X)r_{4}(X)w_{4}(X)r_{1}(Y)r_{4}(Z)w_{4}(Z)w_{3}(Y)w_{3}(Z)w_{2}(T)w_{2}(Z)w_{1}(T)w_{5}(T)$

T: $w_2w_1w_5$ $\mathsf{X}\text{:}~\mathbb{r}_1\mathbb{r}_4\mathbb{w}_4$ $Y: r_1w_3$ $Z: r_4w_4w_3w_2$

We can see there is a cycle (more than one).

Hence, the schedule is **not** *CSR. It could be VSR.*

How to check if a schedule is VSR:

- *1. Split operations by resource*
- *2. Try and find a serial schedule that has*
	- the same *read-from* relations $(w_x...r_y \Rightarrow y$ reads from x)
	- *• the same last writes*
- *3. If found, the schedule is VSR*

Alternatively, build a graph showing all the necessary relations

- *1. read-from relations*
- *2. last writes relations*
- 3. $\,$ moreover, $r_x...w_y$ means y must come after x , otherwise a new *read-from relation would be born out of nowhere*

Method 1

 $r_{1}(X)r_{4}(X)w_{4}(X)r_{1}(Y)r_{4}(Z)w_{4}(Z)w_{3}(Y)w_{3}(Z)w_{2}(T)w_{2}(Z)w_{1}(T)w_{5}(T)\\$

 $T: w_2w_1w_5$ $\mathsf{X}\text{:}~ r_1 r_4 w_4$ *Y:* r_1w_3 $Z: r_{4}w_{4}w_{3}w_{2}$

It is VSR: $t_{1}, t_{4}, t_{3}, t_{2}, t_{5}$ is view*equivalent.*

*There are no read-froms. Last*writes are immediate (e.g., t_{5}) must follow t_1 and t_2 for T, and *so on).*

Note: we can swap w_2 and w_1 in T without modifying anything. This is because w_{5} always over*writes T, and there are no read-froms on T.*

Method 2

 $r_{1}(X)r_{4}(X)w_{4}(X)r_{1}(Y)r_{4}(Z)w_{4}(Z)w_{3}(Y)w_{3}(Z)w_{2}(T)w_{2}(Z)w_{1}(T)w_{5}(T)\\$

 $T: w_2w_1w_5$ $\mathsf{X}\text{:}~ r_1 r_4 w_4$ $Y: r_1w_3$ $Z: r_4w_4w_3w_2$

In red, last writes constraints. In blue, to prevent new read-froms (no existing read-froms). There is no cycle, so it is VSR.

If possible, add/remove/move one action in order to change the class of the schedule.

If we add $w_1(Y)$ at the end, the schedule is no longer VSR.

 \boldsymbol{S} wapping $w_{1}(T)$ and $w_{2}(T)$ (a couple of *blind writes*) we build a *schedule that is in CSR. Note that this swapping does not modify the reads-from and final write relationships. This confirms that the initial schedule was VSR.*

Exercise S.2

Classify the following schedule

$$
r_4(X)r_2(X)w_4(X)w_2(Y)w_4(Y)r_3(Y)w_3(X)\\w_4(Z)r_3(Z)r_6(Z)r_8(Z)w_6(Z)w_9(Z)r_5(Z)r_{10}(Z)
$$

Is it CSR?

Quick interlude: how do we check for acyclicity?

A node can be part of a cycle if and only if it has **both** *incoming and outgoing edges.*

Nodes with only incoming or outgoing arcs **cannot** *be part of a cycle, and can be ignored.*

Let's see an example with the previous graph.

Node 2 has no incoming edges: it can be deleted.

Now node 4 can be removed.

The process can be repeated.

If no node remains, there is no cycle.

Exercise S.2 – 2PL

 $r_{4}(X)r_{2}(X)w_{4}(X)w_{2}(Y)w_{4}(Y)r_{3}(Y)w_{3}(X)w_{4}(Z)r_{3}(Z)r_{6}(Z)r_{8}(Z)w_{6}(Z)w_{9}(Z)r_{5}(Z)r_{10}(Z)$

Back on track: is the schedule **2PL-strict***?*

We have to

- *1. Split operations per resource, and organize by time*
- *2. For each transaction*
	- *1. Find where it ends: it can release locks only after this point*
	- *2. If it cannot acquire all locks before this point, or release them after, it's not 2PL-strict*

Let's check $t_2.$

 $X \t r_4 \t r_2^2 \t w_4 \t w_3$ Y $w_2 \begin{vmatrix} w_4 & r_3 \end{vmatrix}$ Z w_4 r_3 r_6 r_8 w_6 w_9 r_5 r_{10}

 t_{4} at time 3 must acquire an exclusive lock (XL) on X , i.e., t_{2} must release $X.$ But, t_2 finishes later at time 4. Hence, the schedule $\mathop{\sf is\, not\,} 2$ PL-strict.

Is it **2PL**? Let's check t_4 .

Is it **2PL**? Let's check t_2 .

Is it **2PL**? Let's check t_3 .

X ⁴ ² ⁴ ³ *Y* ² ⁴ 3 *Z* ⁴ 3 6 ⁸ ⁶ ⁹ 5 10 *3* ↗ ↗ ↗ ↘ ↘ ↘

Is it **2PL***?* **Yes***.*

Other transactions pose no problem.

Exercise S.2 – TS

 $r_{4}(X)r_{2}(X)w_{4}(X)w_{2}(Y)w_{4}(Y)r_{3}(Y)w_{3}(X)w_{4}(Z)r_{3}(Z)r_{6}(Z)r_{8}(Z)w_{6}(Z)w_{9}(Z)r_{5}(Z)r_{10}(Z)$

Is it **TS-mono***? How to check:*

- *1. Build a table with RTM and WTM for each resource*
- *2. For each action*
	- $r_{i(X)}$: if $i<\mathrm{WTM}(X)$ reject, <code>else</code> <code>update RTM</code> with max
	- $w_{i(X)}$: if $i < \operatorname{RTM}(X) \vee i < \operatorname{WTM}(X)$ reject, else update *WTM*
- *3. If there is a reject, it's not TS-mono*

There has been a kill, so it's **not TS-mono***.*

Is it **TS-multi***? How to check:*

- *1. Build a table with RTM and WTM for each resource and keep multiple written versions*
- *2. For each action*
	- $\textbf{\textit{+}}\ \ r_{i(X)}$: ok, read the correct version, update RTM as before
	- $w_{i(X)}$: reject if $i < \mathrm{RTM}(X)$, otherwise update WTM adding *the version*
- *3. If there is a reject, it's not TS-multi*

As before, there has been a kill: it's **not TS-multi***.*

Exercise S.3

Is the following schedule CSR or VSR?

$$
w_4(X)r_2(X)w_2(Y)w_4(Y)w_3(X)w_4(Z)\\r_3(Z)r_6(Z)r_8(Z)w_9(Z)w_5(Z)r_{10(Z)}
$$

Let's build the conflicts graph

There is a cycle: **not CSR***.*

Is it VSR? **No***.*

We must have $t_4\to t_2$, because otherwise we would introduce a *new read-from on .*

But we must also have $t_2 \rightarrow t_4$, otherwise the last-write on Y *would change.*

Hence, the schedule cannot be VSR.

Exercise S.4 – A lesson about blind writes

Classify the following schedule in CSR and/or VSR

 $r_{5}(X)r_{3}(Y)w_{3}(Y)r_{6}(T)r_{5}(T)w_{5}(Z)w_{4}(X)r_{3}(Z)w_{1}(Y) \qquad \qquad$ $r_6(Y)w_6(T)w_4(Z)w_1(T)w_3(X)w_1(X)r_1(Z)w_2(T)w_2(Z)$

T: $r_6r_5w_6w_1w_2$ $X: r_5w_4w_3w_1$ $Y: r_3w_3w_1r_6$ $Z: w_5r_3w_4r_1w_2$ *Let's draw a partial*

graph.

It is **not in CSR***. Cycle 3-4 can be broken (blind writes). Howe*ver, $w_{6}(T)w_{1}(T)$ are blind writes, but the cycle cannot be resolved (there is $r_6(T)...w_1(T)$).

Hence, the schedule **cannot be in VSR***.*

The lesson: be careful when drawing conflict arcs.

As an extra, what about TS? $w_{1}(T)$ is sufficient to exclude that *the schedule is both TS-mono and TS-multi. The reason is left as an exercise for the reader.*

Exercise S.5

The following schedule is in **VSR***. Classify it with respect to CSR, TS-mono, TS-multi, 2PL-strict*

 $r_{1}(X)w_{2}(X)r_{1}(Z)w_{1}(Y)r_{3}(X)r_{4}(X)w_{3}(Z)w_{2}(Y)r_{3}(Y)w_{4}(X)w_{4}(Y)$

Is it **CSR***? Yes.*

 $\mathsf{X}\text{:}~\mathbb{r}_1\mathbb{w}_2\mathbb{r}_3\mathbb{r}_4\mathbb{w}_4$ Y: $w_1w_2r_3w_4$ $Z: r_1w_3$

No cycles: **it is CSR** *.*

Is it **2PL-strict***? No.*

Focus on t_1 . It has to release a lock on X before 2 , but it doesn't *end until* 4*. Hence, it cannot be 2PL-strict.*

Is it **TS-mono** *or* **TS-multi***?*

We could do the table, but note that, for each resource, all operations are in increasing index order.

Hence it is surely both **TS-mono** *and* **TS-multi***.*

To conclude

- \cdot It is clear that t_1 must release the SL on X before 2 (for t_2 to *acquire XL on it), but this is not compatible with 2PL-strict, as* the last operation of t_1 occurs at 4.
- *• The conflict graph is acyclic, hence the schedule is in CSR.*
- *• Eventually, it is easy to observe that the schedule is both in TSmono and TS-multi, even without simulating the evolution of RTM and WTM counters, because transaction indeces occur in strictly increasing order in the operations for to each resource.*

Exercise S.6

Verify whether the following schedule is compatible with a 2PL system (non strict):

 $r_{1}(A)r_{2}(B)w_{1}(C)r_{2}(A)r_{1}(B)w_{2}(C)r_{3}(C)w_{2}(B)r_{3}(B)w_{1}(A)w_{3}(A)$

Let's use another technique to check: **temporal constraints***.*

It is necessary to impose temporal constraints upon the lock and unlock requests, when such requests are in wait status.

The locking rules imply, for t_1 and t_2

 $4 < U_2^r$ $\binom{r}{2}(A) < L_1^w$ $^w_1(A)$ U_1^r $T_1^r(B) < L_2^w$ $\frac{w}{2}(B) < 8$

The 2PL rule imposes not to acquire a new lock after an unlock

 L_1^w $_1^w(A) < U_1^r$ $\mathbf{J}^r(B)$ L_2^w $_{2}^{w}(B) < U_{2}^{r}$ $\frac{r}{2}(A)$

Combining the two we get an impossible condition

 U_2^r $\binom{r}{2}(A) < L_1^w$ $_{1}^{w}(A) < U_{1}^{r}$ $I_1^r(B) < L_2^w$ $_{2}^{w}(B) < U_{2}^{r}$ $\frac{r}{2}(A)$

and the schedule is not 2PL.

Exercise S.7

Verify whether the following sequence of operations is consistent with 2PL

 $r_{1}(A)r_{2}(B)w_{1}(C)r_{2}(A)r_{1}(B)w_{2}(C)r_{3}(C)w_{2}(B)r_{3}(B)w_{2}(A)w_{3}(A)$

(Note it's not the same as the previous exercise).

- $\bm{\cdot}$ t_1 can acquire all locks at 1 and release after each use
- $\bm{\cdot}$ t_3 can acquire all locks just before use and release at the end
- t_{2} must release C between 6 and 7, and cannot acquire B before *6, but all this is possible*

Exercise C.1

The isolation class read-committed requires that transactions comply with 2PL-strict for the write lock, and can release read lock for reading, even before the end of the transaction.

Show an example of a schedule that is read-committed but not VSR.

Show an example of a schedule that is *read-committed* **but** *not VSR.*

In order to find such a schedule, we must violate the rules of 2PL with some read operations (as writes follow the 2PL-strict rules), otherwise our schedule would still be 2PL, and therefore also VSR.

We need to build a schedule where releasing a read lock before some other lock is acquired by the same transaction is necessary for the schedule to complete.

We can simply interleave non-view-serializable operations on one resource, such as:

$$
S_1=r_1(X)w_2(X)w_1(X)\\
$$

Continued from the previous exercise.

Now, extend the known classification graph of classes VSR, CSR, and 2PL with the representation of the read-committed isolation class.

Read-committed is, by definition, a relaxation of class 2PL-strict, and therefore contains this class.

As for 2PL, CSR, and VSR, we can easily find a schedule that is in 2PL but not in read-committed, such as

$$
S_2=w_1(X)w_2(X)r_1(Y)\\
$$

hence it does not contain the entire 2PL.

Graphically, this is the new diagram

