
Data Bases II
Schedules and Concurrency Control

Michele Beretta

michele.beretta@unibg.it

mailto:michele.beretta@unibg.it
mailto:michele.beretta@unibg.it


Exercise S.1

Classify the following schedule (CSR/VSR)

𝑟1(𝑋)𝑟4(𝑋)𝑤4(𝑋)𝑟1(𝑌 )𝑟4(𝑍)𝑤4(𝑍)𝑤3(𝑌 )
𝑤3(𝑍)𝑤2(𝑇 )𝑤2(𝑍)𝑤1(𝑇 )𝑤5(𝑇 )

If possible, add/remove/move one action in order to change the
class of the schedule.



How to check if a schedule is CSR:
1. Split operations by resource
2. Identify conflicts

• 𝑤𝑥…𝑤𝑦 ⇒ 𝑥 conflicts with 𝑦
• 𝑟𝑥…𝑤𝑦 ⇒ 𝑥 conflicts with 𝑦
• 𝑤𝑥…𝑟𝑦 ⇒ 𝑥 conflicts with 𝑦

3. Build the conflict graph
4. The schedule is CSR if and only if there are no cycles



𝑟1(𝑋)𝑟4(𝑋)𝑤4(𝑋)𝑟1(𝑌 )𝑟4(𝑍)𝑤4(𝑍)𝑤3(𝑌 )𝑤3(𝑍)𝑤2(𝑇 )𝑤2(𝑍)𝑤1(𝑇 )𝑤5(𝑇 )

T: 𝑤2𝑤1𝑤5
X: 𝑟1𝑟4𝑤4
Y: 𝑟1𝑤3
Z: 𝑟4𝑤4𝑤3𝑤2

2
1

5

4 3

We can see there is a cycle (more than one).

Hence, the schedule is not CSR. It could be VSR.



How to check if a schedule is VSR:
1. Split operations by resource
2. Try and find a serial schedule that has

• the same read-from relations (𝑤𝑥…𝑟𝑦 ⇒ 𝑦 reads from 𝑥)
• the same last writes

3. If found, the schedule is VSR



Alternatively, build a graph showing all the necessary relations
1. read-from relations
2. last writes relations
3. moreover, 𝑟𝑥…𝑤𝑦 means 𝑦 must come after 𝑥, otherwise a new

read-from relation would be born out of nowhere



Method 1

𝑟1(𝑋)𝑟4(𝑋)𝑤4(𝑋)𝑟1(𝑌 )𝑟4(𝑍)𝑤4(𝑍)𝑤3(𝑌 )𝑤3(𝑍)𝑤2(𝑇 )𝑤2(𝑍)𝑤1(𝑇 )𝑤5(𝑇 )

T: 𝑤2𝑤1𝑤5
X: 𝑟1𝑟4𝑤4
Y: 𝑟1𝑤3
Z: 𝑟4𝑤4𝑤3𝑤2
It is VSR: 𝑡1, 𝑡4, 𝑡3, 𝑡2, 𝑡5 is view-
equivalent.

There are no read-froms. Last-
writes are immediate (e.g., 𝑡5
must follow 𝑡1 and 𝑡2 for T, and
so on).
Note: we can swap 𝑤2 and 𝑤1 in T without modi-
fying anything. This is because 𝑤5 always over-
writes T, and there are no read-froms on T.



Method 2

𝑟1(𝑋)𝑟4(𝑋)𝑤4(𝑋)𝑟1(𝑌 )𝑟4(𝑍)𝑤4(𝑍)𝑤3(𝑌 )𝑤3(𝑍)𝑤2(𝑇 )𝑤2(𝑍)𝑤1(𝑇 )𝑤5(𝑇 )

T: 𝑤2𝑤1𝑤5
X: 𝑟1𝑟4𝑤4
Y: 𝑟1𝑤3
Z: 𝑟4𝑤4𝑤3𝑤2

2
5

1 4

3

In red, last writes constraints. In blue, to prevent new read-froms
(no existing read-froms). There is no cycle, so it is VSR.



If possible, add/remove/move one action in order to change
the class of the schedule.

If we add 𝑤1(𝑌 ) at the end, the schedule is no longer VSR.

Swapping 𝑤1(𝑇 ) and 𝑤2(𝑇 ) (a couple of blind writes) we build a
schedule that is in CSR. Note that this swapping does not modify
the reads-from and final write relationships. This confirms that
the initial schedule was VSR.



Exercise S.2

Classify the following schedule

𝑟4(𝑋)𝑟2(𝑋)𝑤4(𝑋)𝑤2(𝑌 )𝑤4(𝑌 )𝑟3(𝑌 )𝑤3(𝑋)
𝑤4(𝑍)𝑟3(𝑍)𝑟6(𝑍)𝑟8(𝑍)𝑤6(𝑍)𝑤9(𝑍)𝑟5(𝑍)𝑟10(𝑍)



𝑟4(𝑋)𝑟2(𝑋)𝑤4(𝑋)𝑤2(𝑌 )𝑤4(𝑌 )𝑟3(𝑌 )𝑤3(𝑋)𝑤4(𝑍)𝑟3(𝑍)𝑟6(𝑍)𝑟8(𝑍)𝑤6(𝑍)𝑤9(𝑍)𝑟5(𝑍)𝑟10(𝑍)

Is it CSR?

X: 𝑟4𝑟2𝑤4𝑤3
Y: 𝑤2𝑤4𝑟3
Z: 𝑤4𝑟3𝑟6𝑟8𝑤6𝑤9𝑟5𝑟10
Is there any cycle?
No. Therefore, it is
CSR (and VSR too).

4

3
2 6

8 9

5

10



Quick interlude: how do we check for acyclicity?

A node can be part of a cycle if and only if it has both incoming
and outgoing edges.

Nodes with only incoming or outgoing arcs cannot be part of a
cycle, and can be ignored.

Let’s see an example with the previous graph.



4

3
2 6

8 9

5

10

Node 2 has no incoming edges: it can be deleted.



4
3

6

8 9 5

10

Now node 4 can be removed.



3

6 9
8

5

10

The process can be repeated.

If no node remains, there is no cycle.



Exercise S.2 – 2PL

𝑟4(𝑋)𝑟2(𝑋)𝑤4(𝑋)𝑤2(𝑌 )𝑤4(𝑌 )𝑟3(𝑌 )𝑤3(𝑋)𝑤4(𝑍)𝑟3(𝑍)𝑟6(𝑍)𝑟8(𝑍)𝑤6(𝑍)𝑤9(𝑍)𝑟5(𝑍)𝑟10(𝑍)

Back on track: is the schedule 2PL-strict?

We have to
1. Split operations per resource, and organize by time
2. For each transaction

1. Find where it ends: it can release locks only after this point
2. If it cannot acquire all locks before this point, or release

them after, it’s not 2PL-strict



𝑟4(𝑋)𝑟2(𝑋)𝑤4(𝑋)𝑤2(𝑌 )𝑤4(𝑌 )𝑟3(𝑌 )𝑤3(𝑋)𝑤4(𝑍)𝑟3(𝑍)𝑟6(𝑍)𝑟8(𝑍)𝑤6(𝑍)𝑤9(𝑍)𝑟5(𝑍)𝑟10(𝑍)

Let’s check 𝑡2.

X 𝑟4 𝑟2 𝑤4 𝑤3
Y 𝑤2 𝑤4 𝑟3
Z 𝑤4 𝑟3 𝑟6 𝑟8 𝑤6 𝑤9 𝑟5 𝑟10

↘

𝑡4 at time 3 must acquire an exclusive lock (XL) on 𝑋, i.e., 𝑡2 must release 𝑋. But,
𝑡2 finishes later at time 4. Hence, the schedule is not 2PL-strict.



𝑟4(𝑋)𝑟2(𝑋)𝑤4(𝑋)𝑤2(𝑌 )𝑤4(𝑌 )𝑟3(𝑌 )𝑤3(𝑋)𝑤4(𝑍)𝑟3(𝑍)𝑟6(𝑍)𝑟8(𝑍)𝑤6(𝑍)𝑤9(𝑍)𝑟5(𝑍)𝑟10(𝑍)

Is it 2PL? Let’s check 𝑡4.

X 𝑟4 𝑟2 𝑤4 𝑤3
Y 𝑤2 𝑤4 𝑟3
Z 𝑤4 𝑟3 𝑟6 𝑟8 𝑤6 𝑤9 𝑟5 𝑟10

4

↗ ↗
↗
↗

↘
↘

↘



𝑟4(𝑋)𝑟2(𝑋)𝑤4(𝑋)𝑤2(𝑌 )𝑤4(𝑌 )𝑟3(𝑌 )𝑤3(𝑋)𝑤4(𝑍)𝑟3(𝑍)𝑟6(𝑍)𝑟8(𝑍)𝑤6(𝑍)𝑤9(𝑍)𝑟5(𝑍)𝑟10(𝑍)

Is it 2PL? Let’s check 𝑡2.

X 𝑟4 𝑟2 𝑤4 𝑤3
Y 𝑤2 𝑤4 𝑟3
Z 𝑤4 𝑟3 𝑟6 𝑟8 𝑤6 𝑤9 𝑟5 𝑟10

2

↗
↗

↘
↘



𝑟4(𝑋)𝑟2(𝑋)𝑤4(𝑋)𝑤2(𝑌 )𝑤4(𝑌 )𝑟3(𝑌 )𝑤3(𝑋)𝑤4(𝑍)𝑟3(𝑍)𝑟6(𝑍)𝑟8(𝑍)𝑤6(𝑍)𝑤9(𝑍)𝑟5(𝑍)𝑟10(𝑍)

Is it 2PL? Let’s check 𝑡3.

X 𝑟4 𝑟2 𝑤4 𝑤3
Y 𝑤2 𝑤4 𝑟3
Z 𝑤4 𝑟3 𝑟6 𝑟8 𝑤6 𝑤9 𝑟5 𝑟10

3

↗
↗

↗

↘
↘

↘



𝑟4(𝑋)𝑟2(𝑋)𝑤4(𝑋)𝑤2(𝑌 )𝑤4(𝑌 )𝑟3(𝑌 )𝑤3(𝑋)𝑤4(𝑍)𝑟3(𝑍)𝑟6(𝑍)𝑟8(𝑍)𝑤6(𝑍)𝑤9(𝑍)𝑟5(𝑍)𝑟10(𝑍)

Is it 2PL? Yes.

Other transactions pose no problem.



Exercise S.2 – TS

𝑟4(𝑋)𝑟2(𝑋)𝑤4(𝑋)𝑤2(𝑌 )𝑤4(𝑌 )𝑟3(𝑌 )𝑤3(𝑋)𝑤4(𝑍)𝑟3(𝑍)𝑟6(𝑍)𝑟8(𝑍)𝑤6(𝑍)𝑤9(𝑍)𝑟5(𝑍)𝑟10(𝑍)

Is it TS-mono? How to check:
1. Build a table with RTM and WTM for each resource
2. For each action

• 𝑟𝑖(𝑋): if 𝑖 < WTM(𝑋) reject, else update RTM with max
• 𝑤𝑖(𝑋): if 𝑖 < RTM(𝑋) ∨ 𝑖 < WTM(𝑋) reject, else update

WTM
3. If there is a reject, it’s not TS-mono



X Y Z
Killed?

RTM WTM RTM WTM RTM WTM

(begin) 0 0 0 0 0 0

𝑟4(𝑋) 4 0 0 0 0 0

𝑟2(𝑋) 4 0 0 0 0 0

𝑤4(𝑋) 4 4 0 0 0 0

𝑤2(𝑌 ) 4 4 0 2 0 0

𝑤4(𝑌 ) 4 4 0 4 0 0

𝑟3(𝑌 ) 4 4 0 4 0 0 yes, 3 < WTM(𝑌 )

There has been a kill, so it’s not TS-mono.



𝑟4(𝑋)𝑟2(𝑋)𝑤4(𝑋)𝑤2(𝑌 )𝑤4(𝑌 )𝑟3(𝑌 )𝑤3(𝑋)𝑤4(𝑍)𝑟3(𝑍)𝑟6(𝑍)𝑟8(𝑍)𝑤6(𝑍)𝑤9(𝑍)𝑟5(𝑍)𝑟10(𝑍)

Is it TS-multi? How to check:
1. Build a table with RTM and WTM for each resource and keep

multiple written versions
2. For each action

• 𝑟𝑖(𝑋): ok, read the correct version, update RTM as before
• 𝑤𝑖(𝑋): reject if 𝑖 < RTM(𝑋), otherwise update WTM adding

the version
3. If there is a reject, it’s not TS-multi



X Y Z
Killed?

RTM WTM RTM WTM RTM WTM

(begin) 0 0 0 0 0 0

𝑟4(𝑋) 40 0 0 0 0 0

𝑟2(𝑋) 40 0 0 0 0 0

𝑤4(𝑋) 40 0, 4 0 0 0 0

𝑤2(𝑌 ) 40 0, 4 0 0, 2 0 0

𝑤4(𝑌 ) 40 0, 4 0 0, 2, 4 0 0

𝑟3(𝑌 ) 40 0, 4 32 0, 2, 4 0 0

𝑤3(𝑋) 40 0, 4 32 0, 2, 4 0 0 yes, 3 < RTM

As before, there has been a kill: it’s not TS-multi.



Exercise S.3

Is the following schedule CSR or VSR?

𝑤4(𝑋)𝑟2(𝑋)𝑤2(𝑌 )𝑤4(𝑌 )𝑤3(𝑋)𝑤4(𝑍)
𝑟3(𝑍)𝑟6(𝑍)𝑟8(𝑍)𝑤9(𝑍)𝑤5(𝑍)𝑟10(𝑍)

Let’s build the conflicts graph



X: 𝑤4𝑟2𝑤3
Y: 𝑤2𝑤4
Z: 𝑤4𝑟3𝑟6𝑟8𝑤9𝑤5𝑟10

4

2
3

6

8

9
5

10

There is a cycle: not CSR.



Is it VSR? No.

We must have 𝑡4 → 𝑡2, because otherwise we would introduce a
new read-from on 𝑋.

But we must also have 𝑡2 → 𝑡4, otherwise the last-write on 𝑌
would change.

Hence, the schedule cannot be VSR.



Exercise S.4 – A lesson about blind writes

Classify the following schedule in CSR and/or VSR

𝑟5(𝑋)𝑟3(𝑌 )𝑤3(𝑌 )𝑟6(𝑇 )𝑟5(𝑇 )𝑤5(𝑍)𝑤4(𝑋)𝑟3(𝑍)𝑤1(𝑌 )
𝑟6(𝑌 )𝑤6(𝑇 )𝑤4(𝑍)𝑤1(𝑇 )𝑤3(𝑋)𝑤1(𝑋)𝑟1(𝑍)𝑤2(𝑇 )𝑤2(𝑍)



T: 𝑟6𝑟5𝑤6𝑤1𝑤2
X: 𝑟5𝑤4𝑤3𝑤1
Y: 𝑟3𝑤3𝑤1𝑟6
Z: 𝑤5𝑟3𝑤4𝑟1𝑤2
Let’s draw a partial
graph.

6 1
5

4

2

3

It is not in CSR. Cycle 3-4 can be broken (blind writes). Howe-
ver, 𝑤6(𝑇 )𝑤1(𝑇 ) are blind writes, but the cycle cannot be resolved
(there is 𝑟6(𝑇 )…𝑤1(𝑇 )).



Hence, the schedule cannot be in VSR.

The lesson: be careful when drawing conflict arcs.

As an extra, what about TS? 𝑤1(𝑇 ) is sufficient to exclude that
the schedule is both TS-mono and TS-multi. The reason is left as
an exercise for the reader.



Exercise S.5

The following schedule is in VSR. Classify it with respect to CSR,
TS-mono, TS-multi, 2PL-strict

𝑟1(𝑋)𝑤2(𝑋)𝑟1(𝑍)𝑤1(𝑌 )𝑟3(𝑋)𝑟4(𝑋)𝑤3(𝑍)𝑤2(𝑌 )𝑟3(𝑌 )𝑤4(𝑋)𝑤4(𝑌 )



Is it CSR? Yes.

X: 𝑟1𝑤2𝑟3𝑟4𝑤4
Y: 𝑤1𝑤2𝑟3𝑤4
Z: 𝑟1𝑤3

1
2

43

No cycles: it is CSR.



Is it 2PL-strict? No.

1 2 3 4 5 6 7 8 9 10 11
X 𝑟1 𝑤2 𝑟3 𝑟4 𝑤4
Y 𝑤1 𝑤2 𝑟3 𝑤4
Z 𝑟1 𝑤3

↘

Focus on 𝑡1. It has to release a lock on 𝑋 before 2, but it doesn’t
end until 4. Hence, it cannot be 2PL-strict.



Is it TS-mono or TS-multi?

We could do the table, but note that, for each resource, all ope-
rations are in increasing index order.

Hence it is surely both TS-mono and TS-multi.



To conclude

• It is clear that 𝑡1 must release the SL on 𝑋 before 2 (for 𝑡2 to
acquire XL on it), but this is not compatible with 2PL-strict, as
the last operation of 𝑡1 occurs at 4.

• The conflict graph is acyclic, hence the schedule is in CSR.
• Eventually, it is easy to observe that the schedule is both in TS-

mono and TS-multi, even without simulating the evolution of
RTM and WTM counters, because transaction indeces occur in
strictly increasing order in the operations for to each resource.



Exercise S.6

Verify whether the following schedule is compatible with a 2PL
system (non strict):

𝑟1(𝐴)𝑟2(𝐵)𝑤1(𝐶)𝑟2(𝐴)𝑟1(𝐵)𝑤2(𝐶)𝑟3(𝐶)𝑤2(𝐵)𝑟3(𝐵)𝑤1(𝐴)𝑤3(𝐴)

Let’s use another technique to check: temporal constraints.

It is necessary to impose temporal constraints upon the lock and
unlock requests, when such requests are in wait status.



1 2 3 4 5 6 7 8 9 10 11
A 𝑟1 𝑟2 𝑤1 𝑤3
B 𝑟2 𝑟1 𝑤2 𝑟3
C 𝑤1 𝑤2 𝑟3

The locking rules imply, for 𝑡1 and 𝑡2
4 < 𝑈𝑟2 (𝐴) < 𝐿𝑤1 (𝐴)

𝑈𝑟1 (𝐵) < 𝐿𝑤2 (𝐵) < 8



1 2 3 4 5 6 7 8 9 10 11
A 𝑟1 𝑟2 𝑤1 𝑤3
B 𝑟2 𝑟1 𝑤2 𝑟3
C 𝑤1 𝑤2 𝑟3

The 2PL rule imposes not to acquire a new lock after an unlock

𝐿𝑤1 (𝐴) < 𝑈𝑟1 (𝐵)
𝐿𝑤2 (𝐵) < 𝑈𝑟2 (𝐴)



1 2 3 4 5 6 7 8 9 10 11
A 𝑟1 𝑟2 𝑤1 𝑤3
B 𝑟2 𝑟1 𝑤2 𝑟3
C 𝑤1 𝑤2 𝑟3

Combining the two we get an impossible condition

𝑈𝑟2 (𝐴) < 𝐿𝑤1 (𝐴) < 𝑈𝑟1 (𝐵) < 𝐿𝑤2 (𝐵) < 𝑈𝑟2 (𝐴)

and the schedule is not 2PL.



Exercise S.7

Verify whether the following sequence of operations is consi-
stent with 2PL

𝑟1(𝐴)𝑟2(𝐵)𝑤1(𝐶)𝑟2(𝐴)𝑟1(𝐵)𝑤2(𝐶)𝑟3(𝐶)𝑤2(𝐵)𝑟3(𝐵)𝑤2(𝐴)𝑤3(𝐴)

(Note it’s not the same as the previous exercise).



1 2 3 4 5 6 7 8 9 10 11
A 𝑟1 𝑟2 𝑤2 𝑤3
B 𝑟2 𝑟1 𝑤2 𝑟3
C 𝑤1 𝑤2 𝑟3

• 𝑡1 can acquire all locks at 1 and release after each use
• 𝑡3 can acquire all locks just before use and release at the end
• 𝑡2 must release C between 6 and 7, and cannot acquire B before

6, but all this is possible



Exercise C.1

The isolation class read-committed requires that transactions
comply with 2PL-strict for the write lock, and can release read
lock for reading, even before the end of the transaction.

Show an example of a schedule that is read-committed but not
VSR.



Show an example of a schedule that is read-committed but
not VSR.

In order to find such a schedule, we must violate the rules of
2PL with some read operations (as writes follow the 2PL-strict
rules), otherwise our schedule would still be 2PL, and therefore
also VSR.

We need to build a schedule where releasing a read lock before
some other lock is acquired by the same transaction is necessary
for the schedule to complete.



We can simply interleave non-view-serializable operations on
one resource, such as:

𝑆1 = 𝑟1(𝑋)𝑤2(𝑋)𝑤1(𝑋)



Exercise C.2

Continued from the previous exercise.

Now, extend the known classification graph of classes VSR, CSR,
and 2PL with the representation of the read-committed isolation
class.



Read-committed is, by definition, a relaxation of class 2PL-strict,
and therefore contains this class.

As for 2PL, CSR, and VSR, we can easily find a schedule that is in
2PL but not in read-committed, such as

𝑆2 = 𝑤1(𝑋)𝑤2(𝑋)𝑟1(𝑌 )

hence it does not contain the entire 2PL.



Graphically, this is the new diagram


