On The Performance of Parallel Computers
Order Statistics, Amdahl’s Law, and Their Applications

Tao Zhang
Euler Solutions
Lester Lipsky
University of Connecticut
Yiping Ding
BGS Systems

We ezamine the time it takes to erecute a number of tasks in parallel if the individual task
ezecution times are not known, but are taken from some distribution, such as Uniform,
Ezponential and Power-tail. Using Amdahl’s law as the framework for comparison, it is
clearly shown that system performance and efficiency for massively parallel systems depend
strongly on the distribution. Therefore no general statements about speedup are possible
without some specific knowledge of the distribution of task times. We also eramine the
much more difficult problem of parallel systems where the number of tasks is greater than
the number of processors, and queueing must result. It is shown that only when the ratio of
tasks to processors is large, does speedup approach its optimum. As an application, we also
show how the framework developed in this paper can be used to model the process of running

benchmarks for parallel computers or computer systems.

1 Introduction

In recent years, the word Parallel has become one of the
most used words in computer science research. Every
area from Parallel Operating Systems to Parallel Arch:-
tectures to Parallel Algorithmsto Parallel Languages and
Compilers, every branch seems to be dominated by it.
There certainly are at least two good reasons for this
interest. First there is the availability of very inexpen-
sive and relatively fast CPU chips. Second there is the
recognition that development of faster and faster single-
processors is getting increasingly expensive, and in any
case is approaching its upper bound. There is the gen-
eral belief that increasing the number of processors is in
some way equivalent to increasing the speed of a single
processor in the same proportion, and in many cases this
seems to be true.

For systems where there are many independent jobs com-
peting for limited resources, the performance expecta-
tions have been realized (e.g., computers in MP mode),
and the analytical models have worked well. But now the
emphasis 1s on breaking a single job into many tasks, and
hoping that the tasks can and will be executed simulta-
neously. The degree to which this assumption holds is
dependent upon the application, and in most cases does

not necessarily result in a linear increase in speed. One
simple, and valid reason was given by Amdahl long ago,
which has now become a law, widely known, understood,
and ignored. Another reason for less than optimal per-
formance is a lack of understanding of, what is called in
probability theory, Order Statistics and one of its paral-
lel algorithm manifestations, the so-called fork-join con-
struct. If k tasks start simultaneously, the time until the
last one is done could be much longer than the mean time
for their average. Obviously, the time to do the k tasks
sequentially is ezactly k times their mean. But, by defi-
nition, a job is not done until all its tasks are finished, so
the savings in time-to-completion may be nowhere near
that hoped for.

Up to now much of the research and development on par-
allel systems has been done either with a very specific
application in mind, or without a clear picture of what
the intended user profile will be. Therefore, the models
and simulations that have been developed are subject to
question as to their general conclusions. What measure-
ments have been made of the running of real programs
(e.g., PVM and LINDA) report a typical speedup on the
order of only 3 to 5 when using 15 to 20 CPU’s. The
“explanation” as to why the speedup is so low usually is
given as “communication cost”. Yet, even a crude anal-

ysis which takes order statistics into account, will give
the same order of speedup and efficiency. The analysis
strongly depends upon the viewpoint.

For instance, consider any one processor. When it fin-
ishes a task, it initiates an I/O interrupt, and sends its
results to the appropriate receiving node, together with
a request for more data. It then waits for the new data
to arrive. If one assumes that communication is the bot-
tleneck, then the entire delay will be charged to commu-
nication delay. But what if the next set of data has not
been prepared yet, i.e., it is still being computed? Then
the problem has to do with a lack of computational syn-
chronization. One view for improving performance says
“Put in more and/or faster data links.” The other says
“Divide the computing load more evenly.” Who is right?
Only more detailed measurements can decide. Whether
we admit it or not, the model one has of a given sys-
tem (whether analytic, or intuitive, or simulation) helps
determine what measurements should be made, and in
turn interprets what those measurements mean. There-
fore, it is important that researchers in the field get a
better understanding of parallel behavior so that better
measurements and models can be constructed.

In this paper, we will give a short review of Amdahl’s
law. and order statistics, and provide some examples of
what realistic speedups to expect. In particular, we will
look at Uniform, Exponential, and Power-tail distribu-
tions in detail. Then we will examine the much more
difficult problem where the number of tasks, &, exceeds
the number of processors, C. In this case the tasks must
queue up for service. This is equivalent to Mean time
to drain of a G/C queue with no new arrivals, and in
Reliability Theory, to Mean time to fatlure, with hot and
cold backup. We will also present some examples of this,
showing how it can be used to model benchmarking for
parallel systems. For consistency in understanding, we
will put the results in the framework of extensions to
Amdahl’s Law.

We use the following terminology. A job is a self-
contained entity which can be broken up into tasks, some
of which can run independently and some of which must
be run in some order. When necessary, we will call the
former parallel tasks and the latter sequential tasks. The
length of a job or task is the time it takes to execute the
job or task alone on a single processor.

2 Amdahl’s Law

In 1967 [AMDAG7], G. M. Amdahl made a simple and
insightful argument about the limits of speedup from

parallelization. He recognized that no matter what the
job, some things must be done sequentially. i.e., some
tasks just have to be done before others. Define the
following:

Ti := Total time for a job to execute on one processor;

T, := Time of that part of job which can be broken into
independent tasks;

T, := Time for that part of job which must run sequen-
tially;

By definition then, T; = T, + T;. Suppose that the par-
allel portion can be broken into k equal and independent
parts. Next suppose that at least k processors are avail-
able, and that all k parts run in parallel. In general, let
T(k) be the total time it would take for a job to execute
in the enhanced system (e.g., installing k& parallel pro-
cessors). Then, T(1) = T¢, and according to Amdahl’s
argument,
T(k) =T, + T, /k,

One parameter which gives a measure of improvement
of performance made by parallelizing is the Speedup, de-
fined as

T
S(k) = F(H
and with Amdahl’s assumption yields his law:
S(k) T ! where f: Ty

T(k) (1-8)+B/k T
Obviously, S(1) = 1 and 1 < §(k) < k. But what this
simple formula tells us (and what Amdahl intended to
convey) is that no matter how many processors are used,
the speedup can never exceed 1/(1—g). So, for instance,
if 8 = .95, we can only gain at most a factor of 20 in
speedup. Only if 8 = 1 (no sequential part), will the
speedup equal k.

Another measure of improvement is the Efficiency, de-

fined as £(k) := S(k)/k, which according to Amdahl’s

Law is

S(k) 1
ECB+A-PF

This tells a similar story. Only if § = 1 does £ = 1.
Suppose instead that # = .95 and & = 20. Then §(20) =
10.26, and £(20) = .513. Which of the two parameters
one should use depends on the application. For instance,
if the computing resources are limited, then £(k) is the
appropriate parameter. But if throwing processors at
a problem is not an issue, then S(k) is the appropriate
parameter. In this example, for instance, as k increases,
the system approaches a speedup of 20 with an efficiency
of 0.

E(k) =

Even if we were able to deal exclusively with CPU-bound
Jobs, and we had tightly coupled, memory sharing pro-
cessors, use of Amdahl’s Law in this simple form is dou-
bly flawed. First of all, Amdahl’s assumption that one
could get a k-fold speedup of the parallel portion of a
Job is, more often than not, a gross exaggeration. But it
encourages researchers and developers to focus too much
on how to push 3 closer and closer to 1. So, for instance,
many researchers in parallel algorithms have searched for
ways to parallelize inherently sequential processes, using
Masswely Parallel Computers.

Our purpose here is not to criticize such research, but
rather to refocus on the other issue. To do this, we
modify Amdahl’s Law in the following way. Let Tp(k)
be the actual time it takes to execute the parallel portion
in a k-parallel system. Clearly, T,(1) = T,, and ideally,
we would hope that T, (k) = T}, /k. Instead, we have the
Quality Parameter,
- kTp(k)

Q) = ~£ 2. (1)
By definition Q(1) = 1, and ideally, Q(k) should be 1
for all k. But in practice it is greater than 1 (it would
be extraordinary if @(k) could be less than 1). Then
Amdahl’s Law becomes

1
S =TT Aok

1
= . 2
FO®) ¥ (1 Bk g
In the following sections we will examine @(k) under dif-

ferent assumptions, and then give some graphical com-
parisons.

or

E(k)

3 Massively Parallel Systems

One of our purposes in this paper is to show the af-
fects of delays because multiple tasks executed in par-
allel must wait for each other to finish before going on
to the next set of tasks. Thus we are assuming that
computation times are much larger than communication
times. so the distinction between shared-memory, and
message-passing local memory systems is unimportant.
This 1s probably the opposite of what many researchers
are concentrating at present.

For the purpose of this paper we use the following defini-
tions, thereby separating the two types of mathematical
procedures which must be used.

Definition 1 A Uniprocessor is a system in which all
tasks must be done sequentially.

Definition 2 A Multiprocessor or Parallel Processor is
a system which allows tasks to be carried out in par-
allel. A k-Processor can handle a maximum of k tasks
simultaneously.

Definition 3 A Massively Parallel System is one in
which all tasks, no matter how many, can be done in
parallel.

Note that these definitions refer to the hardware sys-
temn. If a job is submitted that is programmed to do ev-
erything in series, then the three systems would behave
identically. If a job cannot be parallelized to ever have
more than k simultaneous tasks, then a k-processor and
a massively parallel system would behave identically. A
massively parallel system is a k-processor system where
k = 0o, and a uniprocessor is a k-processor with k£ = 1.

3.1 Order Statistics

Suppose there are a very large number of tasks that
might be performed, and they are of widely varying
lengths. The Probability Distribution Function (PDF)
of their lengths can be thought of in the following way.
Suppose a task is taken at random from the set of tasks.
Then the probability that it will take less than time ¢
to execute is F'(t). When the total number of tasks is
very large, this corresponds to the fraction of tasks which
have length less than or equal to t. Mathematically 1t is
written as follows. Let T be a Random Vartable which
denotes the length of a task selected at random. Then

F(t):= Pr(T < t).

The Reliability Function associated with these tasks is
defined as

R(t):= Pr(T >t)=1- F(t),
and the probabilily density function (pdf) is defined as

s =48 (3

Then the Ezpectation Value of T is given by
(o ¢]
E(T) = / t- f(t)dt.
0
We would ezpect that the mean (average) length of a
large number of tasks selected at random to be close to

E(T). In general, the n'* moments of f(¢) (if they exist)
are given by

E(T™) := /000 ™. £(t) dt.

Now suppose that a job selects k > 1 tasks at random
from the large set of tasks, and we want to know how
long it would take to execute all of them (i.e., how long
until the job is done). As long as they are executed one-
at-a-time, our intuition agrees very well with reality. We
know that their sum should be close to k E(T).

Suppose there are k processors available and all £ tasks
start executing simultaneously. Let {Tj|j = 1,---k} de-
note the execution times for each of the j tasks. How
long will it take now until they are all finished? The
job is done when every task is done. Or, put somewhat
differently, the job is not done until the task that takes
the longest, is done. Obviously (except for the Deter-
ministic Distribution, where all tasks take exactly the
same time), some tasks take less than average, and some
take more than average. Therefore, the time for the
job to complete will be longer than the mean time for
a task. How much longer requires some careful analy-
sis. We give some more definitions so as to be consistent
with standard texts on the subject (e.g., [TRIV82]). Let
Y1, Yo, -+, Y}, -+, Yi be the same set of random vari-
ables as the T}’s, except that they are in size place. That
is, Y7 is the smallest of the T}’s, Y3 is the second smallest,
and Y} is the largest. We have,

Y; Y41 for 1<j<k.

In particular, we can write

Yi=minT; and Y; =maxTj.
J Fi

The study of the various properties of the Y;’s is called
Order Statistics, of which we are primarily interested in
two, namely Y; and Y;.

Let Ry,(t) be the reliability function for the shortest
task. This is the probability that the shortest task is
not finished by time . Clearly, this must be the same
as the probability that none of the tasks are finished by
time ¢. Since the tasks are independent, and described
by the same distribution, we have

Ry, (t) = [R(t)I*. (4)

In a similar fashion we can argue that the probability
that the longest task will be finished by time ¢ is the
same as the probability that all tasks are finished by
time ¢, or

Fy,(t) = [F(t)]". (3)

We are finally ready to determine the mean time for the
job to finish when all k tasks run simultaneously.

We must compute E(Y;). There are two ways to do
this. One is to find fy,(¢) by differentiating (5), and

then using (3). The other approach is to integrate (3)
by parts, coming up with the general formula

E(T) = /000 R(t) dt, (6)
which for us becomes
T, (k) = E(Y;) = /Ow (1-[F@))F) dt. (7

As simple as this formula looks, it cannot be used di-
rectly, since it is the integral of the difference of two
terms, each of which integrates to co. Which formula to
choose depends on the function to be integrated, and the
ingenuity of the integrator. We present some examples
in the following sections.

3.2 Tasks With Uniformly Distributed

Service Times

The Uniform distribution is a convenient function to use
here since it is so easy to integrate, and since it does
occur in computer science applications. For instance,
the Linear Search algorithm has a time for completion
taken from a uniform distribution. Also, the time to find
the beginning of a file on a fixed-head disc is uniformly
distributed. Let 27T be the maximum time the task can
take. Then the mean time for the task is 7. The pdf for
this process is

_ (12T o<t<gaT
) = { 0 otherwise
It follows that
0 t<0
Fity=1¢ t/(27) 0<t<2T
1 2T <t

(7) can be used here because the integrand is 0 for ¢ >

2T, so we get

2T k
Tp(k): E(Yk):/o l:l—- (%) dt
I 0 L
= (2T)F ayeeh ®)

When this result is put into (1), remembering that 7, =
kT, we have the quality parameter

k 2k -
LI

kT k+1 k+1
We see that Q(k) > 1 for & > 1, and approaches 2
as k increases. In other words, when there are a large

Q(k) (9)

207 T T T v T

!

|
18 Determunistic

1€r Uniferm

14- Exponenial
i
i /

K /

\

Spoodup
o
~
AN
\
N\
\
A}
\
J— n

/ e

ar // /’“_— 1
/ -

- .- PP

5= S -7 T -

- .- '

.- e - i

P i

- PR LT ?

T 3

] d 6] iC e 12 16 18 2¢

Humbar of Tasks. k
Ficnre 1. Speedup In Massively Parallel Systems,
&5 2 Funeilou of &, the Number of tasks. The
appermost curve corresponds to tasks which are all ex-
actly the same size (Deterministic distribution). The
other two distributions are the uniform, and exponen-
tial. As expected, if any part of a job must be done se-
quentially (8 < 1), all speedups reach a maximum value

of 1/{1 - B).

number of tasks, at least one of them will need close to
the maximum time to complete. So Equations (2) yield
the usual saturation values when 8 < 1 but evenif f =1

the speedup is
k+1
S(k) = %

and the efficiency approaches

. 1
kll’x{.lo E(k) = 3
We see then, even with this rather well-behaved func-
tion, only about one-half the speedup hoped for will be
realized, and at 50% efficiency. It is characteristic of
distributions with finite upper limits that E(Y%) should
approach that upper bound for large k.

Figure (1) compares the ideal case (@(k) = 1) with the
uniform and exponential distributions, for §# = .95 and 1.
The exponential distribution is described in detail in the
next subsection. It is characteristic of those distributions
which have unbounded upper limits for the task time
{such as the exponential) to usually finish in a reasonable
time. For instance, for the uniform distribution, 1/2 the
time a task will finish in less than the mean time. On the
other hand, for exponential distributions, almost 2/3 of
the time a task will finish in less than its mean time. But
it also means that some non-negligible number of tasks
must be much larger than average. When several tasks
run in parallel, it is hard to avoid having one of them
being very large. And of course, the more there are,

the larger will be the largest. Hence the poor speedup
characteristics for large k.

3.3 Tasks With Exponentially
Distributed Service Times

The exponential distribution is very useful in so many
areas of analytic modeling because it has mathematical
properties which allow certain classes of problems to be
solved which would be insoluble for other distributions.
Is 1t realistic in the context used here? Sure. There
are problems which are well represented by exponential
distributions, particiniarly those which involve random
searches (wish repeats) of large sample spaces Even if
they are not very reatistic, combinaiions ¢f themn can be
used to approximate the real system. Even when a poor
approximation is made (most of the time, one doesn’t
know what the distribution is, anyway) one can get a
qualitative answer, where none is available otherwise.
A surprising property concerning conditional properties
described in Feller [FELL71] implies that if a job is bro-
ken up into k pieces in a random way, then the mean
size of the largest piece depends on k in the same way
as that for exponential service times! This in turn, im-
plies that automatic parallelizing compilers may not be
able to yield speedups better than that described in this
section.

The PDF, pdf, and reliability functions for exponential
distributions are given by

f(t) = pe#t

respectively. Some properties are:

Ft)=1—e™#", and R(t) =e™*

E(T) = 1 and o= i
2 u?
We say that p is the service rate, or the probability rate
for completion. The most important property for our
use is its memorylessness. That is, even if a task has
been running for some time, but is not finished, the dis-
tribution of the time remaining is the same as if it just
began. Let B be the event that the task is not finished
by time z +¢, and let A be the event that the task is not
finished by time z. Then, from the law of conditional

probabilities, we have:

Pr(BNA) _R(z +1)
Pr(A) _ R(z)

Pr(B|A)=

e—“(:""t)
— — p—Ht _
= =t = R(t).
Another useful property follows. If k identically dis-
tributed exponential tasks are running in parallel, then

from (4) the reliability function for Y is
Ry, (t) = e~k#t,

That is, the time for the first task to finish is ezponen-
trally distributed, and

E(Y:) = Elﬁ - %E(T).

Good use will be made of these properties soon. But
first we attempt to evaluate T, (k). We have already seen
that the first task finishes in a mean time of 1/ku. At
that moment there are k — 1 tasks still running. By the
memoryless property, it is as though they just began. So
the mean time until the second one finishes is 1/[(k—1)y].
We continue in this way until there are none left. Adding
all this up, we get

1 1 11 1
B — 4+ —— 4.4 —g—=2N"2
To(k) TR RS R i u.z'

The summation term is known as the Harmonic Series,
and satisfies the following important formula

k
1 1 1 1
H(k) .= = = log(k —— =
(0= 325 = loglh) +1+ 5 - 1 +0(z)
where v = .577215664901532860606512--- is Euler’s
constant. We then see from (1), and noting that 7, =

k/p,
_ L HE) s - 1
Q(k) = k T H(k) = log(k) + v+ O <E) ,

So, in this case, Q(k) grows unboundedly with k. There-
fore, the speedup will grow more slowly with increasing
k, and the efficiency will go to 0, even when 8 = 1. That
1s,

k

I EORT

and

E(k) = forg=1. (10)

1
log(k) + v
Similar behavior is seen in analyzing ideal parallel algo-
rithms for adding a list of numbers, and other binary tree
constructs. But in those cases, one can predict which
processors will be idle, and when, and therefore, those
processors could possibly be assigned to something else.
The example presented here represents a much broader
class of algorithms, for which one cannot predict when a
task will finish.

The curves for exponential task times are plotted on Fig-
ure (1), showing clearly that parallel performance for ex-
ponential distributions is much worse than for the uni-
form distribution. There are many plausible classes of

functions which can make performance even worse (e.g.,
distributions with large variances, and power-tail distri-
butions). In fact, the entire region below the ideal curves
can be filled in with curves corresponding to plausible
distributions.

3.4 Power-Tail Distributions

In the previous section we showed that parallel perfor-
mance can be significantly degraded if the parallel tasks
vary greatly in size, as is the case for exponentially dis-
tributed task times. In this section we consider the worst
possible cases among those classes of jobs that are guar-
anteed to finish. These are known as power-tail distri-
butions. Such jobs do exist, and do, or will occur more
frequently than one might expect. In simplest form they
have the following asymptotic property: R(z) is a power-
tail distribution if there exists some real number, o > 0
such that:

lim 2 R(z) =00 V£> «
Ir—+00

and

lim z°R(z) =0 V{< a.

T—=0C
Then the density function behaves like f(z) oc z=(¢+1)
for large z. This in turn means that E(z%) = co V £ > a.
As pathological as this may seem for practical distribu-
tions, this behavior has been observed in numerous appli-
cations, including distribution of CPU times [LELAS6],
[LIPS86], size of files stored on disc [GARGY92], and ar-
rival of packets on ethernets [LELA94]. Details about
these distributions can be found in [GREI95].

As an example, let the reliability function for task times

be given by:
a-1 *
me = (75ar)

As long as a > 1 this distribution has a mean of 1. From
(7) we have

o= [~ (- (zz5)T)

:(a—l)/ooo(l—[l—u"]k) du.

By variable substitution, this can be further manipulated

to
1-oF

a—-1 [
BN = —5 /0 (1—u)1+1/adv
a—1 [® 5,500
(1—)i/

@ 0

T T T TR TR AV, T YT YT TU TN T vy e L mLerm am s e e 20T e e g

Speedup

R

. .
2 . a I 1z e %

tinbar oiT2sks. v
Figure 2: Speadup In Massively Parallel Systems,
As a Foaction of k, Where Task Timeg Arve
Power-Tail distributed.

This equation plainly shows that E(Y:) depends on &
only through the upper limit of the surn. Therefore we
can write the recurrence relation:

E(Yk+1) = E(Ye) + I,

where [; = 1 and for k > 0

I _/°° vFdv ok I
T U=—o)i/e " akta—1 """

The last recursive relation came from integrating by
parts. It can be shown [LIPS95] [and (1)] that

E(Y:) = Q(k) = kY/*.

Comparing with (10) we can see that the speedup for
large & is much worse than that for exponential distri-
butions. In fact, for @ — 1 there is no speedup at alll

The speedup for various values of « is displayed in Figure
(2), with some previous curves repeated for comparison.
One should not think that this behavior is too patholog-
ical to occur. Any recursive search algorithm with an in-
determinate number of nodes could exhibit this property.
Also, certain simulations of systems where time-for-first-
return is computed simultaneously over many statistical
paths behave in this way (e.g., random walks). Keep
in mind that as parallel technology improves, increased
efforts will be made to run ever new, bigger, and more
complicated problems.

4 Multiprocessor Systems

In this section we discuss the much more common situa-
tion where the number of processors available is less than

the number of tasks which are ready to execute, so they
must queue up. We put this subject last because it is far
more difficult to analyze than the “all-at-once” case. In
fact, there are no standard formulas [analogous to (7)]
available to compute the mean time to complete a set of
k tasks when there are only C (1 < C < k) processors
available. We call this time E(Y%|C). From the defini-
tion, E(Ye|k) = E(Yi) and E(Y:]1) = kT. Looked at in
this way, we know how to do it for C =1 and for C = &
(C > k is meaningless), but not in between. It must
be kept in mind that C refers to the system (number of
processors), and k refers to the job (number of tasks, or
degree of parallelizability). Equations (1) and (2) must
Le modified, since they were constructed assuming that
o=k T (k) becomes B(YiC), while T, is still kT,
where 7T is the mean time for cach task. Therefore, the
quality parameter becomes

CE(Y:lC)

QCIE) = =2
p

(11)
Ideally, if all tasks take_ exactly the same time, then
E(Y:|C) becomes [k/C|T, where [-] is the ceiling func-
tion. In this case, Q(Clk) = 1 whenever k is a multiple
of C. Similarly, Equations (2) are rewritten to

1

S(Clk) = (1=8)+BQ(Clk)/C

and
1

HOB = saem+a-pe 1Y
When C = k these equations reduce to Equations (1)
and (2). In the next subsection we show how E(Y;|C)
can be calculated if the tasks are exponentially dis-
tributed. And in the subsection following, we describe
this process as a transient M/G/C queue, from which
the mean lime to drain (also described as mean time
to failure without repair) can be computed for Matriz-
Ezponential (ME) distributions.

4.1 Tasks With Exponentially
Distributed Service Times

We have already set up all the mathematics needed to
calculate the mean time to process k identically dis-
tributed tasks when only C < k processors are available.
Suppose there are C processors available when k£ > C
tasks arrive simultaneously. The system can only pro-
cess C of them at first, so in a mean time of 1/(Cpu)
one of them finishes. Now there are k — 1 tasks left. If
k—1> C then once again, C tasks are processed. In an-
other mean time of 1/(Cp), the second task is finished.
Execution continues in this way until there are C tasks

S L L T P L DR

B e

left. Then we have as many processors as we have tasks,
and the rest of the job can be finished in average time,
H(C)/p. This yields a total time of
. k—C 1 [|

E(Y:|C) e, +ﬂH(C) ﬂC+ﬂ[H(C) 1}. (13)
Notice that as k grows larger, the most significant term
by far is k/uC', so the system behaves like a single server
that is C times faster. This is what one would hope for,
but is only achieved by keeping C small. It is true for
all distributions, but for certain distributions, ¥ would
have to be extremely large indeed. This fact was known,
in one form or another, to main-frame manufacturers
many yvears ago, as recognized by the success of systems
in MP maode. The number of processors rarely exceeded

(< k).

Equation (13) also tells the opposite story when C' is
close to k, for in that case, performance is not improved
much by adding more processors. Consider two systems
running the same job consisting of k& exponential tasks.
One system is made up of k processors, and the other
has one less. Then the fraction of change is

E(Yilk 1) — E(Yxlk) _ 1
E(Yelk) T k(k-DH()

For example, if a 4-task job is running on a 4-processor
machine, only 4% is lost by removing a processor. For
10 processors and 10 tasks, the loss is less than .4%! The
reason this is so follows. The first task finishes so early,
that there is plenty of time for the last task to start and
finish before all the others are done. Notice how different
it would be if the tasks were all close to the same size.
Then it would take twice as long to finish all the tasks
with one processor removed. Clearly, the performance
of such systems depends critically on the distribution of
the task times.

(14)

The speedup and efficiency of C-processor systems can
be calculated using (11) and (12). In Figure (3) the
speedup of multiprocessor systems running jobs with ex-
ponential task times is plotted as a function of the num-
ber of tasks, for various values of C. Consistent with (12)
and (13), the maximum speedup that can be attained is

c/iB+Cc(1-8)<C.

4.2 Other Distributions and M/G/C
Queues

As long as we were dealing with tasks with exponential
or deterministic distributions, the performance of a C-
processor system could be calculated with relative ease.
But all other distributions require such difficult calcu-
lations that they can only be done with some extensive

n
\

'S o

Bl T
(o]
I
&=
\
yu

Speedup
w
'

¥ 2 : 2 8 i il i3 e 1€ 4

Musatar of Tasys, e

Figure 3 Speedup of C-¥Processor Systems Run-
ning Jobs with Exponevtial Task Times, as a
Function Of Number Of Tasks: If § = 1 speedup
approaches C as k increases. But when 8 < 1, speedup

approaches C/[3+ C(1 -~ 8)] < C.

coding. The difficulty comes in describing the state of
those tasks remaining after one has finished. For expo-
nential service times we could assume that they started
all over again. But no other distribution has this mem-
oryless property. So when a new task starts, the other
tasks are in varied states of completion. The problem is
virtually intractable when dealt with analytically. How-
ever, these problems have been treated in another guise,
namely, the Linear Algebraic approach to queueing the-
ory (LAQT) [LIPS83], for which programs have already
been written [TEHRS3], [ZHAN93]. We give a short de-
scription of the LAQT approach to M/G/C queues here,
and refer the reader to [LIPS92] for further details.

4.2.1 Matrix Representation of Distribution
Functions

Every distribution function can be approximated arbi-
trarily closely by some m-dimensional vector-matrix pair
< p, B > in the following way!. The PDF is given by

F(t) =1 — pexp(—tB)¢,

where ¢ is an m-column vector of all 1’s, and pe’ = 1.
The matrix function, exp(—tB) is defined by its Taylor
Series expansion, namely

exp(—tB) := Z (—tl)" B".
n=0 ’

n

! The material in this section can be skimmed over without loss
in understanding the succeeding sections.

Note that if any m x m matrix X is multiplied from
the left by a row m-vector, and from the right by an
m-column vector, the result is a scalar (real or complex
number). Since it appears often in LAQT, we define the
specific product of this type as

U[X]:=pXe€.

This clearly is a scalar, and therefore, B(t) is a scalar
function of ¢t. From this it follows that the pdf is given
by

b(t) = ¥[exp(—tB) B],

and the reliability function is given by
R(t) = ¥[exp(-tB)),
It also follows that
E(T™) = nl¥[V"],

where V := B~!. Because these formulas look so similar
to the exponential distributions (replace p with B), the
functions derived from them are called Matriz Ezponen-
tial (ME) functions.

Imagine that the state of a task, as it is executed, can
be represented by some row m-vector, say w(¢). Then at
t = 0 its state is p, and at some time ¢ later, its state is
given by m(t) = pexp(—tB). The probability that it is
still running at that time is simply #(¢)¢’ = R(t), as can
be seen by the expression given above for the reliability
function. The task is surely done when 7(t) = 0. These
vectors allow us to keep track of the evolution of a system
as events occur (completion of tasks and initiation of new
tasks).

Using only p and B one can construct matrices which
represent the behavior of several tasks in various stages
of simultaneous execution. For instance, the set of ma-
trices, {BJ {j =2, --C} generate the completion of the
next task when there are j tasks simultaneously exe-
cuting, in a direct generalization of the above equations
(B1 := B). For instance, let =; be the composite state
of the system at some time, then the state of the system
some time ¢ later (given that no new tasks have started)

1s 3 exp(—tBj), and the mean time until a task finishes

is given by Wj[Vj]Ej, where Vj = Bj_l. For our pur-
poses here we introduce two more families of matrices.
First, we have {RJ} (Rq := p). If there are j — 1
tasks running at some time, represented by the vector
Ti1 and a new task starts, the system is transformed to
state 7rj_1Rj. Next we have the set of matrices, {YJ }

These modulate what happens when a task completes.
Suppose again that 7; is the state of the system at some

moment, and eventually one task completes without any

new task starting, then 7:Y: is the composite state of
the remaining j — 1 active tasks immediately afterwards.

Now we are ready to set up the equations needed to
compute completion times. Suppose we have a computer
system made up of C processors, and we wish to compute
a job made of k > C tasks. First, C tasks are started up
simultaneously, putting the system in state

The mean time until the first task is completed is given
by
E(Yl) = Pc Vc €I. (15)

Immediately after that, the system is in state p¢ Y,
and a new task begins execution [pc Ye¢ Re¢]. The mean
time for the next task to finish is given by

E(Yg) = E(Y]) +pcYcRe Ve €.

In general, as long as there are still tasks in the queue
waiting to start up, the mean time for the next one to
leave is

E(Y;41) = E(Y;) + Pc(Yc Re) Ve, (16)

for 7 < k — C. Eventually there will only be C tasks
remaining. Then, when one of them finishes, no new
task will begin, and the state of the remaining C — 1
tasks is pc(Yc Re)* ¢ Y¢. The mean time until one of
them leaves is given by

E(Yi-c42) = E(Ye-ct+1)+pPc(Ye Rc)k—c YcVe 1€,

(17)
and so on until they are all done. As complicated as
this looks, it is easy and efficient to compute. The time
for each departure can be computed from the previous
one by one matrix multiplication, and one vector dot
product.

Of course, if the tasks are exponentially distributed,
these equations reduce to those already given for expo-
nential tasks. But the results for the uniform distribu-
tion cannot be reproduced exactly here because there is
no exact ME representation of the uniform distribution.
Good approximations are available, however. There is a
computational problem in attempting to use these for-
mulas to model ever larger parallel systems. The dimen-
sion of the largest matrices is given by

D(C,m) = <m+g—l)

which can be extremely large if both m and C are even
moderate in size. For instance, D(C,2) = C + 1, a very

TN ANTRIETE IR W e et TR

manageable size. But for m = 5, D(10,5) = 252, and
D(20,5) = 15504. This last number corresponds to a
matrix which takes up almost one gigabyte of memory.

Even if the tasks making up a job are taken from different
distributions, the above equations are valid, but now the
dimension of the largest matrices is m®, which for m =
5 and C = 10 is 9,765,625, or 400,000 gigabytes! So,
in practice, this (or any other) procedure is limited to
small values of m and C for heterogeneous tasks. Even
if m = 1 (i.e., exponential servers with different service
times) the problem can get rather big, since the identities
of the individual tasks must be kept.

In the next section we show how the framework devel-
oped here can be used to model the process of running
benchmarks for parallel computers.

5 Application: A Model for
Benchmarking Parallel Com-
puters

Benchmark programs are often used in the computer
industry to compare the relative performance of a va-
riety of computer systems. A mix of tasks (jobs) is
used to test their performance. These tasks include
integer processing, floating point arithmetic processing,
file/database access, network access, and graphics pro-
cessing. Some industry standard benchmark programs
(e.g.. SPECint95 and SPECfp95 from Systems Perfor-
mance Evaluation Cooperative), mainly measure the
CPU performance, while others, (e.g., TPC Benchmark
A, B, C, and D from Transaction Processing Perfor-
mance Council), measure the overall system performance
under certain hardware and software configurations.

Although the benchmarks may vary by design for differ-
ent testing purposes, they all have the following proper-
ties:

1. They consist of a fixed set of data and tasks.

2. The tasks are run on a targeted system, which nor-
mally idles before the benchmark tasks start and
does not accept other arrivals until all the tasks fin-
ish.

3. The performance values of the system are then de-
rived based on the duration of executing those tasks.
The duration is called the drain time, or the mean
time to drain.

In other words, a benchmark measures how long it takes

for a set of tasks, which show up together at an idle sys-
tem, to finish without other tasks entering and running
in the system at the same time. Based on the benchmark
properties and the framework developed in the previous
section, we can establish a model for benchmarking and
computing the drain time of parallel computers.

Since a non-trivial benchmark consists of many tasks and
they are all ready to run, the order in which these tasks
are run can have a considerable effect on the measured
performance. Some operating systems may schedule the
tasks based on their service times, while others may sim-
ply dispatch them randomly. A normal benchmark run
can only indicate the system performance under a par-
ticular running sequence for the tasks. The analytical
model proposed below takes into account the ordering
effect and corresponds to the average of all possible or-
derings.

Assume that a benchmark has k tasks that can be run
in parallel on a parallel computer system. We also as-
sume that k is greater than the number of processors,
C. (This is a very realistic assumption, since one does
not want to test a system that has C processors with
a benchmark that has less than C tasks.) From equa-
tions (15), (16), (17) and so on the mean time until the
last task to complete, E(Yx|C), which is T,(k), can be
computed from the following equation:

k-C+1
Tp(k) = E(YelC) = > pe(YeRe) ™! Vee+

i=1

-1

C-1
5 pe(YoRe)t-0 [H Yc-i] Ve jds
j=1 1=0

Using the T,(k) computed above, we can then derive
the Quality Parameter Q(C|k) and the Speedup S(C|k)
or the Efficiency £(C|k) from equations (11} and (12),
respectively.

In addition to deriving the mean time to drain formula
shown above, we can also use the equations introduced in
the previous section to study the interdeparture times of
individual tasks of the benchmark. The interdeparture
times reveal more detailed information on how long it
takes for a task to leave the system, especially at the
beginning and the end of the benchmark runs.

The interdeparture times between tasks j and j + 1 can
be computed by

dj1 = E(Yj11) - E(Y;) =

pe(YcRe) Veé,

— Custcrer r'r"
-9

Figure 4: The interdeparture times of the tasks for the
numbier of processors C = 1, 2, 3, and 4 with Ez service
time distribuilon.

coen Tume
cep Tune

nieszes. time (ia ragg2) Pure EZ/TUUN Seisl0l2

"

7

1 15 Pl

Cudcomer §

Figure 5: The interdeparture times of the tasks for the
number of processors C = 1, 2, 3, and 4 with H; service
time distribution.

for1 < j<k—-C,and by
djy1 =E(Y;) - E(Yj) =

j—k+C—1
PC(YCRC)FC[H Yc-i] Vk-jei—i’
i=0

fork-C+1<j<k-1

As numerical examples, we calculate the interdeparture
times for each of the k = 5, 10, or 20 tasks, assuming that
the system has C = 1, 2, 3, or 4 processors, respectively.
We selected two non-exponential distributions to repre-
sent the service times which have the same mean, but
different variances, o2. One is the Erlang-3 distribution,
E3, with a mean of 1. The other is a Hyperexponential
distribution, H», also with a mean of 1.0, but with a
o? = 2.01939. (This distribution has three free param-
eters, so the third parameter was fixed by setting the
branch probabilities to 0.1 and 0.9.)

Figures (4) and (5) show the curves for the interdepar-
ture times of the tasks with four different processor num-

bers C = 1, 2, 3, and 4. It is interesting to see that the
interdeparture times approach constants after the initial
tasks leave the system. After that the interdeparture
times stay steady until the number of remaining tasks is
less than the number of processors. From that point on,
the interdeparture times increase. The increase in inter-
departure times when the number of tasks is less than
the number of processors is quite intuitive: The chance
for the next task to finish at a given time reduces as the
number of tasks remaining in the system becomes less.
Therefore the interdeparture times elongate.

Note that for a single processor system (C = 1), the in-
terdeparture times remain a constant, which is the mean
service time, independent of the number of tasks in the

avsient.

Note also ;hat by knowing the interdeparture times for
each of the tasks, we can easily compute the T,(k) (=
E(Y:|C)), which is the sum of the interdeparture times
plus the mean time for the first task to complete, i.e.,

k
T,(k) = E(Y1) +) _d;.

j=2

The formulas as given here and in the previous section
are also applicable to single-class Jackson Networks with
C active customers, i.e., a system with MPL = C. It is
known that a Jackson network with multiprogramming
level (MPL) constraint invalidates the product-form so-
lution. Our formulas, however, give the correct results.

6 Concluding Remarks

In this paper we described Amdahl’s law, and through it
examined just what is necessary for speedup to be pro-
portional to k, the number of tasks which can run simul-
taneously. We made a conceptual distinction between
Masstvely Parallel systems and Multiprocessor systems.
We showed how the Order Statistics for the former can
be calculated by standard probabilistic techniques, but
the latter requires rather extraordinary, but not impossi-
ble, effort. The results indicated that if C < k, where C
is the number of processes, then speedup approaches C'.
But if C = k (the massively parallel case) then speedup
will almost surely be much less than k, and efficiency
will get worse with increasing k. As an application, we
also presented a method to model the process of running
benchmarks for parallel computers. The method and
the computations involved can also be applied to solving
Jackson networks with multiprogramming level (MPL)
constraints.

References

[AMDAG67] G. Amdahl, “Validity of the Single Proces-
sor Approach to Achieving Large Scale Computing
Capabilities”, AFIPS Conference Proceedings 30,
pp.483-485.

[FELL71] William Feller, An Introduction to Probab:l-
ity Theory and its Applications, Vol. 11, John Wiley
and Sons, New York, 1971.

[GARGY2] Sharad Garg, Lester Lipsky and Maryann
Robbert, “The Effect of Power-Tail Distributions
on the Behavior of Time Sharing Computer Sys-
tems”, 1992 ACM SIGAPP Symposium on Applied
Computing, Kansas City, MO, March, 1992.

[GREI95] “The Importance of Power-tail Distributions
for Telecommunication Traffic Models”, (Submitted
for publication).

[LELA86] Will E. Leland and Teunis Ott, “Load-
Balancing Heuristics and Process Behavior”, Pro-
ceedings of ACM SIGMETRICS 1986, May 27 -
30, 1986, pp. 54-69. (The proceedings appeared as
vol 14, no 1, Performance Evaluation Review, May,

1986.)

[LELA94] Will E. Leland, Murad S. Taqqu, Walter
Willinger and Daniel V. Wilson, “On the Self-
Similar Nature of Ethernet Traffic (Extended Ver-
sion)”, Proc. of IEEE/ACM Trans. on Networking,
2,1, Feb. 1994.

[LIPS83] Lester Lipsky, “Explicit So-
lutions of M/G/C//N-Type Queueing Loops with
Generalizations”, OPERATIONS RESEARCH, 33,
pp. 911-927, July 1985.

[LIPS86] Lester Lipsky, “A Heuristic Fit of an Unusual
Set of Data”, Bell Communications Research Re-
port, January 1986.

[L1PS92] Lester Lipsky, QUEUEING THEORY: A Lin-
ear Algebraic Approach, MacMillan and Company,
New York, 1992.

[LIPS95] Lester Lipsky and Pierre Fiorini, “Auto-
Correlation of Counting Processes Associated with
Renewal Processes”, Technical Report, Booth Re-
search Center, University of Connecticut, August
1995.

[TEHRA83] Aby Tehranipour, Ezplicit Solutions of Gen-
eralized M/G/C//N Systems Including an Analysis
of Their Transient Behavior, Ph.D. Thesis, Depart-
ment of Computer Science, University of Nebraska,
Lincoln, December 1983.

[TRIV82] Kishor S. Trivedi, Probability and Statistics
with Reliability, Queueing, and Computer Science
Applications, Prentice-Hall, Englewood Cliffs, NJ,
1982.

[ZHANGY3] Tao Zhang, Transient Properties of Parallel
Queues, MS Thesis, Department of Computer Sci-
ence and Engineering, University of Connecticut,
December 1993.

