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In this paper, we use real server and personal computer
workloads to systematically analyze the true performance
impact of various I/O optimization techniques, including read
caching, sequential prefetching, opportunistic prefetching, write
buffering, request scheduling, striping, and short-stroking. We
also break down disk technology improvement into four basic
effects—faster seeks, higher RPM, linear density improvement,
and increase in track density—and analyze each separately
to determine its actual benefit. In addition, we examine the
historical rates of improvement and use the trends to project
the effect of disk technology scaling. As part of this study, we
develop a methodology for replaying real workloads that more
accurately models I/O arrivals and that allows the I/O rate
to be more realistically scaled than previously. We find that
optimization techniques that reduce the number of physical
I/Os are generally more effective than those that improve the
efficiency in performing the I/Os. Sequential prefetching and
write buffering are particularly effective, reducing the average
read and write response time by about 50% and 90%,
respectively. Our results suggest that a reliable method for
improving performance is to use larger caches up to and
even beyond 1% of the storage used. For a given workload,
our analysis shows that disk technology improvement at the
historical rate increases performance by about 8% per year if
the disk occupancy rate is kept constant, and by about 15%
per year if the same number of disks are used. We discover
that the actual average seek time and rotational latency are,
respectively, only about 35% and 60% of the specified values.
We also observe that the disk head positioning time far
dominates the data transfer time, suggesting that to effectively
utilize the available disk bandwidth, data should be
reorganized such that accesses become more sequential.

1. Introduction
Because of the slow mechanical nature of many storage
devices, the importance of optimizing I/O operations
has been well recognized. As a result, a plethora of
optimization techniques including caching, write buffering,
prefetching, request scheduling, and parallel I/O have
been invented. The relative effectiveness of these
techniques, however, is not clear because they have been
studied in isolation by different researchers using different
methodologies. Furthermore, because many of the
techniques have not been evaluated with real workloads,

their actual effect is not known. Some of the ideas
have been proposed or implemented, but few or
no performance results have been published (e.g.,
opportunistic prefetching). As the performance gap
between the processor and disk-based storage continues
to widen [1, 2], increasingly aggressive optimization of
the storage system is needed, and this requires a good
understanding of the real potential of the various I/O
optimization techniques and how they work together. In
this paper, we systematically investigate how the different
techniques affect actual performance by using trace-driven
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simulations with a large set of traces gathered from a wide
range of real-world settings, including both server and
personal computer (PC) environments. To make our
findings more broadly applicable, we focus on general
rules of thumb about what can be expected from each
of these techniques rather than precise quantification
of improvement for a particular workload and a
specific implementation.

Tremendous efforts have also gone into improving the
underlying technology of disks. The improvement in disk
technology is usually quantified by using physical metrics,
such as the tracks or bits per inch, the average seek time,
and the rotational speed. Relating physical metrics like
these to the performance delivered to real workloads
is, however, difficult. Thus, it is not apparent how
an improvement in one metric compares with an
improvement in another in terms of their real-world
impact. Furthermore, some of the metrics are not focused
on performance but have a significant effect on it. For
example, increasing the recording density could improve
performance because, if the bits are packed more closely
together, they can be accessed with a smaller physical
movement. In this paper, we break down the steady
improvements in disk technology into four major basic
effects: seek time reduction resulting from actuator
improvement, increase in rotational speed, linear density
improvement, and increase in track density. Then we
separately analyze each one to determine its effect on
real workloads. We also examine the historical rates of
improvement and use the trends to project the actual
performance improvement that can be expected from
disk technology scaling.

In a companion paper [3], we analyze in detail the
characteristics of the various workloads we use, specifically
1) the I/O intensity of the workloads and the overall
significance of I/O in the workloads; 2) how the I/O load
varies over time and how it behaves when aggregated; and
3) the interaction of reads and writes and how it affects
performance. Although the current paper is self-contained,
readers are encouraged to also read the companion paper
to better understand the workloads on which this analysis
is based. The insights gained from the current study
motivated the idea of automatic locality-improving storage
(ALIS) [4], which is a storage system that continually
monitors the way it is accessed and then automatically
reorganizes selected disk blocks so that accesses become
effectively more sequential. In fact, the results we derive
here serve as the baseline for the analysis of ALIS
in [4]. Therefore, this paper has an emphasis on the
optimizations that directly affect ALIS—in particular,
the prefetching.

The remainder of this paper is organized as follows.
Section 2 contains a brief overview of previous work in
evaluating I/O optimization techniques. Section 3 discusses

our methodology and describes the traces that we use. In
Section 4, we analyze the effect of the various optimization
techniques. In Section 5, we consider the real impact
of disk technology improvement over time. Section 6
concludes and summarizes this paper. Because of the
huge amount of data that is involved in this study, we
can present only a characteristic cross section here.
More detailed graphs and data are available in [5].

2. Related work
Various I/O optimization techniques have been
individually evaluated by different researchers using
dissimilar methodologies including discrete event
simulation and analytical modeling. In some cases, the
simulations are based on traces of real workloads and
in others, randomly generated synthetic workloads. For
instance, disk caching is extensively analyzed in [6, 7],
prefetching in [8, 9], write buffering in [10, 11], request
scheduling in [12–14], and striping in [15, 16]. At the
logical level, caching, prefetching, and write buffering are
well covered in [17, 18]. Several researchers have also
explored ways to improve the various techniques in special
situations where the reference pattern is known ahead of
time (e.g., [19]). Because improving I/O performance is
important, there has been a lot of research on I/O
optimization techniques. We mention only some of the
more recent work. The reader is referred to [20] for a
comprehensive survey of early work on I/O optimization.

3. Methodology
The methodology used in this paper is trace-driven
simulation [21, 22]. In trace-driven simulation, relevant
information about a system is collected while the system
is handling the workload of interest. This is referred to
as tracing the system and is usually achieved by using
hardware probes or by adding instrumentation to the
software. In the second phase, the resulting trace of the
system is played back to drive a model of the system
under study. Trace-driven simulation is thus a form of
event-driven simulation in which the events are taken
from a real system that is operating under conditions
similar to the ones being simulated. A common difficulty
in using trace-driven simulations to study I/O systems is to
realistically model timing effects, specifically to account
for events that occur faster or slower in the simulated
system than in the original system. This difficulty arises
because information about how the arrival of subsequent
I/Os depends upon the completion of previous requests
cannot be easily extracted from a system and recorded in
the traces. As described below, we create and use a new
method for replaying I/O traces that more accurately
models the timing of I/O arrivals and that allows the I/O
rate to be more realistically scaled (e.g., when processor
power is increased) than previous practice.
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Modeling timing effects
In general, simulation models used to evaluate storage
system performance can be broadly classified into open
and closed models, depending on how request arrivals are
choreographed. The closed model traditionally maintains a
constant population of outstanding requests. Whenever a
request is completed, a new request is issued in its place,
sometimes after a simulated “think” time. These models
essentially assume that all of the I/Os are time-critical
[23], so that a new I/O is issued only after a previous
request is completed. By maintaining a constant
population of outstanding requests, these models
effectively smooth out any burstiness in the I/O traffic.
Such an approach is clearly not representative of real
workloads, which have been shown in several studies
(e.g., [3]) to have bursty I/O traffic patterns.

In the open model, requests arrive at predetermined
times (e.g., traced time in [24] and traced interarrival time
scaled by a constant factor in [14]), independently of the
performance of the storage system. Such models assume
that the workload consists exclusively of time-noncritical
requests [23], so that whether a preceding request is
completed has no bearing on when the system is able to
issue subsequent I/Os. Again, this is clearly not true in
real systems, in which an overloaded storage system, by
being slow, automatically exerts back pressure on the
processes generating the I/Os. For example, 66 –91% of
the I/Os are flagged as synchronous in PC workloads [3]
and 52–74% in UNIX ** workloads [25]. In other words,
the system generally has to wait for I/Os to be completed
before it can continue with subsequent processing. Such
data highlights the importance of accounting for the
feedback effect between request completion and
subsequent request issuance. From a practical perspective,
having a feedback mechanism also ensures that the
number of outstanding requests will not grow without
bound whenever the storage system is unable to handle
the incoming workload.

Modeling the feedback effect and thereby limiting the
number of outstanding requests is especially helpful in this
study because we have a diverse set of workloads collected
over the span of several years and a wide range of
experiments in which the performance of the storage
system is significantly varied. Some of our experiments
evaluate techniques that are opportunistic; i.e., they take
advantage of idle time. Therefore, we have to account
for the burstiness seen in real I/O traffic. With these
requirements in mind, we came up with a methodology
designed to incorporate feedback between request
completion and subsequent I/O arrivals, and model
burstiness.

Results in [3] show that there is effectively little
multiprocessing in PC workloads and that most of the
I/Os are synchronous. Such predominantly single-process

workloads can be modeled by assuming that after
completing an I/O, the system has to do some processing
and the user some “thinking” before the next set of I/Os
can be issued. For instance, in the timeline in Figure 1,
after request R0 is completed, there are delays during
which the system is processing and the user is thinking
before requests R1, R2, and R3 are issued. Because R1,
R2, and R3 are issued after R0 has been completed, we
consider them to be dependent on R0. Similarly, R4 and
R5 are deemed to be dependent on R1. Presumably, if
R0 is completed earlier, R1, R2, and R3 will be dragged
forward and issued earlier. If this in turn causes R1 to
be finished earlier, R4 and R5 will be similarly moved
forward in time. The “think” time between the completion
of a request and the issuance of its dependent requests
can be adjusted to speed up or slow down the workload.
In short, we consider a request to be dependent on the
last completed request, and we issue a request only after
its parent request has completed. For multiprocessing
workloads, this dependence relationship should be
maintained on a per-process basis, but unfortunately
process information is not always available in I/O traces.
To account for multiprocessing workloads, we merge
multiple traces to form a workload with several
independent streams of I/O, each obeying the dependence
relationship described above.

In essence, we have built an out-of-order multiple-issue
machine that tries to preserve the dependency structure
between I/O requests. We maintain an issue window of 64
requests. A request within this window is issued when the
request on which it is dependent completes and the think
time has elapsed. Inferring the dependencies based on
the last completed request is the best we can do given
the block-level traces we have. If the workloads were
completely described using logical and higher-level system
events (e.g., system calls and interrupts), we might be able
to more accurately model feedback effects using a system-
level model (e.g., [23]). In the limit, we can run the
workloads on a system simulator where we have control
over the timing of events [26] or on a virtual machine

Intervals between issuance of I/O requests and most recent request 
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[27] or on a real system with a timing-accurate storage
emulator [28]. However, getting real users to release
traces of reference address is difficult enough. Asking
them for logical data about their computer operations is
next to impossible. Moreover, “capturing” a workload so
that it can be realistically replayed may be relatively easy
for batch jobs, but it is very difficult for interactive
workloads. We essentially end up with the same problem
of having to decide what happens when the system reacts
faster. For instance, will the user click the mouse earlier?

Workloads and traces
The traces analyzed in this study were collected from both
server and PC systems running real user workloads on
three different platforms—Microsoft Windows NT**, IBM
AIX*, and HP-UX**. All of them were collected downstream
of the database buffer pool and the file system cache. Thus,
these are real I/O traces, not logical ones. The PC traces
were collected by using VTrace [29], a software tracing
tool for Intel** x86 PCs running Windows NT/2000**.
In this study, we are primarily interested in the disk
activities, which are collected by VTrace through the
use of device filters. We have verified the disk activity
collected by VTrace with the raw traffic observed by a bus
(SCSI) analyzer. Both the IBM AIX and HP-UX traces
were collected using kernel-level trace facilities built into
the respective operating systems. Most of the traces were
gathered over periods of several months, but to keep the
simulation time manageable, we use only the first 45 days
of the traces, of which the first 20 days are used to warm
up the simulator.

The PC traces were collected from the primary systems
of a wide variety of users, including engineers, graduate
students, a secretary, and several people in senior
managerial positions. Because we have a wide variety
of users in our sample, we believe that our traces are
illustrative of the PC workloads in many offices, especially
those involved in research and development. Note,
however, that the traces should not be taken as typical
or representative of any other system or environment.
Despite this disclaimer, the fact that many of their
characteristics correspond to those obtained previously
(see [3]), albeit in somewhat different environments,
suggest that our findings can, to a large extent, be
generalized. Table 1(a) summarizes the characteristics of
these traces. We denote the PC traces as P1, P2, . . ., P14
and the arithmetic mean of their results as P-Avg. As
detailed in [3], the PC traces contain only I/Os that occur
when the user is actively interacting with the system.
Specifically, we consider the system to be idle from ten
minutes after the last user keyboard or mouse activity
until the next such user action, and we assume that there
is no I/O activity during the idle periods. We believe that
this is a reasonable approximation in the PC environment,

although it is possible that we are ignoring some level
of activity resulting from periodic system tasks such as
daemons. This latter type of activity should have a
negligible effect on the I/O load, and is not likely to
be noticed by the user.

The servers traced include a file server, a time-
sharing system, and a database server. The characteristics
of these traces are summarized in Table 1(b). Throughout
this paper, we use the term S-Avg. to denote the
arithmetic mean of the results for these server workloads.
The first file server trace (FS1) was taken off a file server
for nine clients at the University of California, Berkeley.
This system was primarily used for compilation and
editing. It is referred to as Snake in [25]. The trace
denoted TS1 was gathered on a time-sharing system at
an industrial research laboratory. It was mainly used for
news, mail, text editing, simulation, and compilation. It
is referred to as Cello in [25]. The database server trace
(DS1) was collected at one of the largest health insurers
in the nation. The system traced was running an enterprise
resource planning (ERP) application on top of a
commercial database system. This trace is only seven days
long, and the first three days are used to warm up the
simulator. More details about the traces and how they
were collected can be found in [3].

In addition to these base workloads, we scale up the
traces to obtain workloads that are more intense. Results
reported in [3] show that for the PC workloads, the
processor utilization during the intervals between the
issuance of an I/O and the last I/O completion is related
to the length of the interval by a function of the form
f(x) � 1/(ax � b), where a � 0.0857 and b � 0.0105. To
model a processor that is n times faster than the one
in the traced system, we would scale only the system
processing time by n, leaving the user portion of the think
time unchanged. Specifically, we would replace an interval
of length x with one of length x[1 � f(x) � f(x)/n]. In this
paper, we run each workload preserving the original
think time. For the PC workloads, we also evaluate what
happens in the limit when systems are infinitely fast; i.e.,
we replace an interval of length x with one of x[1 � f(x)]. We
denote these speeded-up PC workloads as P1s, P2s, . . .,
P14s and the arithmetic mean of their results as Ps-Avg.

We also merge ten of the longest PC traces to obtain a
workload with ten independent streams of I/O, each of
which obeys the dependence relationship discussed above.
We refer to this merged trace as Pm. The volume of I/O
traffic in this merged PC workload is similar to that of
a server supporting multiple PCs. However, its locality
characteristics are different because there is no sharing
of data among the different users, so that if two users
are both using the same application, they end up using
different copies of the application. Pm might be construed
as the workload of a system on which multiple

W. W. HSU AND A. J. SMITH IBM J. RES. & DEV. VOL. 48 NO. 2 MARCH 2004

258



Table 1 Trace descriptions.

(a) Personal systems

Desig-
nation

User type System configuration Trace characteristics

System
(MHz)

Memory
(MB)

File systems
(GB)

Storage
used i

(GB)

No.
disks

Duration Footprint iv

(GB)
Traffic
(GB)

Requests
(�106)

R/W
ratio

P1 Engineer 333 P6 64 1 GB FATii 5 GB
NTFSiii

6 1 45 days
(7/26/99 –9/8/99)

0.945 17.1 1.88 2.51

P2 Engineer 200 P6 64 1.2, 2.4, 1.2 GB FAT 4.8 2 39 days
(7/26/99 –9/2/99)

0.509 9.45 1.15 1.37

P3 Engineer 450 P6 128 4, 2 GB NTFS 6 1 45 days
(7/26/99 –9/8/99)

0.708 5.01 0.679 0.429

P4 Engineer 450 P6 128 3, 3 GB NTFS 6 1 29 days
(7/27/99 – 8/24/99)

4.72 26.6 2.56 0.606

P5 Engineer 450 P6 128 3.9, 2.1 GB NTFS 6 1 45 days
(7/26/99 –9/8/99)

2.66 31.5 4.04 0.338

P6 Manager 166 P6 128 3, 2 GB NTFS 5 2 45 days
(7/23/99 –9/5/99)

0.513 2.43 0.324 0.147

P7 Engineer 266 P6 192 4 GB NTFS 4 1 45 days
(7/26/99 –9/8/99)

1.84 20.1 2.27 0.288

P8 Secretary 300 P5 64 1, 3 GB NTFS 4 1 45 days
(7/27/99 –9/9/99)

0.519 9.52 1.15 1.23

P9 Engineer 166 P5 80 1.5, 1.5 GB NTFS 3 2 32 days
(7/23/99 – 8/23/99)

0.848 9.93 1.42 0.925

P10 CTO 266 P6 96 4.2 GB NTFS 4.2 1 45 days
(1/20/00 –3/4/00)

2.58 16.3 1.75 0.937

P11 Director 350 P6 64 2, 2 GB NTFS 4 1 45 days
(8/25/99 –10/8/99)

0.73 11.4 1.58 0.831

P12 Director 400 P6 128 2, 4 GB NTFS 6 1 45 days
(9/10/99 –10/24/99)

1.36 6.2 0.514 0.758

P13 Grad.
student

200 P6 128 1, 1, 2 GB NTFS 4 2 45 days
(10/22/99 –12/5/99)

0.442 6.62 1.13 0.566

P14 Grad.
student

450 P6 128 2, 2, 2, 2 GB NTFS 8 3 45 days
(8/30/99 –10/13/99)

3.92 22.3 2.9 0.481

P-Avg. — 318 109 — 5.07 1.43 41.2 days 1.59 13.9 1.67 0.816

(b) Servers

Desig-
nation

Primary
function

System configuration Trace characteristics

System Memory
(MB)

File systems Storage
used
(GB)

No.
disks

Duration Footprint iv

(GB)
Traffic
(GB)

Requests
(� 106)

R/W
ratio

FS1 File
server
(NFSv)

HP
9000/720**
(50 MHz)

32 3 BSD** FFSviii

(3 GB)
3 3 45 days

(4/25/92– 6/8/92)
1.39 63 9.78 0.718

TS1 Time-
sharing
system

HP
9000/877**
(64 MHz)

96 12 BSD FFS
(10.4 GB)

10.4 8 45 days
(4/18/92– 6/1/92)

4.75 123 20 0.794

DS1 Database
server

(ERPvi)

IBM
RS/6000*

R30 SMPvii

(4� 75
MHz)

768 8 AIX* JFSix

(9 GB), 3 paging
(1.4 GB), 30 raw

database partitions
(42 GB)

52.4 13 7 days
(8/13/96 – 8/19/96)

6.52 37.7 6.64 0.607

S-Avg. — — 299 — 18.5 8 32.3 days 4.22 74.6 12.1 0.706

i Sum of all file systems and allocated volumes
ii File allocation table
iii Microsoft NTFS

iv Amount of data referenced at least once
v Sun Microsystems Network File System**
vi Enterprise resource planning

vii Symmetric multiprocessor
viii Wind River Systems BSD fast file system
ix IBM AIX journal file system
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independent PC workloads are consolidated. For the
server workloads, we merge the FS1 and TS1 traces to
obtain another trace which we denote as Sm. Note that
neither method for scaling up the workloads is perfect, but
we believe that they are more realistic than simply scaling
the interarrival time, as is commonly done. In this paper,
we often use the term PC workloads to refer collectively to
the base PC workloads, the speeded-up PC workloads, and
the merged PC workload. The term server workloads
likewise refers to the base server workloads and the
merged server workload.

Simulation model
The major components of our simulation model are
presented in Figure 2. In practice, optimizations such as
caching, prefetching, write buffering, request scheduling,
and striping may be performed at multiple levels in the
storage system. For instance, there may be several
outboard storage controllers, storage adapters (host bus
adapters), and disk drives, and they may all perform some
of the optimizations to some extent. The number of
combinations of which does what and to what extent
is large, and the interaction among the optimizations
performed at the various levels is complicated and
obscure. To gain fundamental insights into the

effectiveness of each of the optimizations, we collapse the
different levels and model each of the optimizations once.

For example, we model only a single level of cache
instead of a disk-drive cache, an adapter cache, a
controller cache, and so on. This approach does not
expose the interference that occurs when the different
levels in the storage stack are all attempting to do some
of the same optimizations, but cutting down on the
interference is the only way we can look at the real
effect of each of the optimizations. The interference is
interesting but beyond the scope of the current paper.
Furthermore, a well-designed system will have a level at
which a particular technique dominates. For instance, for
caching, the adapter cache should be bigger than the
disk-drive cache so that its effect dominates. For other
techniques, such as request scheduling, there is a level at
which it can best be implemented. At appropriate points
in the paper, we discuss such issues and how we handle
them in our simulator.

Even though we simulate only a single instance of each
of the optimization techniques, there are many parameters
for each technique, and their combination makes for a
huge design space. In order to systematically examine the
effect of each technique, we pick two reasonable base
configurations and perturb them in one dimension

Figure 2

Block diagram of simulation model showing the base configurations and default parameters used to evaluate the various I/O optimization 

techniques and disk improvements. The parameters pertaining to each technique are described in detail in Section 4.

File system/database cache 

I/O trace

Issue engine

...

Volume manager

Cache

Resource-poor
environment

Resource-rich
environment

Read

caching 

8 MB per disk, least-recently-

used (LRU) replacement. 

1% of storage used, least-recently-

used (LRU) replacement. 

Prefetching

32 KB read ahead.

Preemptible read ahead up to

maximum prefetch of 128 KB,

read any free blocks. 

Conditional sequential prefetch,

16-KB segments for PC workloads,

8-KB segments for server workloads,

prefetch trigger of 1, prefetch factor

of 2.

Preemptible read ahead up to

maximum prefetch of 128 KB,

read any free blocks, 8 MB per

disk opportunistic prefetch buffer.  

Write

buffering 

4 MB per disk, lowMark � 0.2,

highMark = 0.8, least-recently-

written replacement, 30-s age limit. 

0.1% of storage used, lowMark �
0.2, highMark � 0.8, least-recently-

written replacement, 1-hr age limit. 

Request

scheduling 

Shortest access time first with age

factor � 0.01 [ASATF(0.01)],

queue depth of 8. 

Shortest access time first with age

factor � 0.01 [ASATF(0.01)],

queue depth of 8. 

Parallel I/O Stripe unit of 2 MB. Stripe unit of 2 MB.
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at a time. The default parameters used in these base
configurations are summarized in Figure 2. As we study
each technique individually, the relevant parameters
are analyzed and described in detail. As its name suggests,
the resource-rich configuration is meant to represent an
environment in which resources in the storage system
are plentiful, as may be the case when there is a large
outboard controller. The resource-poor environment is
supposed to mimic a situation in which the storage system
consists of only disks and low-end disk adapters.

Our simulator is written in C�� using the CSIM
simulation library [30]. It is based upon a detailed model of
the mechanical components of the IBM Ultrastar * 73LZX
[31] family of disks that is used in disk development and
that has been validated against test measurements
obtained on several batches of the disk. We model the
disk to a similar level of detail as in the publicly available
DiskSim package [32]. However, instead of using the same
seek profile for reads and writes and accounting for the
difference by a constant write-settling delay, we use
separate read and write seek curves to more accurately
model the disk. As shown in Figure 3, the seek curves for
this disk can be approximated by a power function for
seeks of less than 5000 tracks and a linear function for
longer seeks.

The IBM Ultrastar 73LZX family of 10K-rpm disks was
introduced in early 2001 and consists of four members
with storage capacities of 9.1, 18.3, 36.7, and 73.4 GB. The
performance characteristics of each are almost identical,
with the difference in capacity coming from the number
of platters. The higher-capacity disk should have a longer
seek time because of the increased inertia of the disk arm,
but the effect is small. The average seek time is specified
to be 4.9 ms, and the data rate varies from 29 MB/s at
the inner edge to 57 MB/s at the outer edge. The track
density for this series of disks is 27,000 tracks per inch,
while the linear density is as high as 480,000 bits per inch.
The tracks range in size from 160 KB to 340 KB. More
details about the specifications of this family of disks
can be found in [31]. To understand the effects of the
evolution of disk technology, in Section 5 we scale these
disk characteristics according to technology trends that we
derive by analyzing the specifications of disks introduced
in the last ten years.

For workloads with multiple disk volumes, we
concatenate the volumes to create a single address space.
In the base configurations, each workload is fitted to the
smallest disk from the IBM Ultrastar 73LZX family that is
bigger than the total volume size, resulting in an average
storage-used-to-disk-capacity ratio of about 55%. We leave
a headroom of 20% because the results presented here are
part of a larger study that examines the results when up to
20% of the disk blocks are replicated and laid out in an
area of the disk that is specially set aside [4]. When we

study parallel I/O, we look at the effect of striping the
data across multiple disks. Note that we have a separate
read cache and write buffer so that we can adjust the size
of each independently. Results in [3] show that there is
not a lot of interaction between the reads and the writes.

Performance metrics
I/O performance can generally be measured at different
levels in the storage hierarchy. In order to quantify the
effect of a wide variety of storage optimization techniques,
we measure performance from the time at which requests
are issued to the storage system before they are potentially
broken up by the volume manager for requests that
span multiple disks. The two important metrics in I/O
performance are response time and throughput. Response
time includes both the time needed to service the request
and the time spent waiting or queuing for service. Throughput
is the maximum number of I/Os that can be handled
per second by the system. Quantifying the throughput
is generally difficult with trace-driven simulation because
the workload, as recorded in the trace, is constant.
We can try to scale or speed up the workload to determine
the maximum workload the system can sustain, but this
is difficult to achieve in a realistic manner.

In this paper, we estimate the throughput by
considering the amount of critical resource each I/O
consumes. Specifically, we consider the average amount of
time the disk arm is busy per request, deeming the disk
arm to be busy both when it is being moved into position
to service a request and when it has to be kept in position
to transfer data. We refer to this metric as the service

Seek profile for the IBM Ultrastar 73LZX family of disks.

Figure 3

0

2

4

6

8

10

12

1 10 100 1000 10,000 100,000

Seek distance  (no. of tracks)

S
e
e
k

 t
im

e
  

(m
s)

Read

Write

4.31 � 0.000338x,  x � 5000
f (x) �

0.251(x � 6.48)0.359,  x � 5000 

IBM J. RES. & DEV. VOL. 48 NO. 2 MARCH 2004 W. W. HSU AND A. J. SMITH

261



time. Throughput can be approximated by taking the
reciprocal of the average service time. It should be noted
that there are opportunistic techniques, especially for reads
(e.g., preemptible read ahead), that can be used to improve
performance. The service time does not include the
otherwise idle time that the opportunistic techniques exploit.
This means that the reciprocal of the service time tends to
be an optimistic estimate of the maximum throughput,
especially in the case of a lightly loaded disk where
opportunistic techniques are likely to have a bigger effect.

To gain insight into the workings of the different
optimization techniques, we also examine the effective
miss ratio of the read cache and the write buffer. The miss
ratio is generally defined as the fraction of I/O requests

that are not satisfied by the cache or buffer or, in other
words, the fraction of requests that require physical
I/O. To make our results more useful for subsequent
mathematical analyses and modeling by others, we fitted
our data to various functional forms through nonlinear
regression, which we solved by using the Levenberg–
Marquardt method [33].

4. Effect of I/O optimizations

Read caching
Caching is a general technique for improving performance
by temporarily holding in a faster memory those data
items that are (believed to be) likely to be used. The
faster memory is called the cache. In the context of this
paper, the data items are disk blocks requested from the
storage system, and the faster memory refers to dynamic
random access memory (DRAM). The fraction of requests
satisfied by the cache is commonly called the hit ratio.
The fraction of requests that have to be handled by the
underlying storage system is referred to as the miss ratio.
The data items can be entered into the cache when they
are demand-fetched or when it is anticipated that they are
likely to be referenced soon. Caching usually refers only
to the former. The latter is generally called prefetching
and is discussed in detail in the next section. Note that to
focus on the effect of caching, we disable prefetching. This
is an exception to our general approach of perturbing, at
any one time, only the parameters for one technique from
their default values listed in Figure 2.

Figure 4 shows the effectiveness of read caching at
reducing physical reads. Unless otherwise noted, the cache
block size is 4 KB. We use the least-recently-used (LRU)
replacement policy, since variations of it are commonly
used throughout computer systems. Notice from Figure 4(a)
that the cache is not very useful for sizes up to 32 MB.
This is expected because we are looking at the physical
reference stream, which has been filtered by the caching
going on upstream in the host system. Today, it is
common even for PC systems to have more than 100 MB
of main memory, much of which can be used for file
caching. Yet most disks have only 2– 4 MB of cache, with
some offering an 8-MB option. Our results suggest that
the disk drive cache is not very effective at such sizes.
It serves primarily as a buffer for prefetching.

Note that if the cache is large enough to hold all of the
blocks that will be referenced again, the performance will
obviously be very good. However, we will need a huge
cache, because [Figure 4(b)] the miss ratio continues to
improve at cache sizes that are beyond 4% of the storage
used (allocated). In practice, there is a limit to the size of
the cache because of addressing and packaging limitations
and cost. Today, most enterprise-class outboard storage
controllers, when fully loaded, have cache sizes that are in

Effectiveness of read caching (LRU) at reducing physical reads: 

(a) Resource-poor environment. (b) Resource-rich environment.
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the range of 0.05– 0.2% of the storage space [34 –36]. In
this study, in the resource-rich environment we set the
cache size aggressively to 1% of the storage used and 8 MB
per disk in the resource-poor environment. The cost per
GB for DRAM is currently about 50 times higher than for
disk storage. This means that a cache that is 1% of the
storage space and does nothing but helps mask the poor
performance of the disk will cost as much as half the disk
storage. Though high, this level of cost is likely to be
acceptable because it is about half that incurred by sites
that mirror instead of parity-protect their disks. Note also
that as disks become a lot bigger and PCs have at least one
disk, the amount of cache needed in the PC environment
to hold 1% of the data stored may be much less than the
amount of cache needed to store 1% of the disk capacity.

To establish a rule of thumb relating the read miss ratio
to the size of the cache, we took the average of the five
plots in Figure 4(b) and fitted various functional forms
to it. As shown in the figure, a good fit is obtained with
a power function of the form f(x) � a(x � b)c, where
a, b, and c are constants. This relationship, based on the
physical I/O stream, turns out to be functionally similar to
that found at the logical level for large database systems
[17]. However, at the logical level, the c value is about
half of the �1 in our case. This means that the physical
read miss ratio for our workloads improves faster with
increase in the cache size than is the case at the logical
level for large database systems. Such results suggest that
caching can be effective at the physical level provided that
the cache is large enough.

In Table 2, we summarize the effectiveness of read
caching at improving performance. Throughout this paper,
we define improvement as (original value � new value)/
(original value) if a smaller value is better, and (new value
� original value)/(original value) otherwise. Note that some
amount of cache memory is needed as a speed-matching

buffer between the disk media and the disk interface with
the host. In other words, we need to configure our simulator
with some small but non-zero amount of cache memory.
Therefore, the improvement reported in Table 2 is relative
to the performance with a small (512-KB) cache. As discussed
earlier, in the resource-poor environment, caching is
relatively ineffective, achieving only about 6%
improvement in average read response time and about
4% in average read service time. In the resource-rich
environment, the improvement ranges from about 20% for
the base PC workloads to more than 50% for the merged
workloads.

Note that these numbers are for a cache block size
of 4 KB. For historical reasons, the sector, or smallest
addressable unit in most storage systems today, is 512 B.
Managing the cache at such a small granularity is very
inefficient because of the large data structures needed to
manage them and because most I/O transfers are much
larger than 512 B. To reduce the management overhead,
a larger cache block can be used together with valid bits to
indicate whether each sector within the block is present in
the cache. This is similar to the sector cache approach in
processor cache. In [5], we evaluate the impact of using a
large cache block on the effectiveness of the cache and
find that a cache block size of 4 KB is reasonable for
our workloads. We use this block size for the rest of this
paper. Note that the cache block size is the unit of cache
management. It is independent of the fetch or transfer
size, which we analyze in the following section.

Prefetching
Prefetching is the technique of predicting blocks that are
likely to be used in the future and fetching them before
they are actually needed. The overall effectiveness of
prefetching at improving performance hinges on 1) the
accuracy of the prediction, 2) the amount of extra

Table 2 Performance with read caching (LRU), showing percentage of improvement over a system with almost no (512 KB) cache.

Resource-poor environment Resource-rich environment

Average read
response time

Average read
service time

Read miss
ratio

Average read
response time

Average read
service time

Read miss
ratio

(ms) (%)i (ms) (%)i (%)i (ms) (%)i (ms) (%)i (%)i

P-Avg. 6.27 2.46 4.31 2.11 0.934 2.12 5.00 22.9 3.42 22.3 0.746 22.0

S-Avg. 5.34 9.01 3.88 8.34 0.864 8.93 3.54 38.8 2.72 35.7 0.623 34.2

Ps-Avg. 6.96 2.33 4.34 2.09 0.934 2.13 5.73 20.6 3.49 21.5 0.746 22.0

Pm 6.04 2.26 4.18 1.83 0.935 1.81 3.15 49.0 2.27 46.6 0.521 45.2

Sm 5.69 6.36 4.10 6.34 0.891 7.27 2.69 55.7 1.99 54.5 0.463 51.8

i Improvement over 512-KB cache (buffer) [(original value � new value)/(original value)].
Resource-poor environment: 8 MB per disk, least-recently-used (LRU) replacement.
Resource-rich environment: 1% of storage used, LRU replacement.
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resource (memory use, disk and data-path busy time, etc.)
that is consumed by the prefetch, and 3) the timeliness of
the prefetch, i.e., whether the prefetch is completed
before the blocks are actually needed.

The prediction is usually based on past access patterns
[9, 17], although in certain situations, system-generated
plans [37, 38], user-disclosed hints [19], and guidance from
speculative execution [39] may be available to help with
the prediction. In general, the prediction is not perfect,
so that prefetching consumes more resource than demand
fetching. Specifically, it congests the I/O system and may
pollute memory with unused pages. Memory pollution is
the loading of pages that are not referenced and the
displacement of pages that will be referenced. For many
storage devices, particularly disk drives, however, a large
sequential access is much more efficient than multiple
small random accesses. For such devices, prefetching
of sequential pages has the potential to increase I/O

efficiency by transforming several small block I/Os into
one large block I/O that can be more efficiently handled
by the I/O device. Moreover, most workloads exhibit
sequentiality in their I/O access patterns, so that sequential
prefetch, especially if performed on a cache miss, scores well
on all three criteria (prediction accuracy, cost, and timeliness)
listed above. Therefore, practically all storage systems today
implement some form of sequential prefetch on cache miss.
We focus on such a prefetch in this paper. By default, we
assume that data is prefetched into the cache and managed
as if it were demand-fetched. The prefetched data could
instead be placed in a separate buffer or be handled in the
cache differently than demand-fetched data (e.g., be evicted
earlier). The interested reader is referred to [17] for an
evaluation of such alternatives.

Several researchers have also proposed schemes for
automatically matching up access patterns with previously
observed contexts, and then prefetching according to the
previously recorded reference patterns (e.g., [8]). Such
prefetching schemes should score well in the accuracy
criteria, but because they incur additional random I/Os
(which are slow and inefficient) to perform the prefetch,
they may not do as well in the cost and timeliness criteria.
We look at an alternative to context-based prefetch in [4].

Large fetch unit
Sequential prefetch can be achieved relatively easily by
using a large fetch unit, or transfer size. For example, if
the fetch unit is 64 sectors or blocks, a read request for
blocks 60 – 68 causes blocks 0 –127 to be fetched. Thus, a
large fetch unit, effectively a large block size, generally
prefetches blocks both preceding and following the target
blocks. Because the preceding blocks are fetched before
the target blocks to avoid an extra disk revolution, there
is a response-time penalty for having a large fetch unit.
Furthermore, the entire transfer must be complete before
an I/O interrupt is received, although in an alternate
design the fetch could be broken into one that terminated
at the target blocks while a second one obtained the
remaining blocks.

In Figure 5(a), we plot the effect of having a large fetch
unit on the read miss ratio and the average read response
time for the resource-rich environment. The corresponding
plots for the resource-poor environment are similar and
can be found in [5]. Observe that a large fetch unit
significantly reduces the read miss ratio, with most of the
effect occurring at fetch units that are smaller than about
64 KB. As the fetch unit is increased beyond 64 KB, the
average read response time starts to rise because the
penalty of having to fetch the blocks preceding and following
the target blocks inline begins to outweigh the benefit of the
relatively small marginal improvement in read miss ratio.
Previously, a one-track fetch unit was recommended [6], but
since then physical track sizes have grown from the 10-KB

Effect of (a) large fetch unit and (b) read ahead on read miss ratio 

and response time in a resource-rich environment.
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range to about 512 KB today. However, the ability of
workloads to use larger fetch units effectively has not kept
pace. For all of our workloads, a relatively small fetch unit
of 64 KB, or 1/8 of a track, works well.

Read ahead
In read ahead, after the system has fetched the blocks
needed to satisfy a read request, it continues to read
the blocks following; i.e., it reads ahead of the current
request, hence its name. We consider the read request to
be completed once all of the requested blocks have been
fetched. This typically means that two start I/Os are
issued— one for the requested blocks and another to read
ahead and prefetch data. In Figure 5(b), we explore the
performance effect of reading ahead by various amounts.
Observe from the figure that a read ahead of 32 KB
performs well for all of our workloads. Beyond 32 KB,
the read response time begins to rise slightly for some
of the workloads because the read ahead is holding
up subsequent demand requests, and the marginal
improvement in read-miss ratio at such large read-ahead
amounts is not enough to overcome the effect of this
delay. Later in this section, we look at preempting the
read ahead whenever a demand request arrives.

In Table 3, we summarize the effectiveness of the
different prefetching schemes at improving performance
over that of a non-prefetching system. Observe that a large
fetch unit tends to reduce the read miss ratio more than read
ahead does. It also has a slight advantage in read service
time for the PC workloads, because the PC workloads
tend to exhibit spatial locality and not just sequentiality.

In other words, not just the blocks that are following,
but those that are near blocks that have been recently
referenced, are likely to be accessed in the near future.
Thus, a large fetch unit, by causing the blocks around the
requested data to be prefetched, can achieve a higher hit
ratio. However, because the use of a large fetch unit
results in fetching the surrounding blocks before returning
from servicing a request, it performs worse than read
ahead in terms of response time, especially for the server
workloads.

Conditional sequential prefetch
To reduce resource wastage from unnecessary prefetch,
sequential prefetch can be initiated only when the access
pattern is likely to be sequential. Generally, the amount of
resources committed to prefetching should increase with
the likelihood that the prediction is correct. For instance,
previous studies [9, 17] have shown the benefit of
determining the prefetch amount by conditioning on the
length of the run or sequential pattern observed thus
far. We refer to such schemes as conditional sequential
prefetch. To condition on the run length, we need to be
able to discover the sequential runs in the reference
stream. This is generally difficult because of the complex
interleaving of references from different processes. In this
paper, we use a general sequential detection scheme
patterned after that proposed in [17].

The sequential detector keeps track of references at the
granularity of multiple sectors or blocks, a unit we refer to
as the segment. A segment is considered to be referenced
if any page within that segment is referenced. By detecting

Table 3 Performance improvement with prefetching, showing percentage of improvement over a system that does not prefetch.

Average read response time Average read service time Read miss ratio

LFU i RA i CSP i LFU i RA i CSP i LFU i RA i CSP i

(ms) (%)ii (ms) (%)ii (ms) (%)ii (ms) (%)ii (ms) (%)ii (ms) (%)ii (%)ii (%)ii (%)ii

Resource-poor environment
P-Avg. 4.29 32.1 4.25 32.4 4.14 34.3 2.74 36.2 2.99 30.4 2.93 31.9 0.484 48.2 0.587 37.2 0.518 44.6
S-Avg. 3.29 39.3 3.03 44.5 2.75 49.6 2.27 41.3 2.26 41.9 2.08 46.5 0.393 54.4 0.427 50.6 0.383 55.6

Ps-Avg. 4.92 29.8 4.64 33.4 4.65 33.4 2.78 35.8 2.84 34.4 2.81 35.0 0.484 48.2 0.587 37.2 0.518 44.6

Pm 4.10 32.1 3.98 34.1 3.89 35.6 2.74 34.4 2.94 29.5 2.91 30.3 0.495 47.1 0.596 36.2 0.533 43.0
Sm 4.23 25.7 3.79 33.4 3.61 36.6 3.13 23.6 3.07 25.3 2.93 28.6 0.505 43.3 0.551 38.1 0.523 41.3

Resource-rich environment
P-Avg. 3.33 33.8 3.43 31.5 3.33 33.5 2.12 37.8 2.40 29.5 2.35 30.7 0.375 49.4 0.473 36.4 0.415 44.0
S-Avg. 1.96 39.0 1.75 47.7 1.52 53.7 1.41 37.9 1.34 43.7 1.18 49.6 0.253 53.5 0.265 52.9 0.223 59.3

Ps-Avg. 3.96 31.2 3.81 33.4 3.82 33.3 2.16 37.5 2.28 34.1 2.26 34.4 0.375 49.4 0.472 36.5 0.414 44.1

Pm 1.91 39.3 2.01 36.3 1.94 38.3 1.33 41.2 1.56 31.3 1.54 32.3 0.247 52.6 0.321 38.5 0.280 46.3
Sm 2.27 15.7 1.87 30.7 1.72 36.1 1.72 13.7 1.53 23.2 1.41 29.1 0.285 38.6 0.284 38.6 0.260 44.0

i LFU: Large fetch unit (64 KB); RA: Read ahead (32 KB); CSP: conditional sequential prefetch (16-KB segments for PC workloads, 8-KB segments for server workloads,
prefetch trigger of 1, prefetch factor of 2).
ii Improvement over no prefetch [(original value � new value)/(original value)].
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sequentiality in segment references, we can very effectively
capture pseudosequential reference patterns. The
sequential detector maintains an LRU-organized list
of segments. Each entry in the segment directory has a
sequential run counter that tracks the length of the run
ending at that segment. On a read, if the corresponding
segment is not already in the segment directory, we insert
it. The run counter value of the new segment entry is set
to 1 if the preceding segment is not in the directory and
to 1 � run counter value of the preceding segment
otherwise. In the latter case, we remove the entry
corresponding to the preceding segment. Note that the
segment directory tracks sequential patterns in the actual
reference stream. It is therefore updated only when read
requests are encountered, not when blocks are prefetched.
On a read miss, if the run counter for the segment
exceeds a threshold known as the prefetch trigger, we
initiate sequential prefetch. In this paper, the prefetch
amount is set to 2 � run counter value � segment size,
subject to a maximum of 256 KB. The size of the segment
directory governs the number of potential sequential or
pseudo-sequential streams that can be tracked by the
sequential detector. We use a generous 64 entries for all
of our simulations.

In Figure 6, we explore the performance sensitivity to
the segment size and the prefetch trigger. As we would
expect, lower settings for the prefetch trigger perform
better because the cost of fetching additional blocks once
the disk head is properly positioned is small compared to
the cost of a random I/O that might have to be performed
later if the blocks are not prefetched. For all of the

workloads, the best performance is obtained with a prefetch
trigger of 1, meaning that prefetch is triggered on every
cache miss. A segment size of 16 KB works well for the
PC workloads. For the server workloads, the optimal
segment size is 8 KB.

In a similar fashion, we can additionally prefetch
preceding blocks when a backward sequential pattern is
detected. To avoid having to wait a disk revolution for
the preceding blocks to appear under the disk head, the
preceding blocks are fetched before the requested blocks.
Except for a slight performance improvement in some of
the PC workloads, such backward conditional sequential
prefetch turns out not to be very useful [5].

In Table 3, we compare the performance of conditional
sequential prefetch with that of large fetch unit and read
ahead. The three schemes achieve roughly the same
average read response time for the PC workloads,
reducing it by more than 30%. For the server workloads,
conditional sequential prefetch is clearly superior,
improving the average read response time by 36 –54%. As
for read service time, the PC workloads are improved by
30 – 40%, with large fetch unit having an edge. For the
server workloads, conditional sequential prefetch again
reigns supreme, with improvement of 29 –50%. In the
resource-poor environment, about 40 – 60% of the reads
remain after caching and prefetching. In the resource-rich
environment, about 25– 45% remain.

Opportunistic prefetch
Another way to reduce the potential negative impact of
prefetch is to perform the prefetch using only resources

Figure 6

Average read response time with conditional sequential prefetch in a resource-rich environment.
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that would otherwise be idle or wasted. We refer to
such an approach as opportunistic prefetch. In general,
opportunistic prefetch can best be performed close to the
physical device, where detailed information is available
about the critical physical resources. Because a disk access
costs much more than a semiconductor memory access,
the cost of accessing prefetched data should be largely
independent of the layer in the storage stack into which
the data is prefetched. However, data prefetched into the
disk drive cache tends to be evicted sooner, sometimes
even before it is used, because the disk drive cache is
typically smaller than the adapter and outboard controller
cache. To model this effect, we enter opportunistically
prefetched data into an 8-MB (LRU) prefetch buffer
instead of the large cache in the resource-rich environment.
The prefetch buffer turns out to significantly reduce
pollution of the large cache.

The simplest form of opportunistic prefetch is to read
ahead up to a maximum amount or until a demand
request arrives, at which point the read ahead is
terminated. This is known as preemptible read ahead.
Read ahead by the disk is usually preemptible. At the
adapter/controller level, it is generally difficult to preempt
a request that has been issued to the disk, but the request
can be broken up into smaller subrequests to enable
preemption between them (e.g., [40]). By terminating the
read ahead as soon as another demand request arrives,
preemptible read ahead avoids holding up subsequent
requests. Thus, its performance does not degrade as the
maximum read-ahead amount is increased (Figure 7).
However, preemptible read ahead tends not to perform
as well as non-preemptible read ahead, especially for
the speeded-up workloads, because it may be preempted
before it can perform any effective prefetch. Such results
suggest a hybrid approach of performing preemptible
read ahead in addition to the non-opportunistic
prefetching schemes discussed above. In such an approach,
we would always perform some amount of prefetch (non-
opportunistic) and, if idle resources were available, we
would prefetch more (opportunistic). We find that with
the hybrid approach, an opportunistic prefetch limit of
128 KB works well in almost all of the cases [5]. This is
the value that we assume for the rest of the paper. An
opportunistic prefetch limit of 128 KB means that blocks
are opportunistically prefetched only until a total of
128 KB of data has been prefetched.

Table 4 summarizes the impact of performing
preemptible read ahead in addition to the various non-
opportunistic prefetching schemes in the resource-rich
environment. The corresponding table for the resource-
poor environment can be found in [5]. We find that in
the resource-poor environment, preemptible read ahead
improves average read response time by about 5% for
large fetch unit and read ahead. The improvement is

smaller for conditional sequential prefetch because
conditional sequential prefetch already uses resources
carefully by determining the amount to prefetch on the
basis of the potential usefulness of the prefetch. In the
resource-rich environment, preemptible read ahead has
a bigger effect, especially for the server workloads,
which are improved by about 15–20%.

Another opportunistic prefetching technique is to start
reading once the disk head is positioned over the correct
track. Such a scheme is known as read-any-free-blocks, or
zero latency read. Basically, it uses the rotational delay to
perform some prefetching free of cost. Such a scheme
may prefetch some blocks that precede the requested
data and/or some blocks that come after, depending
on the time at which the head is properly positioned.
For example, if the head is positioned to read just
after the requested data has rotated under, read-any-
free-blocks fetches the succeeding blocks until the end of
the track and then continues reading the blocks at the
beginning of the track. As shown in Table 4, read-any-
free-blocks is quite effective at improving performance.
Our results indicate that in the resource-poor environment,
read-any-free-blocks with preemptible read ahead is able
to reduce the average read response time with read ahead
by about 20% for the PC workloads and by more than
10% for the server workloads. In the resource-rich
environment, the additional improvement is more than
20% for all of the workloads. Again, conditional sequential
prefetch is improved less because it performs large
prefetches only when they are warranted. As for large
fetch unit, it is improved the least by read-any-free-blocks
because it already prefetches some of the preceding blocks.

Effect of preemptible read ahead on read miss ratio and response 

time in a resource-rich environment.

Figure 7

P-Avg. S-Avg. Ps-Avg. Pm Sm

0

0.2

0.4

0.6

0.8

0 32 64 96 128

Read-ahead amount  (KB) Read-ahead amount  (KB)

0

1

2

3

4

5

6

0 32 64 96 128

A
v
e
ra

g
e
 r

e
a
d
 r

e
sp

o
n
se

 t
im

e
  
(m

s)

R
e
a
d
 m

is
s 

ra
ti

o

IBM J. RES. & DEV. VOL. 48 NO. 2 MARCH 2004 W. W. HSU AND A. J. SMITH

267



The dual technique of read-any-free-blocks is just-in-time
seek, or delayed preemption [41]. The idea here is that
when a request arrives while the disk is performing
preemptible read ahead, the disk should continue with the
read ahead and move the head to service the incoming
request only in time for the head to be positioned over
the correct track before the requested data rotates under.
Basically, this allows the disk to prefetch more of the
succeeding blocks. As shown in Table 4, the additional
use of just-in-time seek improves performance for large
fetch unit slightly over performing only read-any-free-
blocks and preemptible read ahead. For read ahead and
conditional sequential prefetch, just-in-time seek offers
a marginal performance improvement in addition to that
from read-any-free-blocks and preemptible read ahead for
the server workloads, but loses out for the PC workloads.

During the rotational delay, the disk can also be used
to perform I/Os that are tagged as lower-priority. This
technique is called freeblock scheduling [42] and is meant
to allow tasks such as disk scrubbing and data mining to
be performed in the background with no impact on the
foreground work. For instance, if the next block to be

read is halfway around the track, the disk head could be
positioned to service background requests “free of cost” as
long as it could be moved back in time to read the block
as it rotates under the head. However, given that read-
any-free-blocks and just-in-time seek are effective at
improving performance, such background I/Os may not
be totally free for our workloads.

In general, in both the resource-poor and resource-rich
environments, the best performance is obtained for the PC
workloads when preemptible read ahead and read-any-
free-blocks are performed in addition to simple read
ahead. Specifically, this means starting to read once the
disk head is positioned over the correct track, and reading
beyond the requested data by 32 KB and, if there are no
incoming requests, by up to 128 KB. The average read
response time in this case is improved by almost 50% over
that of a system that does not prefetch (Table 5). For the
server workloads, performance improvement of 42–54%
in the resource-poor environment and up to 65% in the
resource-rich environment is achieved when conditional
sequential prefetch is supplemented by preemptible read
ahead and read-any-free-blocks.

Table 4 Additional effect of opportunistic prefetch in a resource-rich environment, showing percentage of improvement over a
system that performs only non-opportunistic prefetch.

Average read response time Average read service time Read miss ratio

LFU i RA i CSP i LFU i RA i CSP i LFU i RA i CSP i

(ms) (%)ii (ms) (%)ii (ms) (%)ii (ms) (%)ii (ms) (%)ii (ms) (%)ii (%)ii (%)ii (%)ii

Preemptible read ahead
P-Avg. 2.97 11.9 3.13 10.2 3.15 6.84 1.81 14.9 2.10 13.1 2.15 9.25 0.336 10.8 0.411 13.7 0.381 8.95
S-Avg. 1.71 15.2 1.45 18.8 1.32 13.5 1.20 17.7 1.04 22.8 0.98 16.4 0.212 19.1 0.204 23.7 0.186 16.1

Ps-Avg. 3.76 5.40 3.65 4.99 3.69 4.49 1.99 7.79 2.13 7.24 2.13 6.43 0.371 1.15 0.437 8.07 0.391 6.28

Pm 1.67 12.3 1.96 2.46 1.98 �2.15 1.14 14.6 1.45 6.99 1.50 2.25 0.223 9.90 0.296 7.75 0.275 1.60
Sm 2.05 9.8 1.44 22.8 1.38 19.6 1.56 9.47 1.14 25.4 1.10 22.1 0.257 9.79 0.212 25.3 0.205 21.2

�Read-any-free-blocksiii

P-Avg. 2.76 18.3 2.57 26.7 2.66 22.2 1.68 20.8 1.71 29.6 1.79 25.0 0.310 17.8 0.332 30.5 0.313 25.6
S-Avg. 1.65 18.7 1.32 27.4 1.20 22.6 1.16 20.8 0.947 31.3 0.886 25.7 0.204 22.6 0.182 32.8 0.167 26.0

Ps-Avg. 3.47 13.1 3.03 22.1 3.15 19.3 1.81 16.3 1.69 26.7 1.75 23.8 0.336 10.7 0.348 27.0 0.319 24.0

Pm 1.57 17.8 1.59 20.9 1.65 15.0 1.07 19.9 1.17 25.3 1.24 19.4 0.207 16.0 0.238 25.8 0.226 19.4
Sm 1.99 12.4 1.44 22.8 1.38 19.9 1.52 11.8 1.15 24.7 1.10 22.2 0.249 12.6 0.212 25.3 0.204 21.3

�Just-in-time seekiv

P-Avg. 2.71 19.9 2.66 24.3 2.80 18.0 1.50 29.7 1.52 37.4 1.65 30.7 0.287 24.1 0.318 33.6 0.308 26.8
S-Avg. 1.63 20.1 1.29 29.5 1.21 22.1 1.04 29.7 0.800 42.6 0.769 36.0 0.198 24.7 0.171 37.5 0.162 28.5

Ps-Avg. 3.38 15.5 3.20 17.8 3.37 13.5 1.46 32.9 1.49 35.4 1.64 28.5 0.303 19.9 0.335 30.0 0.317 24.5

Pm 1.54 19.3 1.65 17.8 1.76 9.31 0.927 30.5 1.01 35.1 1.13 26.4 0.190 22.9 0.229 28.7 0.223 20.1
Sm 1.97 13.0 1.42 24.1 1.33 22.4 1.38 20.0 1.01 34.4 0.94 33.3 0.242 14.9 0.204 28.1 0.194 25.1

i LFU: Large fetch unit (64 KB); RA: Read ahead (32 KB); CSP: Conditional sequential prefetch (16-KB segments for PC workloads, 8-KB segments for server workloads,
prefetch trigger of 1, prefetch factor of 2).
ii Improvement over non-opportunistic prefetch [(original value � new value)/(original value)].
iii Preemptible read ahead � read-any-free-blocks.
iv Preemptible read ahead � read-any-free-blocks � just-in-time seek.
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Sensitivity to cache size
In Figure 8, we analyze performance sensitivity to cache
size when data is prefetched into the cache and managed
as if it were demand-fetched. We use the default
parameters shown in Figure 2, meaning that in the
resource-poor environment [Figure 8(a)], we read ahead
by at least 32 KB on every cache miss and up to 128 KB if
there are no incoming requests. We also perform read-any-
free-blocks. In the resource-rich environment [Figure 8(b)],
we perform conditional sequential prefetch, together with
preemptible read ahead and read-any-free-blocks.

Observe that with prefetching, more than 50% of the
reads can be satisfied by a 4-MB cache. Increasing the
cache size beyond 4 MB to 32 MB achieves only
diminishing returns. Such results suggest that disk drive
caches in the megabyte range are sufficient. On the other
hand, for very large caches, the miss ratio continues to
improve as the cache size is increased beyond 4% of the
storage used. As discussed earlier, most enterprise-class
outboard storage controllers today, when fully loaded,
have a front-end to back-end (cache size to storage space)
ratio between 0.05% and 0.2% [34 –36]. Our results
suggest that increasing the cache size for these systems
is likely to continue to improve performance, although
whether such large cache sizes are cost-effective is another
issue. Note also that the desirable amount of cache may
not scale linearly with the size of the system.

Write buffering
The term write buffering refers to the technique of
temporarily holding written data in fast memory (typically
semiconductor) before destaging the data to permanent
storage. A write operation can be reported as completed
once its data has been accepted into the buffer. Because
writes tend to come in bursts [3], the write buffer helps
to better regulate the flow of data to permanent storage.
To prevent any loss of data if the system fails before the

buffered data is written to permanent storage, the write
buffer is typically implemented with some form of non-
volatile storage (NVS). In some environments, (e.g.,
UNIX file system, PC disks), a less expensive approach of
periodically (usually every 30 seconds) flushing the buffer
contents to disk is considered sufficient. By delaying the
time at which the written data is destaged to permanent
storage, write buffering makes it possible to combine
multiple writes to the same location into a single physical
write, thereby reducing the number of physical writes that
have to be performed by the system. It may also increase
the efficiency of writes by allowing multiple consecutive
writes to be merged into a single big-block I/O. In
addition, more sophisticated techniques can be used to
schedule the writes to take advantage of the characteristics
and the state of the storage devices.

In short, the write buffer achieves three main effects.
First, it hides the latency of writes by deferring them to
some later time. Second, it reduces the number of physical
writes, and third, it enables the remaining physical writes
to be performed efficiently. In this paper, we evaluate
write buffering using a general framework that is flexible
enough for us to examine the three effects of write
buffering separately. In this framework, a background
destage process is initiated whenever the fraction of
“dirty” (or modified) blocks in the write buffer exceeds
a high-limit threshold, highMark, and is suspended once
the fraction of dirty blocks in the buffer drops below a
low-limit threshold, lowMark. By appropriately setting
highMark, we can ensure that buffer space is available to
absorb the incoming writes. To avoid impact on the read
response time, destage requests are not serviced unless
there are no pending read requests or the write buffer is
full. In the latter case, destage requests are serviced at the
same priority as the reads. Analysis in [3] shows that the
I/O workload is bursty, which implies that the storage

Table 5 Overall effect of performing preemptible read ahead and read-any-free-blocks in addition to non-opportunistic prefetch,
showing percentage of improvement over a system that does not prefetch.

Resource-poor environment Resource-rich environment

Average read
response time

Average read
service time

Read miss ratio Average read
response time

Average read
service time

Read miss ratio

LFUi RAi CSPi LFUi RAi CSPi LFUi RAi CSPi LFUi RAi CSPi LFUi RAi CSPi LFUi RAi CSPi

P-Avg. 39.5 47.3 46.1 44.9 48.3 46.3 53.7 53.9 56.8 45.7 49.7 48.2 50.6 50.4 48.1 58.3 55.8 58.4
S-Avg. 44.3 51.7 54.2 46.8 51.1 52.9 59.4 59.8 61.7 48.7 61.8 64.6 47.9 61.0 63.2 61.7 68.0 70.2

Ps-Avg. 35.3 45.3 43.5 42.6 49.5 48.0 50.8 51.8 55.9 40.0 48.0 46.1 47.5 51.7 50.0 54.8 53.6 57.5

Pm 38.8 48.0 46.8 42.1 46.7 44.5 51.7 52.1 54.8 50.1 49.6 47.6 52.9 48.6 45.5 60.2 54.4 56.7
Sm 30.6 40.8 42.1 28.7 34.8 36.2 47.5 47.5 48.4 26.2 46.5 48.8 23.9 42.2 44.8 46.3 54.2 55.9

i LFU: Large fetch unit (64 KB); RA: Read ahead (32 KB); CSP: Conditional sequential prefetch (16-KB segments for PC workloads, 8-KB segments for server workloads,
prefetch trigger of 1, prefetch factor of 2).
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system has idle periods during which the destage requests
can be handled.

To reduce the number of physical writes, we use the
least-recently-written (LRW) policy to decide which blocks
to destage [17]. The LRW policy is similar to the LRU
policy for read caching and is so named because it selects
the block that was least recently written for destage. To
examine the effect of limiting the age of dirty data in the
buffer, we also destage a block when its age exceeds the
maximum allowed. Destage policies have been studied in
some detail recently, but the focus has been on selecting
blocks to destage on the basis of the efficiency with which
buffer space can be reclaimed. For instance, in [10] the
track with the most dirty blocks is selected for destage.

In [11] the blocks that can be written most quickly are
selected. But a destage policy that strives to quickly
reclaim buffer space may not be effective if the blocks
that are destaged will be dirtied again in the near future.
Moreover, with the layered approach of building systems,
estimates of the cost of destaging operations may not be
available to the destage process. For example, the adapter
or outboard controller housing the write buffer typically
has no accurate knowledge of the state and geometry of
the underlying disks.

The approach we take is to first focus on reducing the
number of physical writes by destaging blocks that are less
likely to be rewritten and to then perform the remaining
writes efficiently. To achieve the latter, whenever a
destage request is issued, we include in the same request
contiguous blocks that are also dirty. The resulting disk
write may span tracks, but it is a large sequential write
which can be efficiently handled by the disk. Also, we
allow as many outstanding destage requests (contiguous
blocks) as the maximum queue depth seen by the host,
and once the destage process is initiated, it stops only
when the fraction of dirty blocks in the buffer drops below
a low-limit threshold, lowMark. By setting lowMark to be
significantly lower than highMark, we achieve a hysteresis
effect which prevents the destage process from being
constantly triggered whenever new blocks become dirty.
Therefore, instead of a continual trickle of destage
requests, we periodically receive a burst of destage
requests that can be effectively scheduled.

Absorbing write bursts
To investigate the amount of buffer space needed to
absorb the write bursts, we set both the highMark and
lowMark to zero. This ensures that dirty blocks are
destaged at the earliest opportunity to make room for
buffering the incoming writes. In Figure 9, we plot the
average write response time as a function of the buffer
size. In order to generalize our results across the different
workloads, we also normalize the buffer size to the
amount of storage used.

When the write buffer is not large enough to absorb the
write bursts, some of the writes will stall until buffer space
is reclaimed by destaging some of the dirty blocks. When
the buffer is large enough, all of the write requests can
be completed without stalling. Notice that for all of the
workloads, a write buffer of 4 – 8 MB or 0.05– 0.1% of the
storage used is sufficient to effectively absorb the write
bursts. In fact, for the PC workloads, a small write buffer
of about 1 MB, or 0.01% of the storage used, is able to
hide most of the write latency. As in the case of the read
cache, we investigated the effect of different buffer block
sizes, or units of buffer management, and again found that
4 KB is reasonable for our workloads [5].

Sensitivity to cache size when data is prefetched into the cache and 

managed like demand-fetched data: (a) Resource-poor environ-

ment. (b) Resource-rich environment.
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Eliminating repeated writes
As mentioned earlier, when data is updated again before
it is destaged, the second update effectively cancels out
the previous update, thereby reducing the number of
physical writes to the storage system. In this section, we
focus on the amount of buffer space needed to effectively
allow repeated writes to the same location to be canceled.
We set the highMark and lowMark to 1 to maximize
the probability that a write will “hit” in the write
buffer.

In Figure 10, we plot the write miss ratio as a function
of the buffer size. We define the write miss ratio as the
fraction of write requests that causes one or more buffer
blocks to become dirty. Thus, the write miss ratio is

essentially the fraction of write requests that are not
canceled. As in the case of the read cache, we took the
arithmetic mean of the plots for the five different classes
of workloads and fitted various functional forms to it. As
shown in Figure 10(b), a power function of the form
f(x) � a(x � b)c is again a good fit. However, the
magnitude of the exponent c at about 0.2 is significantly
lower than it is for reads, meaning that for large buffer
sizes, the write miss ratio decreases much more slowly
with a buffer size increase than is the case for reads. Such
a behavior of the physical I/O stream turns out to parallel
what has been observed at the logical level for large
database systems in which the sizes of the read and write
exponents are about 0.5 and 0.25, respectively [17].

Improvement in average write response time from absorbing write 

bursts (dirty blocks are eagerly destaged): (a) Resource-poor en-

vironment. (b) Resource-rich environment.

Figure 9
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Observe from Figure 10(b) that for all of the workloads,
60 –75% of the writes are eliminated at buffer sizes that
are less than 0.1% of the storage used. In the resource-
poor environment [Figure 10(a)], we limit the age of dirty
blocks in the buffer to be less than 30 seconds. There is,
therefore, less write cancellation (about 40 –50% less), and
most of it occurs at very small buffer sizes (about 2 MB).
In general, when there is concern about losing buffered
data, limits have to be placed on the maximum age of
the buffered data. In [5], we analyze the effect of such
constraints and find that a maximum age of one hour
achieves most of the write elimination.

Combined effect
We have studied the effects of absorbing write bursts and
eliminating repeated writes independently of each other.
In practice, the two effects compete for buffer space. They
also work together, because eliminating writes makes it
possible to absorb write bursts in less buffer space.
Striking a balance between the two is therefore key to
effective write buffering. In this section, we investigate
how to achieve this balance by appropriately setting the
highMark and lowMark threshold values.

In Figure 11, we plot the write miss ratio as a function
of highMark. As we would expect, if destage is initiated
whenever a small fraction of the buffer is dirty, there is
less opportunity for write cancellation. The write miss
ratio is therefore high for small values of highMark. For
our various workloads, we find that the miss-ratio curves
tend to flatten beyond a highMark value of about 0.6. On
the other hand, if the highMark value is set high, meaning

that destage is initiated only when most of the buffer is
dirty, response time suffers because some of the writes
arrive to find the buffer full and stall until buffer space
becomes available. In Figure 12, we plot the average write
response time as a function of highMark. Observe that the
average write response time rises as highMark increases
beyond about 0.8 – 0.9. In general, we find that a highMark
value of about 0.6 – 0.9 and a lowMark value of less than
0.4 strike a reasonable compromise between absorbing
write bursts and eliminating repeated writes. In the rest
of this paper, we use as default a highMark value of 0.8
and a lowMark value of 0.2.

In Figure 13, we plot the write service time as a
function of the threshold settings. Notice that the service
time curves are steeper than the corresponding miss-ratio
curves in Figure 11. This is because the highMark and
lowMark settings also affect the efficiency with which the
destage operations can be carried out. In particular, when
lowMark is set close to highMark, the destage requests are
issued in a continuous trickle, but when lowMark is set
significantly lower than highMark, the destage operations
are issued in batches and can be scheduled to be performed
efficiently (see Request scheduling in Section 4).

A concern with background destage operations is that
they may have a negative impact on the read response
time. For instance, when the write buffer becomes full,
background destage requests become foreground
operations which may interfere with incoming read
requests. Moreover, the first read request after an idle
period may encounter a destage in progress. In this study,
we assume that destage operations are not preemptible,

Figure 11

Effect of lowMark and highMark threshold values on write miss ratio in a resource-rich environment.
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which is generally true at the adapter and outboard
controller level because a write request cannot easily be
canceled once it has been issued to the disk. We find that
the read response time is not significantly affected by
write buffering provided that there is some hysteresis, that
is, lowMark is significantly lower than highMark. When
there is no hysteresis, destage operations tend to occur
after every write request and take longer because request
scheduling is not effective with a small number of

outstanding requests. The chance for a read to be blocked
is therefore increased. In addition, the constant trickle
of destage operations may lead to disk head thrashing,
because the locality of reference for destage operations
(which are essentially delayed writes) is not likely to
coincide with that of current read requests.

In Table 6, we summarize the performance benefit of
write buffering. In the resource-poor environment, about
40 –50% of the writes are eliminated by write buffering.

Figure 12

Effect of lowMark and highMark threshold values on average write response time in a resource-rich environment.
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Effect of lowMark and highMark threshold values on average write service time in a resource-rich environment.
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The average write service time is reduced by 60 – 80%
compared with the write-through case, while the average
write response time is reduced by more than 90%. The
improvement in the resource-rich environment is even
more significant, with about 60 –70% of the writes being
eliminated and a reduction in the average write service
time by as much as 90%. Note that this large reduction
in write service time with a relatively small write buffer,
albeit non-volatile to avoid any data loss, puts into doubt
the premise of log-structured file systems [43], which are
based on the idea that with large disk caches, I/O systems
will have almost no reads and will be bottlenecked on writes.

Request scheduling
The time required to satisfy a request depends on the
state of the disk—specifically, whether the requested data
is present in the cache and where the disk head is relative
to the requested data. In request scheduling [44], the order
in which requests are handled is optimized to improve
performance. The effectiveness of request scheduling
generally increases with the number of requests that are
available to be scheduled. In most systems, the maximum
number of requests outstanding to the storage system can
be set. The actual queue depth depends on the workload.

Request scheduling can, in principle, be performed at
different levels in the storage stack (e.g., operating system,
device driver, disk adapter, disk drive), provided that the
necessary information is available to estimate the service
times of different requests. High in the storage stack, it is
difficult to make good estimates, because little information
is available there. For example, modern disk protocols
such as SCSI and IDE present a flat address space, so that
any level above the disk drive has little knowledge of the
physical geometry of the disk unless it knows the disk
model number and has a table of the track and sector
configurations. In addition, it is hard to predict the
angular position of the disk or which requests will hit
in the disk drive cache. As we have seen in the previous

sections, there are many hits in the disk drive cache, and
such hits can substantially affect the effectiveness of
request scheduling [14].

In this paper, we first consider scheduling the requests
that miss in the cache, since the critical resource is the
disk arm. We term this arm scheduling. Our arm-
scheduling experiments assume a maximum queue depth
of 8 and are based on the scheduling algorithm that has
been variously referred to as shortest time first [13],
shortest access time first [12], and shortest positioning
time first [14]. This is a greedy algorithm that always
selects the pending request with the smallest estimated
access time (seek time � rotational latency). By selecting
the request with the shortest access time, the algorithm
tries to reduce the amount of time the disk arm spends
positioning itself, thereby increasing the effective
utilization of the critical resource. The algorithm can be
adapted to minimize wait time by selecting the request
with the shortest service time. To reduce the chances of
request starvation, the requests can be aged by subtracting
from each access time or positioning delay (Tpos) a
weighted value corresponding to the amount of time the
request has been waiting for service (Twait). The resulting
effective positioning delay (Teff) is used in selecting the
next request:

Teff � Tpos � �W � Twait�. (1)

We refer to this variation of the algorithm as aged shortest
access time first (ASATF) [12].

With a sufficiently large aging factor, W, ASATF
degenerates to first come first served (FCFS). A W value
of 0.006 1 is recommended in [12, 14], but the range of
“good” values for W is found to be wide. In Figure 14 we
plot the average response time, including both reads and
writes, and its coefficient of variation as a function of W.

1 A value of 6 is recommended in [14], but if Tpos and Twait are in the same units,
as one would reasonably expect, the correct value should be 0.006.

Table 6 Performance with write buffering, showing percentage of improvement over a write-through system.

Resource-poor environment Resource-rich environment

Average write
response time

Average write
service time

Write miss
ratio

Average write
response time

Average write
service time

Write miss
ratio

(ms) (%)i (ms) (%)i (%)i (ms) (%)i (ms) (%)i (%)i

P-Avg. 0.227 96.9 1.41 70.9 0.606 0.227 0.218 97.0 0.700 85.6 0.424 0.218
S-Avg. 2.13 92.7 1.32 70.7 0.525 2.13 0.831 97.0 0.535 87.8 0.293 0.831
Ps-Avg. 0.646 91.6 1.05 78.2 0.520 0.646 0.695 90.9 0.681 85.9 0.412 0.695
Pm 0.190 97.7 1.30 74.2 0.598 0.190 0.123 98.5 0.474 90.5 0.332 0.123
Sm 3.48 90.1 1.57 65.2 0.572 3.48 1.16 96.7 0.855 81.0 0.380 1.16

i Improvement over write-through or no write buffer [(original value � new value)/(original value)].
Resource-poor environment: 4 MB, lowMark � 0.2, highMark � 0.8, LRW replacement, 30-second age limit.
Resource-rich environment: 0.1% of storage used, lowMark � 0.2, highMark � 0.8, LRW replacement, one-hour age limit.
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The corresponding plots that consider the reads and writes
separately, and the plots of the average service time as a
function of W, are in [5]. For all of our workloads, the
average response time is almost constant for W � 0.03.
Observe that as W increases, the coefficient of variation
for response time decreases gradually to a minimum
and then increases rather sharply beyond that. The
improvement in the coefficient of variation is gradual as
we increase the aging factor from zero because our model,
unlike those used in [12, 14], takes into consideration
feedback between request completion and subsequent
request arrivals so that requests are less likely to be
starved. Since the variability in response time increases
rather sharply for W values beyond the optimal, we err
on the side of caution and select a value of 0.01 as the
baseline for our other simulations. By comparing the
response time at large values of W with that at small
values of W, we can quantify the net effect of arm
scheduling. We summarize the results in Table 7. In
general, arm scheduling tends to have a bigger impact in
the server environment. Improvement of up to 39% in
average response time is seen for the server workloads.
For the PC workloads, the improvement is about 15% on
average. Looking at the reads and writes separately, we
find that in most cases, the improvement in write response
time is about two to three times that for reads. This is
because writes tend to come in big bursts, so that if the
destage operations are not scheduled efficiently, the write
buffer is likely to become full and cause the incoming
writes to stall.

Note that arm scheduling actually has two separate
effects; one is to reduce the time needed to service a
request, and the other is to reduce the waiting time by
letting the shortest job proceed first. Observe from Table 7
that the service time improvement is more consistent
across the PC and server workloads than the improvement
in response time. This suggests that much of the response
time improvement for the server workloads results from
less waiting. Across all of our workloads, read service time
is barely improved by request scheduling, while write
service time is improved by 20 –30% in the resource-
poor environment and 35– 40% in the resource-rich
environment. The poor improvement for read requests is
expected because the number of read requests that are
outstanding and can be scheduled tends to be low [3]. The
sizable improvement (up to 40%) in write service time
reflects our write-buffering strategy, which is specifically
designed to maintain a sizable number of outstanding
destage requests so that they can be effectively scheduled.

In this section, we have so far assumed a maximum
queue depth of 8 and focused on the effectiveness of
arm scheduling. In practice, when there are multiple
outstanding requests, the storage system cache in effect
performs an additional level of scheduling by allowing

subsequent cache hits to proceed. We refer to this as
cache scheduling. In Table 8, we summarize the outcome
of allowing multiple requests to be outstanding to the
storage system. The results when reads are considered
separately from writes are available in [5]. The
improvement in response time reported in Table 8
includes the effect of both cache and arm scheduling. That
it exceeds by only a small amount the improvement shown
by arm scheduling alone (Table 7) suggests that the results
from cache scheduling tend to be secondary.

Note that as the maximum queue depth is increased,
the average service time is improved, but because some
requests are deferred, the average response time may
rise. For our workloads, a maximum queue depth of 8
is sufficient to achieve most of the benefit of request
scheduling, especially the improvement in response time.
In general, a deeper queue should be used for systems
that are optimized for throughput, such as servers. From
Table 8, with a maximum queue depth of 8, the average
response time for the server workloads is improved by
30 – 40% in both the resource-poor and resource-rich
environments, while the PC workloads are improved by
about 20%. In terms of average service time, both the PC
and server workloads are improved by about 20%. Breaking
down the requests into reads and writes, we again find that
most of the improvement is due to the writes [5].

Parallel I/O
A widely used technique to improve I/O performance is to
distribute data among several disks so that multiple requests
can be serviced by the different disks concurrently. In

Effect of aging factor, W, on response time in a resource-rich en-

vironment.
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addition, a single request that spans multiple disks can
be speeded up if it is serviced by the disks in parallel. The
latter tends to make more sense for workloads dominated
by very large transfers, specifically scientific workloads.
For most other workloads, where requests are small and
plentiful, the ability to handle many of them concurrently
is usually more important.

In general, data can be distributed among the disks in
various ways. The two most common approaches are to
organize the disks into a volume set or a stripe set. In a
volume set, data is laid out on a disk until it is full before
the next disk is used. In a stripe set, data is divided into
units called stripe units, and the stripe units are laid out
across the disks in a round-robin fashion. In a redundant

Table 8 Average response and service times as maximum queue depth is increased from 1.

Average response time Average service time

Maximum queue depth Maximum queue depth

2 4 8 16 2 4 8 16

(ms) (%)i (ms) (%)i (ms) (%)i (ms) (%)i (ms) (%)i (ms) (%)i (ms) (%)i (ms) (%)i

Resource-poor environment
P-Avg. 1.68 8.59 1.56 14.8 1.51 17.8 1.52 17.2 1.99 1.44 1.79 11.1 1.74 13.7 1.70 15.8
S-Avg. 3.71 6.46 2.77 24.1 2.39 30.4 2.17 34.8 1.97 1.58 1.69 15.5 1.57 20.9 1.49 25.0

Ps-Avg. 2.29 5.83 2.08 14.4 1.96 19.3 1.99 18.6 1.79 2.89 1.59 13.9 1.52 18.0 1.46 21.0

Pm 1.43 15.0 1.31 22.7 1.24 26.6 1.25 25.8 1.97 1.61 1.71 14.3 1.63 18.6 1.57 21.6
Sm 5.32 4.41 4.02 27.7 3.43 38.3 3.12 44.0 2.52 1.76 2.19 14.5 2.06 19.8 1.95 23.8

Resource-rich environment
P-Avg. 1.35 8.94 1.25 15.3 1.19 19.0 1.23 17.2 1.38 1.71 1.21 13.7 1.14 18.8 1.08 22.9
S-Avg. 1.70 9.42 1.23 24.9 1.00 30.4 0.889 34.6 0.895 1.72 0.747 16.3 0.689 21.2 0.635 27.4

Ps-Avg. 1.98 4.99 1.80 13.9 1.67 19.8 1.72 18.3 1.35 2.96 1.18 14.9 1.11 19.9 1.06 23.7

Pm 0.753 16.2 0.703 21.8 0.667 25.8 0.689 23.3 0.923 1.36 0.800 14.5 0.746 20.2 0.703 24.9
Sm 2.02 6.33 1.48 31.3 1.25 41.8 1.14 47.0 1.27 1.04 1.06 17.8 0.963 25.1 0.889 30.9

i Improvement over queue depth of 1 [(original value � new value)/(original value)].
Aged shortest access time first with age factor � 0.01.

Table 7 Performance with aged-shortest-access-time-first (ASATF) scheduling, showing percentage of improvement over first-
come-first-served (FCFS) scheduling.

Average response time Average service time

All requests Reads Writes All requests Reads Writes

(ms) (%)i (ms) (%)i (ms) (%)i (ms) (%)i (ms) (%)i (ms) (%)i

Resource-poor environment
P-Avg. 1.51 14.2 3.34 12.8 0.227 24.6 1.74 10.8 2.22 4.03 1.41 16.5
S-Avg. 2.39 26.0 2.67 18.7 2.13 33.0 1.57 19.0 1.91 3.13 1.32 30.6

Ps-Avg. 1.96 19.0 3.83 14.4 0.646 31.1 1.52 16.4 2.18 6.08 1.05 27.1

Pm 1.24 14.4 3.14 12.6 0.190 28.1 1.63 15.4 2.23 4.24 1.30 23.8
Sm 3.43 34.8 3.37 15.1 3.48 44.7 2.06 18.8 2.67 2.71 1.57 33.6

Resource-rich environment
P-Avg. 1.19 13.5 2.66 11.6 0.218 25.4 1.14 18.1 1.79 3.40 0.700 34.7
S-Avg. 1.00 22.3 1.20 13.3 0.831 22.6 0.689 21.6 0.886 2.68 0.535 40.9

Ps-Avg. 1.67 18.9 3.15 12.4 0.695 32.0 1.11 19.1 1.75 5.05 0.681 35.1

Pm 0.67 7.71 1.65 8.06 0.123 5.07 0.746 19.8 1.24 2.99 0.474 35.8
Sm 1.253 39.4 1.38 13.2 1.16 52.8 0.963 25.4 1.10 2.32 0.855 39.8

i Improvement over FCFS [(original value � new value)/(original value)].
Age factor: 0.01; queue depth: 8.
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array of inexpensive disks (RAID) [45], the stripe set is
known as RAID-0. Note that the volume set is essentially
a stripe set with a stripe unit that is equal to the size of
the disk. A shortcoming of striping data across the disks is
that, since each disk contains some blocks of many files,
a single disk failure could wipe out many files. There
are well-known techniques such as mirroring and parity
protection to overcome this weakness, but they are beyond
the scope of this study. The interested reader is referred
to [16] for more details.

The choice of stripe unit has a major bearing on the
performance of the storage system. A small stripe unit
could result in single requests spanning multiple disks,
thereby increasing the number of physical I/Os and
causing many disks to be busy. More significantly, it
results in many small random requests, which the disks are
not very efficient at handling. Furthermore, a small stripe
unit makes sequential prefetch by the disk less effective
because data that appears contiguous on a disk is likely to
be logically interspersed with data on other disks. On the
other hand, a small stripe unit evens out the load across
the multiple disks and reduces the chances that a subset of
the disks will be disproportionately busy, a condition often
referred to as access skew. For parity-protected arrays of
disks, such as RAID-5, a large stripe unit would make it
more difficult to do a full-stripe write, so write performance
might be degraded. However, full-stripe writes are not very
common in most workloads. Results of a previous study on
RAID-5 striping [15] indicate that for workloads meant to
model time-sharing and transaction-processing workloads,
read throughput increases with stripe unit until it reaches
the megabyte range, while write throughput is within 20%
of the maximum at a stripe unit of 1 MB.

In Figures 15(a) and 15(b), we plot the average read
and write response times for our various workloads
as a function of the stripe unit, assuming that data
is striped across four disks. The corresponding plots
for the service time are in [5]. Observe that the response
time does not rise dramatically until the stripe unit is well
beyond 100 MB. This suggests that for our workloads,
access skew, or imbalance in the amount of work borne by
the different disks, is not a major issue unless the stripe
unit is larger than 100 MB. As we increase the number of
disks, it becomes more difficult to keep all of the disks
equally busy, so the upward surge in response time at
large stripe units is more apparent [5]. We find that a
stripe unit of less than about 2 MB works well for the
writes. For the reads, performance is generally good
with a stripe unit in the megabyte range, with the best
performance being achieved by a stripe unit of 2 MB. In
the rest of this paper, we assume a stripe unit of 2 MB.

Figure 16 shows the performance achieved as we increase
the number of disks across which data is striped. For
all of our workloads, striping data across four disks is

sufficient to reap most of the performance benefit. In
Table 9, we summarize the improvement in performance
when data is striped across four disks. Overall, average
read response time is improved by about 45% in the
resource-poor environment and by about 40% in the
resource-rich environment. Write response time is
reduced much more for the server workloads than
the PC workloads—as high as 94% in the resource-poor
environment and 74% in the resource-rich environment.
This is because, as noted earlier, writes tend to come in
large bursts in the server workloads, and with more disks
these writes can be handled with much less waiting time.

Average (a) read and (b) write response time as a function of the 

stripe unit in a resource-rich environment, assuming that data is 

striped across four disks. 

Figure 15

0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

A
v

e
ra

g
e
 r

e
a
d

 r
e
sp

o
n

se
 t

im
e
  
(m

s)

0

0.2

0.4

0.6

0.8

1.0

1.2

A
v
e
ra

g
e
 w

ri
te

 r
e
sp

o
n
se

 t
im

e
  
(m

s)

10 102 103 104 105 106 107

Stripe unit  (KB)

(a)

10 102 103 104 105 106 107

Stripe unit  (KB)

(b)

P-Avg.

S-Avg.

Ps-Avg.

Pm

Sm

P-Avg.

S-Avg.

Ps-Avg.

Pm

Sm

IBM J. RES. & DEV. VOL. 48 NO. 2 MARCH 2004 W. W. HSU AND A. J. SMITH

277



Note that the performance improvement reported in
Table 9 is not due solely to less waiting for the disk arm.
As more disks are used, there are more caches, prefetch
buffers, and disk arm idle time with which to perform
opportunistic prefetch. The combined effect of these
additional resources is reflected in the decrease in miss
ratio. In the resource-poor environment, the read miss
ratio improves by about 20% when data is striped across
four disks. The corresponding improvement in the
resource-rich environment is about 15%. Recall that
we define the miss ratio as the fraction of requests that
requires physical I/O. Therefore, when there are multiple
disks each with a cache, the miss ratio is the arithmetic
mean of the miss ratio of each disk, weighted by the
number of requests to that disk.

Notice further that the read service time improves by
about 10% more than the read miss ratio as we increase
the number of disks from one to four. This improvement
in service time beyond the reduction in miss ratio is due

to less disk arm movement. When data is striped across
the disks, the locality of reference is affected. For
example, each of the active regions (e.g., active files)
could be mapped contiguously to a different disk, in which
case each of the disk arms would not have to travel far.
Conversely, an active region could be distributed among
the multiple disks, requiring all of the arms to move to
that region. More significantly, when data is distributed
across more disks of the same capacity, which is what
we are doing, the total capacity of the system grows
and each disk arm has a narrower range of movement.
An alternative would be to compare performance using
smaller-capacity disks as the number of disks increases so
as to keep the total storage capacity constant, but the
storage required for many of our workloads is already
smaller than the capacity offered by a one-surface disk.

More generally, when only a portion of the disk capacity
is used, the disk performs better because the seek distance
is reduced. This effect is called short-stroking. To directly
quantify the short-stroking effect, we return to our base
configurations of using a single disk and increase the
capacity of that disk by adding disk platters (recording
surfaces). We discover that the service time improvement
saturates when disks that are 4� larger than required are
used [5]. Largely in agreement with the results above, we
find that short-stroking a disk that is 4� larger than
necessary improves the average read service time by
10 –15% for our workloads. For writes, the improvement
ranges from 15% to 20%. The improvement is rather low
because short-stroking reduces only the seek time, which,
as we shall see, constitutes only about 25% of the read
response time. Moreover, because of inertia and head
settling time, there is but a relatively small time difference
between a short seek and a long seek, especially with
newer disks.

5. Effect of technology improvement
At its core, disk storage comprises a set of rotating
platters upon whose surfaces data is recorded. Typically
there is a read-write head for each surface, and all heads
are attached to the disk arm, so they move in tandem.
This simple high-level description already suggests that
there are multiple dimensions to the performance of the
disk. For instance, the rate at which the platters rotate,
how fast the arm moves, and how closely packed the data
is, all affect, in some way, how quickly data can be read or
written. Moreover, the effective performance of a disk
depends on which blocks are accessed and in what
order. Therefore, it is not clear what effect technology
improvement or scaling in any one dimension has on
real-world performance. In this section, we relate
scaling in the underlying technology to the actual
performance of real workloads. The goal is to quantify
the real impact of improvement in each dimension

(a) Read and (b) write performance as a function of the number of 

disks across which data is striped in a resource-rich environment.

Figure 16
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and establish some basic rules of thumb for designing and
selecting disks.

The performance impact of technology improvement in
the different dimensions is generally difficult to isolate
and quantify systematically because the performance
metrics with which we are familiar, such as access time,
are often metrics that compound the effect of improvement
in multiple dimensions. For instance, the often-quoted 10%
yearly improvement in the access time of disks results from
a combination of an increase in rotational speed (reduction
of rotational latency), decrease in seek time due to
improvement in the disk arm actuator, and smaller-
diameter disks or narrower data bands, which reduce
seek distance. In practice, for a given workload, the actual
seek time is also affected by improvement in areal density
because the head has to move a smaller physical distance
to get to the data. Changes in areal density also lead to
changes in storage capacity which could potentially affect
the number of disks and the mapping of data to disks.

In this section, we break down the continuous improvement
in disk technology into four major basic effects:

● Seek time reduction due to actuator improvement.
● Increase in rotational speed.
● Linear density improvement.
● Increase in track density.

While we do not explicitly consider discrete effects, such
as changes in the form factor (e.g., 5.25-inch to 3.5-inch
disk), their impact on performance can be understood

from our analysis of the basic effects. For example, a
smaller form factor affects performance through the
potential increase in rotational speed, decrease in seek
time, and reduction in transfer rate (because of the
smaller circumference of the disk). The latter is not one
of the four basic effects we have identified, but it can be
accounted for by using our results on the effect of linear
density changes.

Note that the disk heads for the different surfaces are
attached to the disk arm and move in tandem. In the past,
this meant that tracks within a cylinder were vertically
aligned, and no additional seek was required to read the
next track in the cylinder. However, in modern disks, only
one of the heads is positioned to read or write at any one
time because the disk arm flexes at the high frequency at
which it is operated. Therefore, when the head reaches
the end of a track, there is a delay before the next head
is positioned to start transferring the data. To prevent
having to wait an entire revolution after a track switch,
the tracks in a cylinder are laid out at an offset known as
the track-switch skew. There is also a delay for moving the
head to an adjacent cylinder, so tracks are laid out at an
offset known as the cylinder-switch skew across cylinder
boundaries. As we scale the performance of the disk, we
adjust the skews to make sure that the disk does not “miss
revolutions” for transfers that span multiple tracks.

Mechanical improvement
We begin by examining the improvement in the mechanical
or moving parts of the disk. Figure 17 presents the

Table 9 Performance with striping across four disks, showing percentage of improvement over a single disk.

Read Write

Average
response time

Average service
time

Miss ratio Average
response time

Average service
time

Miss ratio

(ms) (%)i (ms) (%)i (%)i (ms) (%)i (ms) (%)i (%)i

Resource-poor environment
P-Avg. 1.72 48.0 1.56 30.1 0.333 22.8 0.105 43.7 1.34 4.75 0.596 1.62
S-Avg. 1.37 49.6 1.30 34.6 0.275 22.8 0.149 70.4 1.04 18.2 0.480 7.72

Ps-Avg. 1.91 50.1 1.56 28.6 0.350 22.5 0.149 74.6 0.915 13.4 0.503 3.50

Pm 1.77 43.7 1.66 25.5 0.364 18.7 0.102 46.4 1.26 3.14 0.577 3.52
Sm 1.93 42.7 1.91 28.5 0.385 17.7 0.223 93.6 1.13 28.1 0.495 13.4

Resource-rich environment
P-Avg. 1.47 43.7 1.37 24.0 0.261 16.9 0.137 27.0 0.628 10.4 0.425 �0.434
S-Avg. 0.734 35.1 0.669 23.3 0.145 12.6 0.214 54.0 0.435 20.1 0.296 �0.936

Ps-Avg. 1.68 46.2 1.37 22.1 0.268 16.5 0.268 57.9 0.608 10.8 0.420 �2.15

Pm 1.02 38.5 0.981 20.7 0.195 13.7 0.100 19.4 0.411 13.3 0.333 �0.582
Sm 0.869 36.8 0.812 26.2 0.171 16.2 0.321 72.3 0.685 19.9 0.383 �0.979

i Improvement over single disk [(original value � new value)/(original value)].
Stripe unit: 2 MB.
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historical rates of change in the average seek time,
rotational speed, and access time for the IBM family of
3.5-inch server disks. The average seek time is generally
taken to be the average time needed to seek between two
random blocks on the disk. The average access time is
defined as the sum of the average seek time and the time
needed for half a rotation of the disk. Observe that on
average, seek time decreases by about 8% per year, while
rotational speed increases by about 9% per year. Putting
the two together, average random access performance
improves by slightly more than 8% per year.

Note that the time needed to seek between two given
tracks is reduced over time through both mechanical
improvement, which enables the disk head to be moved
more quickly, and track density increase, which reduces
the physical separation of the tracks. For instance, in
Figure 18, we show how the seek profile changes across
two generations of a disk family. Beginning with the seek
profile of the earlier disk, we first scale it horizontally to
account for the increase in the track density. Subsequent
scaling in the vertical direction results in a curve that
fits the seek profile of the later disk almost perfectly.
However, because average seek time is defined as the
time needed to seek between two random blocks on the
disk, and the time difference between a short seek and
a long seek is relatively small, the observed 8% yearly
improvement in the average seek time can be attributed
primarily to mechanical improvement, assuming that the
width of the data band remains fairly constant.

Seek time
In Figure 19, we plot the effect of improvement in the
average seek time on the average response time for our
various workloads. The corresponding plots for the
average service time are similar and are presented
in [5]. Note that the physical I/Os in the resource-rich
environment are not exactly those in the resource-poor
environment because there are different amounts of
caching and write buffering in the two environments.
However, it turns out that the performance effect of disk
technology improvement is almost identical in both
environments. We therefore present only the figures for
the resource-rich environment in this paper; the largely
similar plots for the resource-poor environment can be
found in [5].

Changes in seek profile across two generations of a disk family 

(tpi: tracks per inch).
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Historical rates of change in (a) average seek time, (b) rotational speed, and (c) access time for IBM 3.5-inch server disks.
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Besides plotting the response time improvement as
a function of the improvement in average seek time
[Figure 19(a)], we also show how the response time
improvement varies over time, assuming the historical 8%
yearly improvement in average seek time [Figure 19(b)].
To generalize our results, we fitted a curve to the
arithmetic mean of the five classes of workloads. As
shown in the figures, a linear function of the form
f(x) � ax, where a is a constant, turns out to be a
good fit. Specifically, we find that a 10% improvement
in the average seek time translates roughly into a 4%
gain in the actual average response time, and that a
year of average seek time improvement at the historical
rate of 8% per year results in just under 3% improvement
in the average response time.

Rotational speed
Figure 20 shows how increasing the rotational speed of
the disk affects the average response time for our various
workloads. Observe from the figures that the improvement
in average response time as a function of the increase
in rotational speed can be accurately described by
a function of the form f(x) � a(1 � e�bx), where a
and b are constants. Such a function suggests that
as we increase the rotational speed while keeping
other factors constant, the marginal improvement
diminishes, so that the maximum improvement is a.
Taking into account the historical rate of increase in
rotational speed (9% per year), we find that a year�s
worth of scaling in rotational speed corresponds to
about a 5% improvement in average response time.

Increase in areal density
In Figure 21, we present the rate of increase in the
linear, track, and areal density of disks over the last ten
years. Observe that the linear density has been increasing
by approximately 21% per year, while the track density
has been going up by around 24% per year. In the last
few years areal density has increased especially sharply,
so that with a least-squares estimate (no weighting), the
compound growth rate is as high as 62%. If we minimize
the sum of squares of the relative (instead of absolute)
distances of the data points from the fitted line so that the
large areal densities do not dominate (1/y2 weighting), the
compound growth rate is about 49%. Combining the
growth rate in rotational speed and in linear density, we
obtain the rate of increase in the disk data rate. This turns
out to be 40% per year [5], which is dramatically higher
than the 8% annual improvement in average access time.
The result is a huge gap between random and sequential
performance, and is one of the primary motivations for
reorganizing data to improve the spatial locality of
Reference [4].

Linear density
Increasing the areal density reduces the cost and therefore
the price/performance of disk storage. Areal density

Effect of improvement in average seek time on average response 

time in a resource-rich environment: (a) Function of improvement 

in average seek time. (b) Function of years of improvement in 

average seek time at historical rate (8% per year).
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improvement also directly affects performance because,
as bits are packed more closely together, they can be
accessed with a smaller physical movement. Figure 22
shows how increases in the linear density reduce the
average response time for our various workloads. We find
that the improvement in average response time as a function
of the increase in linear density can again be accurately
modeled by a function of the form f(x) � a(1 � e�bx),

where a and b are constants, and each year of linear
density improvement at the historical rate of 21% per
year results in a 6 –7% reduction in average response
time.

Notice that the S-Avg. plot in Figure 22 shows a little
dip toward the end. This slight drop in performance as
linear density is increased results from the fact that the
database server workload (DS1), one of the components
of S-Avg., is sensitive to how the blocks are laid out
in tracks because some of its accesses, especially the
writes, occur in specific patterns. As linear density
is increased, each track contains more blocks. In some
cases, the new assignment of blocks to tracks causes
consecutively accessed blocks to become poorly
positioned rotationally, leading to long rotational
latencies even with request scheduling. For example,
consecutively accessed blocks could become arranged
such that the disk head is positioned for the next
access just after the target block rotates under the head.
Such situations highlight the need for automatic block
reorganization such as that proposed in [4].

Track density
Packing the tracks closer together means that the arm has
to move over a shorter physical distance to reach the same
track. This effect is similar to that of improving the
average seek time, but the quantitative effect on the
average response time per unit of improvement tends to
be much smaller because of the shape of the seek profile.
In particular, the marginal cost of moving the arm is
relatively small once it is moved. In Figure 23, we present
the effect of increasing the track density on the average
response time. Observe that a year�s worth of track
density scaling (24%) buys only about 3– 4% improvement
in average response time.

Effect of increased linear density on average response time in a 

resource-rich environment: (a) Function of increase in linear 

density. (b) Function of years of linear density increase at histori-

cal rate (21% per year).

Figure 22
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Historical rates of increase in (a) linear, (b) track, and (c) areal density for IBM 3.5-inch server disks.
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Overall improvement over time
In Figure 24(a), we put together the effect of mechanical
improvement and areal density scaling to obtain the
overall performance effect of disk technology evolution.
We find that the actual improvement in average response
and service times as a function of the years of disk
improvement at the historical rates can best be described
by an exponential function of the form f(x) � a(1 � e�bx)
where a and b are constants. However, to project outward
for the next couple of years, a linear function is a
reasonably good fit. Observe that for our various
workloads, the average response time and service time
are projected to improve by about 15% per year. The
different classes of workloads have almost identical
plots, which increases confidence in our result.

The rate of actual performance improvement (15%)
turns out to be significantly higher than the widely quoted
“less than 10%” yearly improvement in disk performance
because it takes into account the dramatic improvement
in areal density and assumes that the workload and the
number of disks used remain constant (e.g., each PC
has at least one disk) so that the disk occupancy rate is
diminishing. In Figure 24(a) and Figure 24(b), for example,
the average storage-used-to-disk-capacity ratio goes from
about 55% (see Simulation model in Section 3) to 25%
after two years of areal density increase at the historical
rate. In any case, we note that CPUs are doubling in
speed every year or two, so the demands on the I/O system
are increasing faster than the capability of the I/O system.

In order to estimate the yearly improvement in the
situation where the increased capacity of the newer
disks is utilized so that the disk occupancy rate is kept
constant, we examine the effect of improving only the
mechanical portions of the disk (average seek time and
rotational speed). We find that the average response and
service times improve by about 8% per year [Figure 24(c)].
We also explore the scenario in which only the areal
density is increased [Figure 24(b)] and discover that
the average response and service times are improved by
about 9% per year. This improvement comes about
because as areal density is increased, the data is packed
more closely together and can be accessed with a
smaller physical movement. Note that the overall yearly
performance improvement, at 15%, is slightly lower than
the sum of the effects of the mechanical improvement
and the increase in areal density. This is because the two
effects are not orthogonal. For instance, as the recording
density is increased, each access will likely entail less
mechanical movement, so that the benefit of having
faster mechanical components is diminished.

There is often a wide disparity between the actual
access time and the advertised or specified performance
parameters of a disk because the specified figures are
obtained under the assumption that the workload exhibits

no locality. Specifically, the average seek time is defined as
the time taken to seek between two random blocks on the
disk, and the rotational latency is generally taken to be
the time for half a revolution of the disk. In practice, there
is locality in the reference stream, so we would expect the
actual access time to be significantly lower. In Figure 25,
we look at the actual average seek time and rotational
latency of our various workloads as a percentage of the
values specified by the disk manufacturer. As shown in
the figure, the actual average seek time is about 35% of
the advertised average seek time, and the average time taken for
the correct block to rotate under the head is about 60% of
that specified. The seek percentage decreases slightly over
time because of the improvement in areal density, but the
effect is not very significant. The non-monotonic nature of
the rotational latency curve for S-Avg. is again due to the
fact that DS1 is sensitive to the way that blocks are laid
out in tracks. As the rotational speed and linear density
increase over time, a poor block layout sometimes results.

To gain further insight into where a request is spending
most of its time, we break down the average read response
time and write service time into their components in
Figure 26. The figure shows data for the resource-rich
environment. The comparable results for the resource-
poor environment are available in [5]. In the figure, the
component identified as “processing” refers to the disk
command processing time, which varies with the type of

Effect of increased track density on average response time in a 

resource-rich environment: (a) Function of increase of track den-

sity. (b) Function of years of track density increase at historical 

rate (24% per year).
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request (read or write) and with whether or not the
previous request is a cache hit. For all of our workloads,
the command processing time is not significant and
averages less than 5% of the read response time. We
define waiting time, also known as queuing time, as the

difference between response time and the sum of service
time and processing time.

Notice that even with a 10,000-rpm disk, rotational
latency constitutes a major portion (30 – 40%) of both the
read response time and the write service time. The seek

Actual average seek time and rotational latency as a percentage 

of manufacturer-specified values in a resource-rich environment.

Figure 25
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time is also very significant, accounting for about 25% of
the read response time and 45% of the write service time.
Note that request scheduling affects how the disk head
positioning time is proportioned between seek and
rotational time, especially for writes, which we issue in
batches. In any case, for both reads and writes, most of
the time is spent positioning the disk head. The transfer
time, on the other hand, accounts for less than 5% of the
read response time and only about 10% of the write service
time. As the data rate continues to rise dramatically, the
transfer time will diminish further. Note that the transfer
time is the only time during which data is being read or
written. In other words, the disk bandwidth will become
less and less effectively utilized. Thus, we should consider
reorganizing data to better take advantage of the available
disk bandwidth [4]. Observe further that the waiting time is
very significant for reads and is in fact the largest component
for some workloads. This, however, does not mean that the
read response time will ultimately be limited by the waiting
time because improving the performance of the disk will
reduce the waiting time proportionately.

6. Conclusions, summary, and synthesis
We systematically study various I/O optimization
techniques to establish their actual effectiveness at
improving I/O performance. Our results— based on
analyzing the sequence of physical I/Os of a variety of real
server and PC workloads—are summarized in Table 10.
For each technique, the table shows the average
improvement over five classes of workloads: PC workloads,
server workloads, speeded-up PC workloads, merged PC
workloads, and merged server workloads.

We find that the most effective approach to improving
I/O performance is to reduce the number of physical I/Os
that have to be performed. When designing a storage
system, we would therefore first focus on caching,
prefetching, and write buffering. Because caching is
already performed upstream in the host, small caches in
the megabyte range are not useful at the storage level.
The small amount of memory in the disk drive should
be designed more as a prefetch buffer than a cache that
captures block reuse. Thus, increasing its size beyond the
megabyte range is not very useful. If cost is not a major

Table 10 Performance effect of various I/O optimization techniques, showing percentage of improvement [(time without
technique � time with technique)/(time without technique)].

Read Write

Average
response

time

Average
service
time

Miss
ratio

Average
response

time

Average
service
time

Miss
ratio

Resource-poor environment
Read caching 8 MB per disk, LRU replacement 4.49 4.14 4.45 0 0 0

Prefetching 32-KB read ahead, preemptible read ahead up
to 128 KB, read any free blocks

46.6 46.1 53.0 0 0 0

Write
buffering

4 MB per disk, LRW replacement, 30-s age
limit

0 0 0 93.8 71.8 43.5

Request
scheduling

Aged shortest access time first, age factor �
0.01, queue depth of 8

16.2 2.8 0 49.9 30.5 0

Parallel I/O Stripe unit of 2 MB 46.8 29.5 20.9 65.7 13.5 5.96

Short stroking 4� the required storage capacity 15.9 13.6 0.3 14.6 19.4 �0.2

Resource-rich environment
Read caching 1% of storage used, LRU replacement 37.4 36.1 35.1 0 0 0

Prefetching Conditional sequential prefetch, preemptible
read ahead up to 128 KB, read any free blocks

51.1 50.3 59.7 0 0 0

Write
buffering

0.1% of storage used, LRW replacement,
one-hour age limit

0 0 0 96.0 86.2 63.1

Request
scheduling

Aged shortest access time first, age factor �
0.01, queue depth of 8

17.0 1.8 0 46.2 38.4 0

Parallel I/O Stripe unit of 2 MB 40.0 23.3 15.2 46.1 14.9 �1.0

Short stroking 4� the required storage capacity 15.1 13.1 0.3 14.6 19.6 0.1
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constraint, a large cache (of the order of 1% of the
storage capacity) can be effective at the storage level.
Further increasing the size of this cache is likely to improve
performance, because the miss ratio continues to decrease at
cache sizes that are beyond 4% of the storage used.

Our results clearly indicate that sequential prefetch is
extremely effective. We highly recommend performing
simple read ahead and, in more sophisticated
implementations, setting the prefetch amount by
conditioning on the length of the sequential run already
observed. In a resource-poor environment, such as one
where the storage system consists of only disks and low-
end disk adapters, sequential prefetch together with
caching is able to filter out 40 – 60% of the read requests.
In a resource-rich environment, where there is a large
outboard controller, only about 40% of the read requests
require a physical I/O when caching and sequential
prefetching are performed. The additional use of
opportunistic prefetch makes a significant difference,
further reducing the miss ratio to about 35– 45% in the
resource-poor environment and to 20 –30% in the
resource-rich environment. We therefore advocate that
opportunistic prefetch be enabled on the disks.

The write buffer should be designed in the same spirit
of reducing physical operations by allowing repeated
writes to the same blocks to be eliminated. Using a LRW
replacement policy, we find that 40% of the writes are
eliminated by a small write buffer (less than 1 MB). For
larger write buffers, we find that the write miss ratio
follows a fifth-root rule, meaning that the miss ratio goes
down as the inverse fifth root of the ratio of buffer size to
storage used. For all of our workloads, most of the benefit
of write elimination can be achieved without requiring
dirty data to remain in the buffer beyond an hour. The
write buffer should also be sized to absorb incoming write
bursts. We recommend a write buffer size of the order of

0.1% of the storage capacity. Our results show that such
a buffer can improve write response time by more than
90%.

After investing in techniques that reduce the number
of physical operations, it is worthwhile to consider
optimizations that increase efficiency in performing
the remaining I/Os. For instance, when the writes are
buffered, the remaining physical writes should be issued
in batches so that they can be effectively scheduled (using
shortest-access-time scheduling) and efficiently performed.
In general, we should try to queue multiple requests at the
disk (e.g., by setting the disk adapter queue depth to more
than 1) so that the disk can optimize the order in which
the requests are carried out. We observe that having a
queue depth beyond 1 improves the average response time
by 30 – 40% for the server workloads and by about 20%
for the PC workloads. If data is striped across multiple
disks to allow parallel I/O, we would do it with a large
stripe unit in the megabyte range. By striping at such a
granularity across four disks, the average read response
time can be reduced by 40 – 45% from that of the one-
disk case. We would generally not recommend short-
stroking the disk, since using a disk that is four times
larger than necessary results in an improvement in
performance of only about 10 –20%.

In addition to evaluating the various I/O optimization
techniques, we also analyze how the continuous
improvement in disk technology affects the actual
I/O performance seen by real workloads. The results
are summarized in Table 11, which shows the yearly
performance improvement that can be expected if disk
technology were to continue evolving at the historical
rates. In the last ten years, the average seek time of the
disk has decreased by about 8% per year, while the disk
rotational speed has gone up by around 9% per year. At
these rates of improvement, seek-time reduction achieves

Table 11 Performance effect of disk technology evolution at the historical rates, showing percentage of yearly improvement
[(original value � new value)/(new value)].

Annual rate of
improvement

Resource-poor environment Resource-rich environment

Average
response time

Average
service time

Average
response time

Average
service time

Linear density 21 6.21 5.39 7.08 6.73

Track density 24 3.48 3.28 3.42 3.29

Areal density 49 8.58 7.97 9.31 9.07

Disk arm (seek time) 8 3.24 3.39 3.08 3.18

Rotational speed 9 5.08 5.11 5.41 5.30

Mechanical components � 8.24 8.49 8.33 8.45

Overall � 15.4 14.9 15.3 15.9
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about a 3% per year improvement in the actual response
time seen by a workload, while increases in rotational
speed account for around 5% per year. Together, the
mechanical improvements bring about an 8% improvement
in performance per year.

Increases in the recording density are often neglected
when projecting effective disk performance, but our results
clearly demonstrate that areal density improvement has as
much of an impact on the actual I/O performance
perceived by a real workload as the mechanical
improvements. Historically, linear density increases at
a rate of 21% per year, while track density grows at
24% per year. Such growth rates translate into a yearly
improvement in the actual average response time of 6 –7%
and 3– 4% respectively, for a combined 9% per year
improvement in performance. Overall, we expect the I/O
performance for a given workload with a constant number
of disks to increase by about 15% per year owing to the
evolution of disk technology. If we utilize the larger
storage capacity of the newer disks so that the disk
occupancy rate is kept constant, the yearly improvement
in performance should be approximately 8%.

Because of locality of reference and request scheduling,
we find that for our workloads, the actual average seek
time is about 35% of the advertised average seek time for
the disk, and the actual average rotational latency is about
60% of the value specified. Further analysis shows these
figures to be relatively stable as disk technology evolves.
We also observe that the disk spends most of its time
positioning the head and very little time actually
transferring data. With technology trends as they are, it
will become increasingly difficult to effectively utilize the
available disk bandwidth. Therefore, we must consider
reorganizing data in such a way that accesses become
more sequential [4].
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