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Heavy Tails and the Central Limit Theorem 
Thomas B. Fowler, Sc.D. 

 
Heavy-tailed distributions have become very important in fields as diverse as telecommunications and eco-
nomics.  They often occur in situations where one would expect that the Central Limit Theorem should apply.  
This paper investigates how the Central Limit Theorem fails, and shows one mechanism by which heavy-tailed 
behavior can arise—by the addition of what the paper defines as “hypercorrelated” random variables.  Such 
hypercorrelation is necessary since heavy-tailed behavior cannot arise from the addition of linearly-related 
random variables. 
 

Introduction 
The Central Limit Theorem is one of the most pro-
found and important results in mathematics.  It tells us 
that under fairly general conditions, the net result of 
many actions or events can reliably be described by a 
normal distribution.  Some common examples are: 
 
 Height of male or female freshman students at a 

college (result of the combined action of many in-
dependent genetic and environmental factors) 

 Time to make a certain long trip by automobile 
(result of weather, road conditions, accidents, and 
other independent factors) 

 Electricity consumption in a city (result of a large 
number of independent consumers) 

 
Other cases which would seem to fit (but, in fact, do 
not) are: 
 
 Height of ocean waves (result of the sum of many 

different forces) 
 Stock market prices (result of many trades by 

independent investors) 
 Length of Internet messages (result of many dif-

ferent activities by disparate users) 
 
The Central Limit Theorem is used to estimate the 
distribution of some quantity when it is the result of 
many small contributions from various sources.  The 
requirements for the Central Limit Theorem to be ap-
plicable are: [1] 
 
 Condition 1:  Variables summed must be inde-

pendent 
 Condition 2:  All variables must have finite mean 

and variance 
 Condition 3:  No variable can make an exces-

sively large contribution to the sum 
 

Despite its success in many instances, the Central 
Limit Theorem is known to fail as a descriptive tool in 

cases where its applicability seems assured.  In many 
of these cases, we find that we are dealing with heavy-
tailed distributions, and decisions made on the basis of 
normal distribution characteristics often lead to catas-
trophic results.  Perhaps the most famous recent ex-
ample is the meltdown of a hedge fund, Long-Term 
Capital Management, in 1998.  The fund assumed that 
certain currency movements would be governed by the 
normal distribution on account of the (presumed) ap-
plicability of the Central Limit Theorem.  In reality, a 
set of movements occurred which, according to the 
fund managers, was a “10 sigma event,” triggering 
huge leveraged losses which nearly destabilized the 
global financial system. [2]  Of course, 10 sigma 
events do not occur, since their probability is 7.62 x 
10-24.  Indeed, if the event in question is measured on a 
daily basis, which includes settlement of most market-
based accounts, the event would occur once every 1.31 
x 1023 days.  This corresponds to about 3.6 x 1020 
years—roughly 10 orders of magnitude longer than the 
age of universe.  What happened was that a heavy-
tailed distribution, not a normal distribution, governed 
the phenomenon.   

Another case of great interest in the telecommuni-
cations arena is the distribution of the file size of 
Internet messages.  Indeed, many parameters associ-
ated with Internet traffic are best described by heavy-
tailed distributions, including page requests per site, 
reading time per page, and session duration. [3]  
Heavy-tailed distributions cause serious problems in 
the design of Internet Protocol (IP)-based systems, 
because the usual queuing theory methods employed 
to determine the required size of network components 
to meet performance specifications break down when 
variance and higher-order moments cannot be calcu-
lated.  It has been necessary to develop special tech-
niques, such as the Transform Approximation Method 
(TAM), in order to cope with this problem. [4, 5]  The 
TAM utilizes the fact that one does not need actual 
infinite times and infinite variances, but can utilize 
finite approximations to get useful results. 
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What goes wrong, and why?  Which of the three 
conditions is the problem?  How can heavy tails 
emerge from sums of small-contribution random vari-
ables?  We must examine conditions 1 through 3, 
given above, to determine which is likely to fail in 
practical cases, and how such a failure would manifest 
itself.  Clearly, condition 2 is not of much interest be-
cause if the mean and variance of one or more compo-
nents do not exist, we already have a heavy tail for all 
intents and purposes.  Nor is condition 3 likely to be of 
great significance, because we are interested in the 
case where heavy tails emerge from the sum of many 
small contributions.   Therefore, condition 1 would 
seem to be an ideal candidate for investigation, be-
cause correlated variables may be able to exhibit large 
tails.  Presumably, positive feedback mechanisms of 
some type give rise to the larger-than-expected prob-
abilities of events.  However, it is not obvious that this 
is the cause, because adding random variables with the 
distributions that are just multiples of each other (100 
percent correlated) yields a similar distribution with 
different mean and variance, but not a heavy tail.  
Thus more is needed than simple correlation.  Specifi-
cally, what is needed is some type of nonlinear feed-
back mechanism which can yield large changes.  
Therefore the relationship among the variables being 
summed would include this kind of nonlinear feed-
back, and that would ultimately generate the heavy 
tails.  
 
Heavy-Tailed Distribution and Infinite  
Variance 
The size of files sent over the Internet has been deter-
mined to have what is known as a “heavy-tailed” 
probability distribution; [6] that is, the probability of a 
given file length occurring falls off very slowly with 
increasing file length, unlike ordinary distributions, 
where the rate of fall-off is much faster.  Technically, 
given a probability distribution function f(x), if for 
large x values, its cumulative distribution function 
F(x) has the property that its complementary distribu-
tion 
 

βκ −≈− x)x(F1 1  
 

where 01 >κ  and ]2,0[∈β , then the distribution 
function is said to be heavy-tailed because it falls off 
very slowly with increasing values of x. [7, 8]  In turn, 
this has an important consequence.  Setting β = 2 and 
differentiating the above equation,  
 

3
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That is, the variance is infinite.   

The physical significance of infinite variance can 
be readily understood.  Recalling that variance meas-
ures central tendency, for any finite variance, values 
are known to be clustered around a central measure, 
the mean.  Increasing the coarseness of the horizontal 
scale will result in the distribution appearing more 
“peaked,” i.e., clustered around the mean.  For exam-
ple, if one plots a histogram of some normally distrib-
uted characteristics, and then smoothes the resulting 
curve, it will appear as shown in Figure 1 for various 
horizontal (abscissa) scale ranges.  Note that the prob-
ability of large deviations from the center or mean is 
very small.  However, in the case of infinite variance, 
there is no such clustering, and regardless of the scale 
on which measurements are made, there is no change 
in their central tendency—in effect, all scales look the 
same. [3]  The histograms are illustrated in Figure 2.  
Physically, this means that it is difficult or impossible 
to put limits on the values of random variable that one 
may observe.  Such values can become arbitrarily 
large in absolute value with a much higher frequency 
than is the case with better-behaved distributions such 
as the normal distribution. 

The simplest heavy-tailed distribution (and the 
most famous in packet network analysis) is the Pareto 
distribution, [7] which has the general form  
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As α decreases, the “heavy-tail” effect increases.  For 
α < 1, the variance becomes infinite.  This distribution 
is a type of negative power law distribution, similar to 
the one discussed above. 

Certifying infinite variance in practical cases is 
very difficult.  In many cases, infinite variance is a 
much stronger condition than necessary; often simply 
having a very large variance is enough to cause 
significant financial, queuing, or other problems.  In 
such cases, the ratio of the standard deviation to the 
mean can become quite large.  A common way to 
identify heavy tails is to look for a fall off of the 
density function that takes the form of a power law 
(straight line on a logarithmic plot).  This can be easily 
recognized (see Figure 3).  Note the approximately 
linear power law behavior of the Pareto distribution 
for larger values along the abscissa, and its much 
slower rate of decrease. 
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Figure 1.  Appearance of Distribution Function of Random Variable With Well-Defined  
Variance, Illustrated on Different Abscissa Scale Ranges 
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Figure 2.  Histogram of Random Variable Without a Variance,  
Showing Same Pattern on Different Horizontal Scales 
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Figure 3.  Comparison of Normal and Pareto Distributions With  
Respect to Fall Off for Large Values of X 
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Failure of the Central Limit Theorem 
To understand how the failure of Central Limit Theo-
rem manifests itself, and why more is required than 
simple correlation of random variables added, consider 
the following two cases. 
 
1. Random variables X, Y are completely correlated, 

i.e., ρ = 1.  In that case, Y = aX + b.  A typical 
data set might be: 

X 1 2 3 4 
Y 2 4 6 8 

Here Y = 2X. 
 
2. Random variables X, Y which are independent, 

but which have similar distributions: 

X: (μ,σ2) 
 Y: (2μ, 4σ2) 

In this case, though mean values are related as 
XY μμ 2= , correlation ρ = 0. 

 
Now observe what happens when these are added.  Let 
Z = X + Y.   Then for the two cases: 
 
1. YXZ μμμ +=  since expected value is always 

additive.  Thus XXXZ μμμμ 32 =+=  

For the variance we have 
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Then Var(Z) can be calculated as: 
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2. YXZ μμμ +=  
222
YXZ σσσ +=  

 
For the above case, this becomes 

XXXYXZ μμμμμμ 32 =+=+=  
222222 54 XXXYXZ σσσσσσ =+=+=  

Note that in the calculation for variance of the corre-
lated variables, the middle term E(2XY) does not drop 
out as it would for independent variables, since in 
general for correlated variables E(XY) ≠ E(X)E(Y).  In 
the case of independent variables we have 
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In general case, for n random variables X1 . . . Xn, 
where Xi = aiX1, ai > 0 for all ai and, where, for all ai 
and 
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In effect, this says that the standard deviation scales at 
the same rate as the mean.  Thus the shape of the dis-
tribution is unchanged, and specifically, it does not 
exhibit the flattening required for a heavy tail. 

But if the random variables are independent, E(Z) 
is the same, but  
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That is, standard deviation scales as ∑
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i
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1

2 , which 

is less than the rate at which the mean scales.  This 
implies that the shape of the distribution is being com-
pressed—exactly the opposite behavior to that re-
quired for heavy tails.  Naturally such a result is just 
what we would expect, since the Central Limit Theo-
rem governs this case. 

In general, comparing these, we have 
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This is true for variables regardless of their distri-
bution, so it shows that heavy tails cannot arise by 
linear combinations of correlated random variables.  
The new summed distribution has the same shape as  
the old, only scaled up.  When converted to pdf, it will 
not have a heavy tail, defined as variance tending to 
ever larger values in the pdf.  Obviously, adding inde-
pendent random variables will not lead to heavy tails 
because the standard deviation scales at a smaller rate 
than the mean, so the distribution tends to contract.  
The two situations are illustrated in Figures 4 through 
6.  Note in Figure 4 that the correlated sum and X 
overlap. 
 

Hypercorrelation 
The fact that the variance of a sum of correlated ran-
dom variables is greater than the corresponding sum 
for independent random variables suggests the next 
step.  If normal correlation cannot create heavy tails, 
but only replicate the shape of the original distribution, 
perhaps some type of amplified correlation can do so.  
One way in which an “amplification” can occur in 
correlated distributions is if a power-law relationship 
exists for the variables.  So we shall consider relation-
ships of the form naXY = , and we will define ρ′ as 
the standard correlation coefficient ρ for the natural 
log of variables Y, X where the values of Y and X have 
been fitted using an exponential regression, so that a 
and n are known.  That is, ρ′  will measure the corre-
lation for XnaY lnlnln += .    

 
 

 

This is equivalent to finding ρ for W and Z where 
ZbaW ''+= .  Then the hypercorrelation between X 

and Y is given by '* ρρ n= .  Thus if ρ′ is 0, there is 
no hypercorrelation.  Conversely, if ρ′ is 1, there is 
hypercorrelation of n. 

It is clear that n measures the strength of the am-
plification effect, i.e., how much faster Y increases 
than X.  In real-world situations, we would want to 
assume a distribution for a and a distribution for n, and 
then determine under what circumstances the heavy-
tailed behavior would arise.  This could be done by 
fitting the tail of the summed hypercorrelated random 
variables to a Pareto distribution.   

Specifically, let us assume that we have a large 
number of hypercorrelated variables Yi, such that 

in
ii XaY = , each of which has an associated hypercor-

relation *
iρ .  We should be able to show that if a large 

number of Yi’s are summed, ∑
=

k

i
i k

1

* /ρ  increases, and 

the ratio of the standard deviation to the mean contin-
ues to increase.  Thus heavy tails emerge since the 
sum of the Yi’s is bounded on the lower end. 
 
Simulation 
Efforts to verify the creation of heavy-tailed distribu-
tions by means of hypercorrelation have thus far been 
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Figure 4.  Two Correlated Random Variables and Their Sum 
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Figure 5.  Two Independent Random Variables and Their Sum 
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Figure 6.  Rescaled Sums Compared to Original Random Variable X 

 
done by means of numerical simulation.  In these ex-
periments, hypercorrelated random variables are gen-
erated, and then added.  The resulting distributions are 
then analyzed for heavy-tailed behavior.  Such behav-
ior is quite obvious on logarithmic plots, especially 
when compared to the usual result of adding random 
variables, namely a normal distribution.  The proce-
dure is as follows: 
 

1. Assume a functional form of jn
iij XaY =  

2. Generate 5 normally distributed random values 
for the ia , and, for each of those, 10 normally 
distributed random values for the jn    

3. Generate a normally distributed set of values for X 

4. Calculate the ijY  terms and add, ∑
=

=
10

1j
iji YY  

5. Calculate the distribution of the sum ∑
=

=
5

1i
iYZ  
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6. Fit a normal and a Pareto distribution to the dis-
tribution for Z 

7. Record Pareto parameters and average hypercor-
relation 

8. Repeat for new set of a, n values with different 
mean, standard deviation 

 
Some typical graphs resulting from step 6 are 

shown in Figures 7 and 8 on both linear and log scales.  
These graphs illustrate clearly the heavy-tailed behav-
ior of the summed hypercorrelated variables, as com-
pared to a normal distribution.  Note that in Fig-
ure 7(a), the normal and hypercorrelated distributions 
look almost identical until well past the mean; this 
could easily fool an observer into thinking that the 
process in question was really normally distributed 
when, in fact, it has a heavy tail.  The difference, of 
course, is immediately obvious when the distribution 
is plotted on a logarithmic scale.  A smaller value of n, 
which corresponds to less hypercorrelation and pre-
sumably less heavy-tailed behavior, gives correspond-
ingly a higher value for the Pareto constant α.  Note 
also in Figure 8 that the degree of heavy-tailed behav-
ior is much lower than in Figure 7, as illustrated by the 
decreased divergence between the hypercorrelated 
(and Pareto) curves and the normal curve.  This result 
is expected, since the exponent n in the runs of Fig-
ure 7 is 6, whereas it is 2 for the runs of Figure 8.  As 
the exponent n approaches 1 from the upper side, the 
heavy-tailed behavior will disappear. 

A summary plot of many runs, given in Figure 9, 
shows the relationship between average hypercorrela-
tion value and Pareto constant α.  As expected, the 
relationship is inverse but well-defined, as indicated 
by the regression line. 
 
How Heavy Tails Might Arise Through  
Hypercorrelation 
It is useful to consider how heavy tails due to hyper-
correlation might arise.  First, consider the case of 
investors, whose behavior is known to be subject to 
crowd influences (“if everyone is doing it, I should 
too!”).  So Investor 1 says, “I’m buying 10 shares of 
company A.”  Investor 2 says, “I see what Investor 1 is 
doing, and I like it, so I’m going to beat him and buy 
100 shares of company A.”  Investor 3 says, “Every-
body else is doing it, so I’m going to beat them and 
buy 1,000 shares of company A!”  Thus if the number 
of shares bought is increasing by a factor, so that we 
have N, N2, N3, etc., all added together, we have a 
hypergeometric distribution sum and a heavy tail con-
dition.  Heavy-tailed behavior can be particularly dan-
gerous in today’s financial environment, where the 
amount of derivatives in existence is estimated at $250 
to $370 trillion—about 10 to 12 times the world’s an-

nual gross domestic product (GDP). [9, 10]  If hyper-
correlated linkages exist in even a small portion of 
these derivatives—and very little is known of how 
they are linked—then the results could be catastrophic 
for the world financial system, as they almost were 
with the long-term capital management hedge fund 
crash.  Since hypercorrelated behavior can mimic or-
dinary normal behavior under many circumstances, it 
might lie there undiscovered.  In May 2005, there was 
a “correlation crisis” in the market for a type of secu-
rity derivative known as a synthetic collateralized debt 
obligation (CDO). [11]  In this case, there was appar-
ently a single hedge fund (highly leveraged) caught by 
an unexpected stock market move.  Facing huge 
losses, the fund tried to liquidate its positions, reveal-
ing the hypercorrelation— 
 

The hedge fund, desperate to avoid a liquid-
ity crunch, was reduced to hawking its posi-
tions around the broader marketplace, and 
met a distinct lack of demand.  Hedge funds 
and investment bank traders “began to see 
the writing on the wall and started to try and 
offload similar positions themselves,” in the 
words of one CDO banker. [12] 
 
While this did not bring down the financial mar-

kets, no one knows how severe a correlation crisis 
might become in the future, possibly due to hypercor-
relation.  And, in fact, there is further evidence of just 
such hypercorrelation in the derivatives arena.  Re-
garding the CDOs, an analyst has made the following 
rather astonishing observation— 
 

In effect, that means one asset—such as a 
mortgage loan—is being used and reused 
many times over to create new trading and 
hedging opportunities.  It is akin, in a sense, 
to how a small amount of sugar can be spun 
up into a huge cone of candy floss. [13] 

 
Given that derivatives now have a total value of 

802 percent of world GDP, and 75 percent of its li-
quidity, [14] and that the foregoing observation sug-
gests hypercorrelation of a significant amount of these 
derivatives, an unexpected turn of events could 
quickly lead to a potentially dangerous situation due to 
heavy tails (more “10 sigma events”). 

In the case of Internet traffic, the psychology of 
users and its impact on traffic has not been well-
studied, and the heavy-tailed nature of the traffic may 
have multiple sources.  But some ideas come to mind.  
If success breeds a desire for more of the same, for 
instance, if successful retrieval of one Web page leads 
to requests for larger numbers by the same user, or 
pages with more information, a type of hypercorrela- 
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Figure 7.  Summed Hypercorrelated Variables   

Note:  Distribution of a: μ=10, σ=3; distribution of n: μ=6, σ=2; 
average hypercorrelation value: 5.923; Pareto constant α=2.1  

 
 
 
 
 



 

The Telecommunications Review 2007      34 

 

(a)  Linear Scale

(b)  Log Scale

0.000000001

0.00000001

0.0000001

0.000001

0.00001

0.0001

0.00E+00 2.00E+04 4.00E+04 6.00E+04 8.00E+04 1.00E+05 1.20E+05

pdf

Normal
Hypercorrelated
Pareto

0.000000001

0.00000001

0.0000001

0.000001

0.00001

0.0001

0.00E+00 2.00E+04 4.00E+04 6.00E+04 8.00E+04 1.00E+05 1.20E+05

pdf

Normal
Hypercorrelated
Pareto

Normal
Hypercorrelated
Pareto

0

0.00002

0.00004

0.00006

0.00008

0.0001

0.00012

0.00014

0.00016

0.00E+00 2.00E+04 4.00E+04 6.00E+04 8.00E+04 1.00E+05 1.20E+05

Normal
Hypercorrelated
Pareto

pdf

0

0.00002

0.00004

0.00006

0.00008

0.0001

0.00012

0.00014

0.00016

0.00E+00 2.00E+04 4.00E+04 6.00E+04 8.00E+04 1.00E+05 1.20E+05

Normal
Hypercorrelated
Pareto

Normal
Hypercorrelated
Pareto

pdf

(a)  Linear Scale

(b)  Log Scale

0.000000001

0.00000001

0.0000001

0.000001

0.00001

0.0001

0.00E+00 2.00E+04 4.00E+04 6.00E+04 8.00E+04 1.00E+05 1.20E+05

pdf

Normal
Hypercorrelated
Pareto

0.000000001

0.00000001

0.0000001

0.000001

0.00001

0.0001

0.00E+00 2.00E+04 4.00E+04 6.00E+04 8.00E+04 1.00E+05 1.20E+05

pdf

Normal
Hypercorrelated
Pareto

Normal
Hypercorrelated
Pareto

0

0.00002

0.00004

0.00006

0.00008

0.0001

0.00012

0.00014

0.00016

0.00E+00 2.00E+04 4.00E+04 6.00E+04 8.00E+04 1.00E+05 1.20E+05

Normal
Hypercorrelated
Pareto

pdf

0

0.00002

0.00004

0.00006

0.00008

0.0001

0.00012

0.00014

0.00016

0.00E+00 2.00E+04 4.00E+04 6.00E+04 8.00E+04 1.00E+05 1.20E+05

Normal
Hypercorrelated
Pareto

Normal
Hypercorrelated
Pareto

pdf

 
Figure 8.  Summed Hypercorrelated Variables   

Note:  Distribution of a: μ=10, σ=3; distribution of n: μ=3, σ=1; 
average hypercorrelation value: 1.868; Pareto constant α=3.6  
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Figure 9.  Relationship Between Hypercorrelation n and Pareto  
Constant α Based on Simulation Runs 

 
lation will emerge.  As an example, let us consider 
how most commercial sales Web sites are set up.  If a 
user is seeking information about a product that may 
be of interest, the user would first arrive at a summary 
page which gives highlights of the product.  Such a 
page is typically designed to load fast.  Then the user 
might want to drill down a bit, and ask for a more de-
tailed specifications page.  Later, the user might ask 
for a product brochure download, or a page with pho-
tos or images of some type.  The ratio of file size here 
could easily be 1:5:25, or something on that order.  
This would explain, at least in part, the heavy-tailed 
character of traffic, page requests per site, reading 
time per page, and session duration.  Another example 
might be the “chain-letter” effect.  An individual 
emails five friends, who then email five of their 
friends, and so forth.  Since sending emails to multiple 
persons is as easy as pasting a list in the address field, 
this type of behavior can come about with very little 
effort on the part of the user (as opposed, say, to phone 
trees, where more physical effort is required to dial 
five separate numbers and leave five voice messages).   

Very large ocean waves (~30 m or more) have be-
come a concern recently, as they occur with much 
greater frequency than a normal distribution of wave 
heights would suggest.  As recently as 1995, they were 
thought to occur only once every 10,000 years; now it 
is believed that one or more may be occurring at any 
time somewhere in the oceans. [15]  Such waves, 
known as “rogue waves,” “monster waves,” or “king 
waves,” can swamp a supertanker or large passenger 
ship.  Between 1985 and 2004, more than 200 super-
tankers have sunk, many of them believed to be the 
victim of rogue waves. [16]  Existing theories about 

the origin of these waves, focusing in space in time, 
current focusing, and nonlinear focusing, have not 
yielded convincing explanations. [17]  One theory is 
that since the rogue waves are often found near a 
strong current, such as the Gulf Stream off of the east 
coast of North America, the current acts like a lens 
which focuses wave energy by combining small waves 
into a larger wave.  Converging weather fronts, where 
waves from different systems often combine, could 
also be a cause.  In both of these cases, since smaller 
waves are combining, if the mechanism can amplify 
the contributions of the smaller waves so that they 
become hypercorrelated, a heavy tail for wave height 
could result.  In such a case, rogue waves could appear 
with much greater frequency than intuition would sug-
gest.  The actions of the combining mechanism, with 
respect to the possibility of hypercorrelation, deserve 
further study. 
 
Conclusions and Future Work 
Heavy-tailed probability density functions can arise 
through summations of hypercorrelated variables, 
which are variables of the general form naXY = .  The 
larger the value of n, the greater the degree of heavy-
tailed behavior.  Distributions of such sums, 

∑=
i

iYZ , can often mimic normal distributions for 

certain values Z.  Therefore application of the Central 
Limit Theorem must be carefully monitored to ensure 
that hypercorrelation is not present.  Predictions made 
or actions taken on the assumption of normal distribu-
tion behavior could yield catastrophic results when 
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events thought to be “10 sigma” occur.  Heavy-tailed 
behavior can be made more apparent by plotting the 
sums on a logarithmic scale.  This research only deals 
with the case of heavy-tailed distributions arising from 
sums of random variables; heavy tails may also origi-
nate in other ways.  Future work will concentrate on a 
more theoretical understanding of the emergence of 
heavy tails from hypercorrelated random variables.  It 
will also look at empirical reasons for the emergence 
of heavy-tailed behavior in order to better understand 
the circumstances under which such behavior can be 
expected. 
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