
Understanding by P. G. Emma

some simple
processor-
performance
limits

To understand processor Performance, it is
essential to use metrics that are intuitive, and
it is essential to be familiar with a few aspects
of a simple scalar pipeline before attempting
to understand more complex structures. This
paper shows that cycles per instruction (CPI)
is a simple dot product of event frequencies
and event penalties, and that it is far more
intuitive than its more popular cousin,
instructions per cycle (IPC). CPI is separable
into three components that account for the
inherent work, the pipeline, and the memory
hierarchy, respectively. Each of these
components is a fixed upper limit, or “hard
bound,” for the superscalar equivalent
components. In the last decade, the memory-
hierarchy component has become the most
dominant of the three components, and in the
next decade, queueing at the memory data bus
will become a very significant part of this. In a
reaction to this trend, an evolution in bus
protocols will ensue. This paper provides a
general sketch of those protocols. An
underlying theme in this paper is that power
constraints have been a driving force in
computer architecture since the first
computers were built fifty years ago. In CMOS
technology, power constraints will shape

future microarchitecture in a positive and
surprising way. Specifically, a resurgence of
the RlSC approach is expected in high-
performance design which will cause the client
and server microarchitectures to converge.

1. Introduction
As late as the 17th century in many European universities,
only the very best students were told that they could
someday hope to conquer long division if they applied
themselves. At that time, Roman numerals were the
preferred system of numerical representation. This
demonstrates that if a bad system is chosen to represent
aspects of a problem, relatively simple problems can be
made quite difficult.

The popular instructions per cycle (IPC) is a poor
metric to use in discussing processor performance because
it does not lend itself to intuition about what the
components of that performance are. That is, if a pipeline
that runs at x IPC has improvements made to it so that it
runs at x + A IPC, there is no way to intuit A (in units of
IPC) on the basis of those improvements.

The first point made in this paper is that while IPC
makes for good marketing, its inverse is what makes for
good engineering intuition. This paper strongly advocates
the use of cycles per instruction (CPI) as the metric of
choice in processor microarchitecture discussions.

“Copyright 1997 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each

of this paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions,

portion of this paper must be obtained from the Editor.

W18-8648/g7/$5.W 8 1997 IBM

IBM J. RES. DEVELOP. VOL. 41 NO. 3 MAY 1997 P. G. EMMA

The second point made in this paper is a corollary to
this first point. That is, scalar pipeline performance (in
units of CPI) can be split into three relatively independent
pieces: one involving the inherent execution component of
the workload (cited incorrectly as “performance” in many
studies), one involving pipeline effects, and one involving
the memory hierarchy. Changes to the p r o c p o r
microarchitecture can be translated into changes in CPI
almost intuitively by considering these three components
independently.

Since this is the fiftieth anniversary of electronic digital
computing, von Neumann’s machine built at the Institute
for Advanced Studies (henceforth called the IAS machine)
is used to illustrate the point. This first-generation
machine shares many similarities with modern processors,
and it is used to demonstrate that it is crucial to
understand instruction flow in a simple processor before
hoping to understand flow in a complex (e.g., superscalar)
processor. This notion is self-evident, but surprisingly
many resist it.

The third point made in the paper builds on the first
two points: The CPI components of scalar (single decode
per cycle) flow imply bounds for the CPI components of
superscalar (multiple decodes per cycle) flow. Therefore,
if understanding (or undertaking the development of a
detailed simulator for) the flow in a superscalar processor
is an overwhelming task, a great deal can be gained by
understanding the flow for a much simpler (scalar) case.
Given a simple understanding of that simple (scalar) case,
extrapolation to the more general case can be (at least)
bounded.

The fourth point is a divergence from the first three
points; it focuses on an aspect of performance that will
become more dominant in the coming decade, hence,
on an aspect of design that must evolve. This is the
performance and design of the memory bus. The simpler
designs and slower cycle times of past designs have not
stressed bus utilization the way future designs will.
Queueing effects grow nonlinearly once utilization exceeds
certain thresholds. This must be mitigated with a new
approach to bus arbitration.

The final point of the paper is that as an industry,
we are devoting disproportionate resources to overly
complex superscalar designs because we have not found
a metric that helps us to avoid those features in the
microarchitecture that hurt cycle time. That metric is
power consumption. A clear focus on power will ultimately
lead the industry through the GHz barrier, and will
converge the microarchitectures of the client and server
spaces in the process.

2. Separable components of CPI
A digital computer executes an instruction stream, which
is a translated statement of a high-level problem. ~ 216

P. G . EMMA

Computer performance is “benchmarked” using
instruction streams that are thought to be representative
of the typical work done by the computer.

An instruction stream is a sequence of instructions
that effects a sequence of events when executed on a
computer. The particular events effected depend on the
microarchitecture of the computer, but the frequency of
those events is inherent in the instruction stream.

The basic unit of time within a computer is the cycle,
and each event caused by an instruction in the program
takes an integer number of cycles. Some events are
concurrent, and some events take zero cycles when they
occur in certain microarchitectures.

Cycles per instruction (CPI) is the most natural metric
for expressing processor performance because it is the
product of two measurable things:

CPI= (cycles per event) (events per instruction).

The number of cycles per event is determined by the event
type for a particular microarchitecture (it can be zero for
some event types), and the number of events per
instruction is known for each workload (independent of
the microarchitecture).

out of five instructions in a program is a branch
instruction, the event frequency is 0.2 branches per
instruction for that program. If a branch causes a three-
cycle delay in a processor, the CPI contribution of
branches in that processor is 0.6 CPI for that program.
That is, on the average, an instruction incurs 0.6 cycles of
delay because of branches in the program. A performance
enhancer such as a branch prediction mechanism can be
thought of as a mechanism that either reduces the
frequency of branches or reduces the average penalty for a
branch.

For example, consider branches in the program. If one

Other events that can cause delay include data
dependencies (instructions that are delayed because they
need the results of previous instructions that have not yet
executed), cache misses (referenced data that are not in
the local cache and must be fetched from the memory
hierarchy), and serialization events (explicit draining of
the processor pipeline to ensure correct function of
certain complex operations). For the most part, the
frequencies of these events can be measured directly
from a program (benchmark) without knowledge of the
microarchitecture of the processor that will execute the
program.

Therefore, a benchmark is really a specification of
event frequencies, and those frequencies apply to any
microarchitecture. A specific microarchitecture determines
the delay (penalty) associated with each event type (which
can be zero). CPI is the most natural expression of
performance because it is the dot product of a benchmark
(event frequencies) and a microarchitecture (event

IBM J. RES. 1 3EVELOP. \ IOL. 41 NO. 3 ? fiAY 1997

penalties) for all event types. Further, a very small
number of events account for most of the performance of
a processor.

3. Some observations on von Neumann’s IAS
machine
Figure 1 shows a sketch of the organization of the, IAS
machine, which is considered to be the first stored-
program computer. This sketch was taken directly from
Prof. John Hayes’s book [l] as he adapted it from von
Neumann’s verbal description of the machine [2], and it is
reproduced here courtesy of Prof. Hayes and of McGraw-
Hill. The machine comprises a central processing unit
(CPU) that is coupled to a main memory and some simple
input-output equipment (I/O). For the purposes of this
discussion, we ignore the I/O portion of the figure because
we are primarily concerned with the active processing part
of the computer. In the case of the IAS machine, the 1/0
equipment is used to preload the main memory with a
program and its data, and then to start the CPU. The
program and its data live completely in main memory until
completion of the program; i.e., the I/O does not interact
with the program.

program control unit. The data processing unit contains an
arithmetic logic unit and some internal registers, and the
program control unit contains buffer registers that hold
instructions and circuitry for decoding those instructions
and generating the requisite control signals that govern
the operation of the aggregation in Figure 1. In modern
parlance, the data processing unit is called an execution
unit (EU), and the program control unit is called an
instruction unit (IU).

In the IAS machine, main memory has the appearance
of a large register file from the instruction-level semantic
point of view, but some of the register space contains the
program itself. (The instructions of the program are within
the data space, and can be dynamically modified by the
program.) By program construction, the program and its
data fit completely in main memory. Roughly speaking,
main memory has the appearance of a modern-day
cache that never misses (both because the program is
constrained to live in main memory and because it is
semantically impossible to miss within a register file).

instruction is fetched and executed in its entirety only
after the previous instruction has completed in its
entirety, and before the following instruction is fetched.
Furthermore, each instruction is processed in two
nonoverlapped phases. First, the instruction is fetched and
decoded (I phase), and then the instruction is executed
by the data processing unit (E phase). These phases
are not pipelined; they are done sequentially for each
instruction.

The CPU comprises a data processing unit and a

The operation of the IAS machine is as follows. Each

IBM J. RES. DEVELOP. VOL. 41 NO. 3 MAY 1997

Structure of von Neumann’s IAS processor. Reprinted with the
permission of the McGraw-Hill Book Company from page 23 of
the second edition of Computer Architecture and Organization by
John P. Hayes, published by the McGraw-Hill Book Company,
copyright 1988.

Note that there is a single bus between main memory
and the CPU. This bus is used to transfer an instruction
during the I phase, and an operand during the E phase.
This is what is commonly referred to as the “von
Neumann bottleneck,” which is widely (and incorrectly)
perceived to be the “flaw” of the von Neumann
programming model. (Very interestingly, the von
Neumann bottleneck has its genesis in the solution to a
power-budget constraint, as is explained later.)

A programming model is the high-level part of a
computer architecture. Computer architecture is the
contractual interface between the hardware and the
program; that is, a computer architecture is a set of rules
that describe the logical function of a machine as
observable by a program running on that machine.

Computer architecture does not specify what the
hardware actually does; it specifies what the hardware
appears to do. The entire point of defining an architecture
is to isolate the programmer from those details.
Architecture is a level of abstraction that allows a program

P. G. EMMA

A modem processor: Conceptualization of performance.

to have consistent function when run on machines having
different implementations (microarchitectures).

The von Neumann programming model is simply this:
A program (which is a sequence of instructions) generates
outputs that are consistent with the outputs generated by
that program if each of the instructions in the program
sequence is fetched and executed in its entirety only after
all instructions preceding it have completed, and before
any instructions following it are fetched. A simpler (albeit
ambiguous) statement of the same thing is that “executing
a sequence of instructions should have the effect of
executing the instructions in the order in which they
appear in the sequence,” or more simply, “a sequence of
instructions is executed in sequence.”

The von Neumann programming model is merely a
formal statement that the execution of a program should
not be nonsensical. It does not imply that the hardware
cannot execute instructions out of order, and it does not
imply that there is only one bus or an inherent bottleneck.
All it implies is that the hardware must not generate
program outputs that are inconsistent with the outputs
that would be generated by hardware that is constrained
in the fashion implied by the programming model.

In fact, the IAS machine has a single bus to memory,
and the I and E phases are not overlapped (not
pipelined). Each vacuum tube in the IAS machine runs
with its cathode at 200 V, and turns on when its grid
exceeds 20 V. Putting 20 V on the grid is most easily
accomplished by using a resistive divider, but this results

P. G. EMMA

in an undesirable steady-state power dissipation. To
contain their power budget, the designers of the IAS
machine used a more complex scheme to propagate logic
values.

Instead of having resistive dividers between the stages
of the arithmetic-logic unit (i.e., the carry chain), the IAS
machine,uses bypass capacitors to couple the stages.
Therefore, instead of propagating static states (high or low
voltages), the IAS machine propagates pulses.’ (This was
the first dynamic logic.)

If logic pulses are passed repeatedly through a capacitor
with no quiescent period, a dc bias builds up, creating
unacceptable noise susceptibility. The nonpipelined nature
of the IAS microarchitecture provides a natural solution
to this problem: The execution unit quiesces during the
I phase, and the instruction unit quiesces during the
E phase.

The von Neumann bottleneck has little to do with
architecture and a lot to do with power. As described
later, power budgets will steer microarchitecture in the
next decade in a fairly obvious way.

4. The modern processor and its performance
Figure 2 is a high-level diagram of a modern processor.
The processor core comprises an instruction unit (IU), an
execution unit (EU), and a cache (C). The processor core
is coupled to a main memory which can be a hierarchical
system.

At this level of abstraction, the processor core is very
similar to the IAS machine in many ways. (The greatest
similarity is that the IAS machine never experiences a
cache miss, just like any modern processor when running
ISPEC.)

The major difference in the microarchitecture is that
the IU and the EU operate concurrently in modern
processors. This is basic “pipelining,” and in a well-
designed processor, the cache can accommodate the
bandwidth requirements of both units running
concurrently. In some modern architectures, instruction
data and operand data are distinct, and reside in separate
caches that are (necessarily) visible to the instruction set
architecture (ISA). In the IAS machine, the two forms of
data are indistinguishable, and the interpretation of a
datum is contextual.

The performance components of this processor
correspond to its major hardware components, which are
enclosed by the dotted lines in Figure 2. Therefore,
partitioning performance into these three major
components (as described below) is the most natural
means for understanding processor performance.

cache performance and a finite-cache effect (FCE). The
The total CPI for a processor is the sum of an infinite-

1 Related in a conversation with J. Pomerene, engineer on the IAS project.

IBM J. RES. DEVELOP. VOL. 41 NO. 3 MAY 1997

infinite-cache performance is the CPI for the core
processor under the assumption that there are no cache
misses. Roughly speaking, this is raw processor speed
when the effects of the memory hierarchy are ignored.
The FCE accounts for the effects of the memory
hierarchy.

Finite-cache effect (FCE)
The FCE is the CPI associated with cache misses:

FCE = (cycles per miss) * (misses per instruction).

The misses-per-instruction component is commonly
called the miss rate, and the cycles-per-miss component is
called the miss penalty. (In the literature, the terms “miss
rate” and “miss ratio” are often used interchangeably.
This is incorrect. The miss ratio is the ratio of misses to
references, and this can only be related to the instruction
frequency by knowing the average number of references
per instruction.)

The beauty of separating the FCE in this way is that
for a given cache geometry (size, line size, and set
associativity), it allows a benchmark to be characterized
by its miss rate quite independently of the details of the
cache-to-memory interface. That miss rate applies to
any other processor whose cache shares the same
geometry.

Measuring the miss rate does not require complex
simulation, but it requires simulating many misses (e.g.,
millions) for an accurate measurement. A miss rate
simulation merely requires a data structure that reflects
the cache geometry (the “simulated cache”), and a long
reference stream to run through that data structure to
effect replacements (misses). The simulation does not
require any level of detail, or any emulation of actual
hardware mechanisms.

Characterization of the miss penalty requires a detailed
simulation of the processor and the memory system to
which it is coupled, but an accurate characterization can
be done with a relatively small number of misses (e.g.,
thousands). That is, to characterize miss penalty, the
actual hardware mechanisms that process a miss must be
simulated in detail, and they must be simulated within the
context of the processor. This ensures certainty regarding
the average delay associated with a miss, and this average
converges rapidly.

Therefore, the complex simulation (to characterize miss
penalty) can be fairly short, and the lengthy simulation (to
characterize miss rate) can be very simple. It is also true
that a (good) performance practitioner can make a fairly
accurate guess as to miss penalty for a given processor-
memory structure if he has experience with similar
structures (i.e., detailed simulation of derivative designs
might be unnecessary for someone who is knowledgeable).

f CPI as a function of m i s s rate.

” . .. ”

Note that simulation is unnecessary in the trivial case of a
blocking cache, because nothing overlaps the processing of
the miss.

Figure 3 shows an idealized plot of a processor’s CPI as
a function of miss rate. Note that the slope of the finite-
cache CPI is the miss penalty (cycles per miss), and the
y-intercept for this line is the infinite-cache CPI. Since
the infinite-cache CPI is independent of miss rate, it is
horizontal.

Therefore, if the infinite-cache CPI can be determined
for a processor, this fixes the y-intercept. If the miss
penalty can be determined, this fixes the slope of the
finite-cache CPI, and that line can be drawn. For a given
miss rate (x coordinate), the CPI is determined.

Infinite-cache performance
Measuring infinite-cache performance requires a detailed
simulation of the processor core. This simulation (using no
cache misses) can be relatively short if there is reasonable
confidence that both the instruction mix and the software-
module mix are representative of steady-state performance.

The infinite-cache CPI is the sum of two parts (each of
which is independent of the miss rate), as is shown in
Figures 2 and 3. These are the execute busy (EBusy) and
the execute idle (EIdle) components.

EBusy represents the average intrinsic work (execution
cycles) done per instruction. In a scalar processor, EBusy
corresponds to the CPI that would be obtained if there

IBM J. RES. DEVELOP. VOL. 41 NO. 3 MAY 1997 P. G . EMMA

220

were no pipeline delays. Another interpretation of EBusy
is infinite-cache CPI with the EU utilization at 100%. For
a scalar RISC machine, EBusy = 1; for a CISC machine,
EBusy > 1. Note that EBusy is independent of pipeline
delays. EBusy is the dot product of the instruction
frequencies and their execution times; it is a pure measure
of intrinsic work,

EIdle represents the average delay per instruction
caused by pipeline effects. Very simply, EIdle is the
difference between the infinite-cache CPI and EBusy. In
general, it accounts for all of the numerous pipeline

P. G. EMMA

effects, but only a few of these are really significant. EIdle
can also be separated into a number of relatively
independent components [3], although this is not done in '
detail here.

As can be surmised from some of the previous
discussion, the first crude separation of EIdle is as follows:

1. Events in which instructions are not available in time to
keep the EU busy. These are branches, dynamic effects
associated with cache utilization, and effects associated
with the fetching of variable-length instructions (if
applicable).

2. Events in which operand data are not ready in time
to keep the EU busy. The most predominant is the
address generate interlock (AGI) associated with
indirect data fetching (e.g., pointer chasing), but
execution dependencies in general fall into this
category.

3. Serialization events in which the pipeline is deliberately
drained between instructions to ensure correct function.
These events are predominant in MP environments.

Note that each of these events has a frequency that can
be measured for any benchmark, and that frequency is
independent of the microarchitecture. Each event has an
associated penalty that can be determined from the
microarchitecture. The CPI contribution of each event
type has the form

CPI = (cycles per event) * (events per instruction).

A further interesting observation is that most of the EIdle
events, and all of the predominant ones (branches, AGIs,
and serialization), have penalties that are directly
proportional to the number of stages in the pipeline (in
general), and specifically to the number of cycles required
for a cache access. That is, EIdle CPI varies linearly with
the number of stages in the pipeline (Le., with the degree
of pipelining).

Superpipelining and wave pipelining are techniques
that achieve a fast cycle time by making the pipeline
granularity fine. It has been shown that processor cycle
time decays to an asymptote when the pipeline granularity
is increased, while CPI increases linearly, as shown
respectively in Figures 4(a) and 4(b) [4]. The performance
(MIPS) is the inverse of the product of the two, and that
product has a quadratic form (thus, a unique maximum),
as shown in Figure 4(c).

Because of unpredictable branching, and because of a
high AGI frequency due to heavy pointer use, EIdle
events in commercial code render superpipelining
techniques fruitless. These techniques are better suited
to the realm of scientific workloads.

IBM J. RES. DEVELOP. VOL. 41 NO. 3 MAY 1997

Real workloads
Figure 3 is an idealized plot, but in fact, r e d workloads
exhibit a small correlation between EBusy and miss rate.
This does not mean that miss rate is causal to EBusy; it
merely means that there is a statistical dependence
(correlation). This is why rigorous benchmark selection
requires an accurate module mix. An accurate instruction
mix alone is insufficient.

Furthermore, the actual finite-cache CPI becomes
superlinear when the miss rate is very low or very high,
for different reasons:

1. When the miss rate is very low, the misses do not
cluster (in time) quite as much as they would in steady
state; therefore, no portions of misses overlap each
other. The net effect is that the average miss penalty is
slightly larger.

and its buses become saturated servers. The misses
serviced by the saturated system then incur inordinate
queueing delays, and the average miss penalty
increases. This effect is nonlinear, and is discussed later
in this paper.

2. When the miss rate is very high, the memory system

Out-of-order execution in modern pipelines
Tomasulo described a “common data-bus algorithm” that
permits out-of-order execution in the floating-point
hardware of the System/360* Model 91 computer [5]. In
the 1960s, floating-point operations required multiple
execution cycles, so allowing a logically subsequent
instruction to bypass an operation that was in progress
helped performance.

The Tomasulo algorithm was extended for use in the
S/390* ES/9000* family of processors to include register
renaming and a means for taking precise interrupts while
executing out of order [6]. The general scheme is
described by Smith and Pleszkun [7], and is now used in
many modern processors.

Two aspects of the general scheme can be compelling
under certain circumstances:

1. If the number of architected registers is insufficient for
supporting the maximum number of instructions that
can be in progress at any time (proportional to the
product of the number of pipeline stages and the
number of instructions decoded per cycle), register
renaming provides a means to increase the number of
physical registers so as to support this peak rate.

2. Register renaming can simplify the control required to
take precise interrupts and/or to initiate retry
operations.

However, the out-of-order aspect of the broad scheme is
generally not valuable in modern processors, where the

IBM J. RES. DEVELOP. VOL. 41 NO. 3 MAY 1997

number of execution cycles needed per instruction is
almost always one (exceptions are divide, square root, and
some decimal operations).

Out-of-order execution is not usually valuable because
in-order flow is generally maintained in all of the pipeline
except for the execution phase, which is usually a single
cycle. Specifically, the in-order decoding of instructions is
required so that the hardware can make sense of the
logical instruction sequence, and in-order instruction
completion is required so that exceptions are handled
properly and interrupts are taken precisely. Between the
decoding and the completion of an instruction, CISC
pipelines access an operand and then execute the
instruction, and RISC pipelines merely execute the
instruction. In general, the ordering of operand accesses is
preserved to satisfy constraints imposed by MP-coherency
issues (specifically, fetches are kept in order, stores are
kept in order, and fetches and stores to the same location
are kept in order).

Therefore, the situation in modern processors is that
order within the pipeline is maintained up until execution,
it is restored immediately after execution, and execution
takes a single cycle. Enabling out-of-order execution in
this environment is not worthwhile, because it will seldom
happen. If enabling out-of-order execution complicates a
design, it should not be done.

to enable out-of-order execution (i.e., if the two
circumstances listed above are not motivating factors), it
should certainly not be done. Not only will this mechanism
fail to improve performance, but the renaming steps will
lengthen the pipeline (or will have a cycle-time impact)
which will increase CPI as previously described, thereby
actually hurting performance.

In addition to arithmetic multicycle operations, there
are other classes of multicycle operations in some
instruction-set architectures. Specifically, there can be
long moves, and there can be operating-system assist
instructions. In both cases, the opportunity for them to
overlap other operations is very slight. Long moves fully
utilize critical resources (e.g., buses) and prevent much
else from happening while they are in progress. Operating-
system assists are usually serialization events which
explicitly preclude overlap.

High-MIPS effects and workload characterization
The initial velocity of a falling object is determined
predominantly by gravity. As this predominant effect
increases the velocity, second-order effects (which increase
with velocity) gain significance, and work against the effect
of gravity. In physics, this situation is clearly described by
a simple differential equation in which the object reaches
a terminal (constant) velocity. The falling object can go no
faster than this.

Further, if register renaming is used specifically

P. G. EMMA

221

CPI in the complex number domain.

Similar phenomena affect processor speed, although
the effects cannot be crisply described by differential
equations. Collectively “high-MIPS’’ effects (HMEs) are
effects that tend to slow a processor as it runs faster.
Most of the HMEs arise because the latency (not the
bandwidth) associated with the I/O subsystem does not
scale with processor speed.

In a multiprogramming environment, as the processor
speeds up (via faster circuits, higher ILP, or higher degree
of MP), the latency of the I/O subsystem appears larger
from the perspective of an executing program. If the
multiprogramming level is maintained, the added speed
causes the processor utilization to drop (i.e., the added
speed is not utilized). To maintain a high utilization, the
multiprogramming level is increased.

When the multiprogramming level increases, the
software queues become longer, which causes dispatchers
and other operating-system modules to utilize a higher
percentage of the system time. Operating systems
compensate for this by using different algorithms, which
changes the basic instruction mix somewhat. Further, the
larger number of coexistent processes generate a higher
rate of synchronization events, and those events must
synchronize with more processes. Since the aggregate
“footprint” of the coexistent processes is larger, the cache
miss rate and the TLB miss rate will be larger for each
process. These effects all slow the system down.

Note that as processes (mainstream and I/O) and
processors (mainstream and I/O) interact, they necessarily
spend some portion of their time in wait-loops waiting for
asynchronous events to complete (e.g., a page-in). As the

222 number of processors in a multiprocessor increases, as

P. G . EMMA

those processors run faster, and as the degree of
multiprogramming increases, the portion of time spent
waiting increases.

When measuring the real performance of a running
system by measuring instruction throughput (MIPS), it is
important to subtract out that portion of the performance
that is spent in wait loops (or other analogous code). Not
only are wait loops nonproductive (and should not be
included in any measure of “work), but they can actually
run very fast, and can bias a measurement of MIPS in an
artificially favorable way.

5. IPC and other metrics that defy intuition
Thus far, the case has been made for CPI as the
performance metric that most naturally lends itself to
intuitive interpretation and simple estimation techniques.
CPI is a dot product involving a set of event types, where
the contribution of each event type is the product of its
frequency and its associated penalty. The frequencies are
intrinsic to workloads, and the penalties can be readily
derived from the microarchitecture.

An experienced designer should know approximate
numbers for key events, key workloads, and basic
microarchitectures. Changes to a microarchitecture rarely
affect more than one or two event types, and that effect
should be readily understood by an experienced designer.
Quick estimation using this dot product is simple and
remarkably accurate.

IPC is the inverse of CPI. It defies intuition while
hinting at high performance. Merely intoning “instructions
per cycle” creates a subliminal feeling that massive
instruction-level parallelism (ILP) is being achieved.
It is not.

When performance is expressed as IPC, EBusy and
EIdle become intermingled and inseparable. This does not
clarify performance; it shrouds it. The use of IPC has
been the largest impediment to the understanding of
pipeline effects, and the largest contributor to the notion
that EIdle defies intuitive quantification. It has been the
largest impediment to simple analyses of superscalar and
VLIW processor designs.

maximum speed in the absence of any possible accounting
for pipeline effects as “performance,” that for several
years we assumed that most of the industry was measuring
CPI in the complex-number domain, as shown in Figure 5 .

In fact, so many papers quote some theoretical

Complex CPI
As was explained in the previous section on infinite-cache
performance,

CPI = EBusy + EIdle.

On the basis of the numbers quoted in many papers, the
only reasonable conclusion that is possible is that

IBM J. RES. DEVELOP. VOL. 41 NO. 3 MAY 1997

published performance is just EBusy, which can be
inte;preted as a projection of complex CPI onto the real
axis,

Re (CPI) = EBusy,

where the angle associated with the projection is

arccos
EBusy

The corresponding projection onto the imaginary axis is

Im (CPI) = (EBusy + EIdle) sin(@).

Think of the imaginary component of CPI as that
component of performance many authors would like to
imagine they need not deal with. Complex CPI is

CPI = EBusy + i Im (CPZ).

A good indicator of the usefulness of a measurement is
the sensitivity of that measurement to a parameter of
interest. Since changes to a microarchitecture usually
target EIdle (i.e., improving E U utilization), the sensitivity
of CPI to EIdle is this indicator. This is

d (CPI)
d(EId1e)
" - 1

EBusy
EBusy + EIdle

E B U S ~ ~ +
(EBusy + EIdle) JEIdle(2EBu~y + EIdle) ' I

which is a purely imaginary complex trigonometric
function that is messy, hence unintuitive. (It also happens
that if EBusy and EIdle are comparable, this sensitivity is
small, so complex CPI is not a useful measurement
anyway. 1

Thus, just as for the inverse of CPI (IPC), it is apparent
that the complex form of CPI does not lead to clear
intuition. Nonetheless, computing complex CPI from
published performance numbers does yield another useful
metric. In particular, 0 is a direct measure of the degree
to which the published number is out of phase with
reality.

6. Limits of superscalar performance as
understood from scalar components
Thus far, discussion has focused on performance for
pipelined machines that issue a single instruction per
cycle. It was argued that CPI can be partitioned into
independent pieces for such a machine, and those pieces
can be easily understood.

Superscalar processors decode and execute multiple
instructions per cycle, and the execution can be done out
of order with respect to the decoding. Understanding the
pipdined flow of multiple instructions per cycle (possibly
out of order) is more difficult than understanding the flow

IBM J. RES. DEVELOP, VOL. 41 NO. 3 MAY 1997

of single instructions per cycle. Similarly, implementing a
superscalar simulator is more difficult than implementing
a scalar simulator.

For some proposed microarchitectures, the tasks of
understanding performance and of simulating performance
seem overwhelming. While the dissection of superscalar
performance into its components is not done in this paper,
its key is a solid grasp of the analogous scalar flow.
Frequently, this grasp is sufficient for making very good
estimates. Understanding superscalar performance without
understanding the analogous scalar flow is hopeless.

Every designer and performance analyst who is working
on a superscalar processor without a detailed model of
such and without the resources or time to construct one
should construct (at least) the analogous scalar model.
That is, construct a model of the same pipeline, and study
that pipeline running in scalar mode.

The scalar performance components are hard bounds
(fixed CPI limits) for the superscalar components; they
give definite indications of what levels of performance are
and are not achievable in superscalar mode. In particular,
the FCE is identical; scalar EBusy is an upper bound; and
scalar EIdle is a lower bound.

Recall that FCE is the product of the miss rate and the
miss penalty. The miss penalty depends on the memory
hierarchy, not on the microarchitecture of the processor.
The miss rate (misses per instruction) is a characteristic of
the workload, and is independent of the rate at which
instructions are executed. (Note that prefetching
mechanisms, branch prediction mechanisms, and explicit
speculation can increase the miss rate, but that increase
can be accurately estimated without a detailed model of
the processor.) Therefore, it is an excellent approximation
that the FCE in superscalar mode is identical to the
FCE in scalar mode. (This paper does not address
multithreading; suffice it to say that it makes the FCE
component worse, and it should not be used if a primary
goal is high performance.)

EBusy is the inherent work done by the program. This
work is identical in scalar and superscalar modes. The
difference is that in superscalar mode, some of the work is
done in parallel. As such, the scalar EBusy is an upper
bound, and the superscalar EBusy should be smaller. If
there are n functional units, it cannot be more than n
times smaller. Estimates that approach EBusy/n are
probably wrong.

EIdle is (primarily) a measure of the functional
interlocks that are intrinsic to the program, e.g., branches,
AGIs, and serialization events. The penalties associated
with these intrinsic interlocks depend on the pipeline, and
on the temporal proximities of the interlocks to the events
that resolve them (e.g., AGI).

The interlocks do not disappear in superscalar mode; on
the contrary, their effects are amplified. If superscalar

P. G. EMMA

operation is having the desired effect (i.e., the execution
rate is increased), the temporal proximities of interlocks
are shortened with respect to the events that resolve them.
That is, sequences of instructions are compressed into a
smaller temporal “window,” and the resolving events have
less time to resolve the interlocks before the interlocks
stop pipeline flow.

bound. As the execution rate increases, EIdle can only
become larger.

There are also EIdle effects that arise because of
resource conflicts (e.g., insufficient buffering, buses, or
ports). These are called “bottlenecks.” They are
(generally) extrinsic to the program, and should be
relatively small. If these effects are manifest in a scalar
design, the design is poor. Design resource should be
directed at these bottlenecks instead of at a superscalar
control structure.

If these effects are ignorable in a scalar design, they
nonetheless might be manifest in a superscalar design if
buffers and bandwidth-related resources are not scaled
accordingly. Therefore, as was true of the intrinsic EIdle,
extrinsic EIdle in a scalar design (if any) can only become
worse in a superscalar design. Scalar EIdle is a lower
bound.

Of the three scalar bounds, EIdle is the most difficult to
extrapolate to the superscalar realm. As was discussed in
the subsection on infinite-cache performance, the principal
components of EIdle have penalties that are directly
proportional to the number of cycles required for a cache
access. For this reason, a designer should know the
coefficient of infinite-cache CPI with respect to this
number. Recall that this is strictly linear, so the increase
in CPJ per cycle increase in the cache-access time is
constant. This coefficient is useful in quickly evaluating
whether a potential reduction in miss rate from a larger
cache justifies the potential exposure of a longer cache-
access time.

Therefore, the intrinsic part of scalar EIdle is a lower

Small fast LO caches
A caveat in regard to the aforementioned pipeline
coefficient is that it should not be used to extrapolate CPI
downward into the realm of LO caches. LO caches cannot
be conceptualized in the same manner as L1 caches
because their (rare) benefits cannot be quantified in terms
of hit rate. This is because LO caches are very small and
have hit rates that are below the “critical mass” required
to conceptualize their steady-state operation.

which are sequences of instructions between successive
taken branches (or between successive mispredicted
branches). If all data and instruction references in a basic
block are satisfied by the L1 cache, that basic block “sees”

Specifically, the quanta of pipeline flow are basic blocks

224 the pipeline flow involving the L1 access path. If L1

misses are rare (relative to the number of instructions in
the basic block), “the pipeline” is the pipeline associated
with the L1, and L1 misses can be treated as isolated
events that are accounted for in the FCE.

The LO cache allows the basic block to start early
(assuming that the initial access of the block hits in the
LO), and therefore to finish early (assuming that all
references in the basic block hit in the LO). If any access
in the basic block misses in the LO and requires an L1
access, the flow for that block reverts to the L1 pipeline
flow, and the “head start” afforded by the LO is lost.

Therefore, only those basic blocks that live completely
in the LO benefit from the LO. For typical LO sizes and
miss rates, most workloads do not have a predominance
of basic blocks with this characteristic. In any case, the
probability of losing performance due to LO misses is not
proportional to the LO miss rate; instead, it is closer to a
geometric distribution of the miss rate whose degree is
proportional to the average number of accesses per basic
block.

The disadvantage of decoupling the I and E phases
A model of high-performance computing that has become
pervasive in the last several years has the I phase
decoupled from the E phase. The two phases are
implemented with engines that are autonomous with
respect to each other, and they operate on a common
instruction queue.

In this model, the I engine is directed by an extremely
accurate branch-prediction mechanism, and it is able to
run far ahead of the E engine, fetching instructions at a
high rate and dispatching them to the common instruction
queue. The E engine is a superscalar dataflow machine.
The dataflow analyzer chooses instructions that are not
interlocked, and dispatches them out of order (if
necessary) to a set of parallel execution elements at a
hypothetically high rate. The cache and the register file
are assumed to be highly multiported so that they do not
bottleneck execution.

Many studies that involve this model ignore the details
of the I phase and assume that it can keep ahead of the
E phase. The focus then shifts to the dataflow analyzer,
which is a more tractable problem. If the constraints
imposed by considerations for an MP environment are
loosened (specifically, the ordering of fetches and the
completion of stores), and if the cache miss rate is
extremely low, the execution time is a very impressive
(and very unsurprising) number that is proportional to the
depth of the dataflow graph.

This model yields very impressive results that are flawed
on several levels. The first level is a pure “catch-22’’ that
does not require any understanding of microarchitecture:
If the E phase accelerates to its theoretical speed limit
(determined by the dataflow graph), it must catch up with

P. G. EMMA IBM J . RES. DEVELOP. VOL. 41 NO. 3 MAY 1997

the I phase. Therefore, there cannot be instructions in the
common queue to dispatch (i.e., if the E phase goes as
fast as it is supposed to, the processor runs out of
instructions). The point is that the I phase is not
ignorable.

In real commercial workloads, the frequency of
unpredictable branches prevents the I phase from getting
far ahead of the E phase. Given the best techniques
available, a branch will be guessed wrong every 20-30
instructions in real commercial code. (In SPEC**, the
numbers are much better.) Therefore, the theoretical
maximum execution rate can only be maintained for
intervals of 20-30 instructions, and each interval is
followed by a wrong-guess recovery action that requires
restarting the I phase. For real hardware to approach the
bounds implied by this model, branch prediction must
become much better than it is today (except in SPEC).

10-20 instructions for L1 sizes in the 64KB to 256KB
range (in SPEC, the numbers are much better); thus,
maintaining a high execution rate requires moving cache
lines at a rate corresponding to the resulting miss
frequency. This is not realistic at very high execution
rates. For example, if a processor can execute five
instructions per cycle, and there is an L1 miss every ten
instructions, the memory hierarchy must be able to move
an entire cache line in two processor cycles for the
processor to sustain this rate. (This is still an
unrealistically optimistic statement, because it assumes
that there is no miss latency, which would require perfect
prefetching.)

Another characteristic of real commercial code is
that a majority of conditional branches are resolved
by instructions that have an AGI interlock with an
immediately preceding instruction. (An example is a loop
that searches for a record in a linked list.) When this is
the case, it is disadvantageous to separate (temporally) the
I and E phases by adding pipeline stages (the cycles
required to put instructions into a queue, analyze them,
and redispatch them). Instead, it is desirable to couple the
phases tightly so that there is minimal latency between the
initial dispatch of a load instruction and its execution
outcome. (This is much less of a constraint in SPEC.)

In real commercial code, an L1 cache miss occurs every

7. Future trends in cache miss penalty
In high-performance systems of the 1980s, cost was a less
crucial factor than it has become in the 1990s. Symmetric
multiprocessor (SMP) systems of the 1980s typically had
private unidirectional point-to-point buses between
processors and the memory system. Those buses were
driven by water-cooled circuits onto low-dielectric
packaging, and they ran at the same speed as the
processor. Cache line sizes were moderate by today’s
standards.

I Temporal components of a cache miss.

In the 1990s, processors have become faster (shorter
cycle time) and buses have not kept pace. There are many
systems in which the processor runs at a higher frequency
than the bus, and that difference is becoming larger. The
number of processors in SMPs has increased, and to
contain costs, many systems are shared-bus systems. With
the growth of object-oriented programming, miss rates
have increased, and with higher instruction-level
parallelism, miss frequencies (in time) are larger for the
same miss rates. Further, it is becoming the fashion to
increase line size.

Each of these trends increases bus utilization, and thus
exacerbates the effects of bus utilization. Bus queueing
(which was an ignorable effect in high-performance
systems of the 1980s) will dominate system-level
performance in the next decade if new protocols are not
adopted to mitigate it.

components of a cache miss. The leading-edge component
is the time it takes the memory system to deliver the first
datum of a miss. Since a miss causes the transfer of both
the datum that caused the miss and all other data in the
same line, the trailing-edge component accounts for those
cycles that are lost because an entire line was transferred,
i.e., the cycles following the leading edge.

processor is less than the total number of cycles that it
takes to transfer a line, but it is directly proportional to
that number, and thus directly proportional to the line
size. Roughly speaking, trailing-edge effects fall into three
categories:

Figure 6 is a conceptual drawing of the temporal

Note that the trailing-edge delay that affects the

Since spatial locality exists, there is frequently an
upstream reference (immediately following the miss
event) to a datum that is in the same line as the datum
that caused the miss. This should not be counted as a
second miss, but the second reference will experience a
delay if the associated datum is still in transit at the
time of the reference event. 225

The incoming line consumes bandwidth at the L1 cache
and interferes with the running processor.
There are finitely many systems at the L1 interface (e.g.,
only one system in many processors) for containing the
necessary state for controlling the processing of each
miss in progress. That is, there is a maximum number of
misses that can be in progress at any time, and that
number is typically small. If all of these systems are
occupied, a new miss cannot be started until a miss in
progress has completed in its entirety (i.e., until an
entire trailing edge is over).

BR = fp/fR = bus ratio (number of processor cycles per
bus cycle).

Description of miss rates

mr = miss rate for a single processor (misses per
instruction).
CPI = cycles per instruction for a single processor.
P = number of processors that share the bus.
BMF = (mr X P)/CPI = bus miss frequency (misses
per cycle on the bus).

Assessment of the leading-edge penalty is more
straightforward. When a miss is recognized by the L1
cache, there can be queueing at the address bus in some
systems. Once the processor gets control of the address
bus, it transmits an address to the L2 cache (or whatever
is next in the hierarchy). At the receiving end, there could
be an ECC verification cycle, and queueing at the L2.
Once the request is accepted, there is a (fixed) L2 access
time, perhaps followed by another ECC verification cycle.
Again, there can be queueing at the data bus that returns
the first datum to the processor, followed by the transfer
of that datum (and perhaps another ECC verification cycle
at the receiving end). The trailing edge follows this.

Therefore, leading edge comprises several fixed delays
that can be estimated directly from the microarchitecture
of the cache hierarchy, and a few chances for queueing.
Whenever there is a chance for queueing, the average
delay incurred is a nonlinear function of the utilization of
the subject resource (in this case the address bus, the L2,
and the data bus).

The address bus is used for only one bus cycle every
miss, so its utilization is small. The L2 utilization can be
large, but there are many straightforward techniques for
mitigating these effects, e.g., interleaving. The utilization
of the data bus is strongly related to the trailing edge. All
current system-level design trends tend toward increasing
this utilization, hence its associated queueing delay. As is
described below, queueing delay explodes if utilization is
driven past some general thresholds.

For the sake of illustration, the general trend in
queueing effects is analyzed below, using an open
queueing model. While this is not accurate because the
real system is closed, the solution for the open system is
simple, and yields valuable intuition as to the general
trend. (The solution for a closed system is very complex,
and does not yield to intuition.) The notation used is as
follows:

Description of trailing edge

L = line size (bytes per line).
W = width of the bus (bytes).
P, = L/W = number of “packets” per line.

Service time for a miss

TE = P, X BR = trailing edge (number of processor
cycles to transfer a line).

Bus utilization

U = BMF X TE = bus utilization (a probability).

Note that the trailing edge is the service time for a miss
when the bus is the ‘‘server’’ in the queueing model. (Keep
in mind that the trailing edge is distinct from the trailing-
edge effect, as was previously described.)

definition of utilization above. In particular, since
utilization is a probability, it is physically bounded
between zero and one. In the open definition, it is the
product of a rate and a service time which are assumed to
be constant; hence, there is no feedback and no implicit
bounding. In the real closed system, there is feedback to
bound the utilization. Specifically, increasing bus
utilization increases the queueing effect, which increa:es
CPI, which decreases BMF, which keeps the utilization
less than one.

The open aspect of the model is easily seen in the

Nevertheless, the queueing delay (Q) is calculated for
the open system below. The calculation is expressed in two
forms to illustrate a point (as explained later). Q is the
average number of cycles that each miss spends waiting to
get control of the data bus. This is part of the leading-
edge penalty.

Description of bus rate

fp = frequency of the processor in MHz.
226 fB = frequency of the bus in MHz.

BMF x T E ~ n - l
x -

2
+ i x BMF’ x TE’+’.

i = l

P. G. EMMA IBM J. RES. DEVELOP. VOL. 41 NO. 3 MAY 1997

The first form o - --e equation is written directly from
the following intuition. If a miss requires service, there are
i misses in progress with probability U', and the new miss
must wait for the trailing edges of all i misses to complete.
On the average, the first trailing edge is half over when
the new miss finds that the bus is busy (hence, the
negative term before the summation to correct for this).
There can be as many as n misses outstanding in the
system, so a new miss can have no more than n - 1
misses ahead of it (which is the limit of the summation).
Most processors today can only have a single miss
outstanding, so in most shared-bus MP systems, n = P.

The first expression for Q shows that the average
queueing delay is a polynomial in U , and the degree of
the polynomial is one less than the number of misses that
can be simultaneously outstanding in the system. In most
systems, the degree is P - 1. The second expression for Q
is the same as the first, but it has been rewritten to show
that the first term is proportional to the square of the
trailing edge, hence, the square of the line size.

If U is kept relatively small, U' dies out, and the
queueing delay is proportional to the square of the line
size. If U is allowed to grow large (say, > O S) , U' does not
die out, and the queueing delay explodes.

For example, consider a four-processor system where
each processor runs at 2 CPI, and each processor can have
(at most) one miss outstanding. Assume that the bus is
32 bytes wide, and that it runs at half the speed of the
processor. Let the line size be 128 bytes. If the miss rate is
0.02 (i.e., if the intermiss distance is one miss every 50
instructions), the equations above yield a queueing delay
of 3.71 cycles per miss. These system-level assumptions are
fairly conservative for most systems that are being
projected, and this queueing delay is quite significant.

Figure I is a plot of queueing delay as a function of
trailing edge for various miss frequencies. The dotted lines
show constant utilizations. This shows that if U is kept
reasonably small (e.g., <0.3), the queueing delay is fairly
flat, but if U is large (e.g., > O S) , the delay becomes
exceedingly large.

it demonstrates that modern systems are on the edge of a
nonlinear range in bus queueing. A new approach to
transferring data is needed in the coming decade. The
effect of queueing delay on the base CPI is

Q X BMF X CPI CPZ

The example above is shown as point A on the plot, and

A(CPI) = ~

P P
- -

In the example above, A(CPI) = 0.074, which is nearly
4% of the total system performance. Figure 7 shows that

i Bus queueing delay as a function of trailing edge for various m i s s
frequencies.

this is headed in a very dramatic direction as utilization is
increased further.

8. Future trends in bus protocols
In the previous section, the various trends in system
design that drive bus utilization were discussed, and the
effects of utilization on queueing delay were shown. To
summarize, the trends that drive bus utilization are the
following:

More processors in a system.
More processors sharing a bus.
Faster processors (cycle time) and higher bus ratios.
Larger line sizes (= larger trailing edge).
Lower CPI (= higher miss frequency for the same

Higher miss rates (new code with larger working sets).
Multiple misses outstanding per processor (larger n).
Speculative execution (= higher miss rate).
Prefetching (= higher miss rate).

miss rate).

These are all good trends, but they make a previously
ignorable effect significant. It is very simple to propose
solutions such as making the buses faster and/or wider,
adding more buses to the system, or reducing the miss
rate. However, these are not real solutions. Much effort is
already spent making buses as fast as possible and as wide

IBM J. RES. DEVELOP. VOL. 41 NO. 3 MAY 1997 P. G . EMMA

as possible. They cannot be made faster and wider than
what is possible. Miss rates are inherent, and they are
getting bigger.

demand miss occurs, the exigent datum (the word that
the processor needs immediately) is queued behind
nonessential and nonurgent traffic that is flowing in the
system. Those data fall into three categories:

The problem with a highly utilized bus is that when a

1. Trailing edges that follow other exigent data.
2. Speculatively fetched data that are not actually needed.
3. Prefetched data that are not needed anytime soon.

Current bus protocols treat the transfers of cache lines as
atomic events, and allow exigent data to queue behind
nonexigent data.

Since data bus utilization will become large in the next
decade, a family of protocols is needed that allows the
transfers of lines to be broken up so that exigent data can
be transferred on demand. This requires that a small
amount of control information be added to a miss request
that identifies the urgency and/or priority of the miss. In
current protocols, limited control information is already
sent that tells the hierarchy the nature of the request (e.g.,
read, write, fetch exclusive). The new information requires
a few more bits depending on how exotic the protocol is.

When future memory systems send data back to a set of
processors, they will have to arbitrate each bus cycle. This
will allow the trailing edges of multiple misses to be
interleaved. Specifically, future protocols must allow the
first datum of a demand miss to interrupt the returning
traffic (other trailing edges) to get that urgently needed
datum to the requesting processor, to then resume
transferring the interrupted stream, and to merge the
trailing edge of the new stream into the existing stream.

transactions. Instead, they will be divisible strings of
contiguous data. The returning control bus must be active
every cycle to handle this; Le., since a miss will not be
returned as an atomic transaction, control data are
required to identify the data on the bus for every cycle in
which there are data on the bus. (Minimally, it must
indicate what processor the data are for, and the miss ID
number, as it currently must for each atomic transaction.)

This will be required in shared-bus systems, and will
obviate mainstream point-to-point systems because it
enables point-to-point bus performance (electrical
considerations aside) in a shared-bus environment by
minimizing queueing delay even at very high bus
utilizations.

In future systems, misses will not be atomic

Line buffers at both the memory and the processor ends
of a bus will be required to time-multiplex the bus among
multiple trailing edges. At the memory end, the buffer
must hold as many lines as there can be misses 228

P. G. EMMA

outstanding in the system. At the processor end, the
buffer must hold as many incoming lines as the processor
can have misses outstanding.

In current bus protocols, when a processor issues a miss
request, it sends the following three pieces of information
to the memory hierarchy:

1. Address (real) of the datum that is to be returned first
(and thereby, explicitly, the address of the line that
contains the datum).

2. A miss ID, which (on a shared-bus system) comprises
two parts:

The ID of the processor that is issuing the miss.
The ID of the miss (in case the processor can have
more than one miss outstanding).

3. The miss type, which tells the memory what status is
needed for the line (e.g., shared, exclusive).

When existing memory systems return data, they send
back the second field above with the data. In this way, the
processors on the bus can tell what the data are (Le., who
they are for, and the miss to which they correspond).

Existing protocols treat each miss as an atomic
transaction, and they lock up the bus for the duration of
the associated line transfer. For these protocols, the
second field (above) need not be sent back on every bus
cycle; it is just sent at the beginning of each transaction.
In future bus protocols, each bus cycle will be used for a
unique transaction, and the second field (above) will be
sent on every cycle to identify the data for that cycle.

In future protocols, there could be as many as three
additional control fields sent with each miss request.
All three together would provide a much richer set of
protocols than is actually needed. Nonetheless, all fields
are listed below to provide a complete specification for
future protocols. Each field is optional, and each can be
arbitrarily simple or complex. The new fields are the
following:

1. A priority level is used to distinguish as many of the
following types of misses as desired:

Demand data fetch (exigent).
Demand instruction fetch (exigent).
Demand data fetch down conditional path

Demand instruction fetch down conditional path

Data fetch down speculative path (speculatively

Instruction fetch down speculative path

(conditionally exigent).

(conditionally exigent).

exigent).

(speculatively exigent).

IBM J. RES. I IEVELOP. VOL. 41 NO. 3 E dAY 1997

Data prefetch initiated by prefetch mechanism

Instruction prefetch initiated by prefetch
(prefetch).

mechanism (prefetch).

2. Multiplex control specifies how this data stream is to be
multiplexed with respect to the other active streams.
Assuming that Field 1 above is not used, Field 2 might
specify one of the following actions:

Put the entire stream behind the currently active
traffic. (This is the current default; Le., this is what
current protocols do.)
Suspend all other active traffic for one bus cycle to
return the first datum from this miss immediately,
then resume the suspended traffic, and put
the remainder of this stream at the end of the
queue.
Suspend all other active traffic to return this entire
stream, then resume the suspended traffic.
Suspend all other active traffic for one bus cycle to
return the first datum from this miss immediately,
then interleave the packets of this stream with the
ongoing traffic.
Return the packets from this stream only.if there is
no other traffic present.
Other things deemed useful.

If Field 1 above is used, Field 2 would specify the same
control functions listed above, except that it would
enforce them with respect to priority levels, e.g.:

Suspend traffic of equal or lower priority for one
cycle to return the first packet of this stream, then
queue the remainder of this stream behind traffic of
higher or equal priority.

packet of this stream, then queue the remainder of
this stream behind traffic of higher or equal
priority.

Suspend all traffic for one cycle to return the first

3. A command field rescinds or changes instructions as to
how previously issued misses are to be handled. This
allows for the changing of characteristics of misses that
have not yet begun, or of misses that are in progress.
For example, Field 3 could specify the following:

Change the type of request of an outstanding miss.
This allows the upgrade of a read-only request to
an exclusive request, or the downgrade of an
exclusive request.

the upgrade of the priority of a miss, which would
be appropriate if a speculative prefetch became a
known demand miss.

Change Field 1 on an outstanding miss. This allows

Rescind miss request (i.e., cancel a previous
request). This would be useful if it were found that

a prefetch that had previously been issued was
down a path that is now known not taken.
Reset starting address. This is useful if a previously
initiated prefetch for a line was done without
specific knowledge of the address of the datum that
would be needed first, and the address of that
datum is now known.
Add a new starting address. This is useful if an
upstream reference to an incoming line is
discovered. It is different from the previous
command because it does not change the first
doubleword address; it just says that instead of
returning the line sequentially, the line should be
returned starting with the first two explicitly named
(nonsequential) words.
Other things deemed useful.

This new family of protocols will emerge in the coming
decade. It enables high performance on a shared bus, and
it allows the bus to be run at very high utilization with
minimal queueing delays.

There is currently a resurgence of interest in sectored
caches for some of the reasons outlined above. In a future
generation of processors, sectoring will re-emerge as an
intermediate step in the evolution toward these protocols.

9. Power and microarchitecture for high-
frequency design
In the description of the IAS machine, the power budget
was shown to be partly responsible for a basic aspect of
many modern ISAs known as the von Neumann
bottleneck. In fact, power will play an important role in
shaping microarchitecture in the coming decade.

A popular viewpoint is that power is an unfortunate
constraint which causes a divergence in the
microarchitectures that target the server and client spaces.
The reasoning is that the client requires low power, and
thus a simple core, and the server requires a high degree
of ILP, hence high power.

guiding microarchitectural development into the highest
performance realm for the server. The client and server
spaces will converge to the same microarchitectural core
with the same physical floorplans, albeit with different
circuit designs.

Specifically, there has been confusion in the last decade
because there is no general methodology for assessing the
impact of a microarchitectural feature on cycle time. Most
proposed changes to a microarchitecture target ILP. It is
known that adding microarchitectural features to a
processor makes it bigger, and that making a processor
bigger probably does not improve its cycle time, but the
extent to which an added microarchitectural feature hurts
cycle time is generally not known.

Instead, consider power to be a metric that is useful for

IBM J. RES. DEVELOP. VOL. 41 NO. 3 MAY 1997 P. G . EMMA

It is human nature to give credit to a design where
there is a tangible benefit (quantifiable CPI reduction),
and to discount the unknown. That is, if the cycle-time
impact of an added feature might be negligible, we tend to
assume that it is negligible; if the CPI benefit is known,
adding a feature to a machine to achieve higher ILP is
perceived to be desirable on balance.

This is a dangerous trend, particularly in CMOS,
because CMOS is a wiring-driven technology. In CMOS,
the area of a machine is (almost) unrelated to the number

230 of gates in the machine, and is more strongly dependent

P. G . EMMA

on the number of wires that must be run to connect them.
Things that drive ILP tend to drive wiring-track usage in
an exponential manner. When parallel execution units,
parallel buses, and multiple ports are added to parts of a
machine, wiring (hence area) increases dramatically.

While it is true that planarization technology allows for
more levels of wiring, more than a few levels are useless
for increasing interconnectivity. Very simply, once the
lower levels of metal are heavily congested, vias cannot be
dropped through them, and the upper levels of metal
cannot be connected to the silicon surface. Sai-Halasz
advocates using upper levels of metal for “fat wires” which
have lower resistance, hence higher speed for signals that
must travel more than a few millimeters [8].

Figures 8(a) and 8(b) respectively show the cycle time
and the CPI as a function of the degree of ILP in a
superscalar processor. In this case, CPI decreases to an
asymptote, and cycle time increases linearly as more
parallelism is added to the processor. This is the dual of
Figure 4 (the superpipelining case), so MIPS as shown in
Figure 8(c) has the same form as in Figure 4(c). The
lesson is that there is an optimal level of ILP, and the
level appears to be small (say 2 to 4, or when pressed for
an exact number, T), mostly because of the sensitivity of
cycle time to adding wires to the machine.

While the coefficient of the line in Figure 8(b) is very
difficult to assess, and is highly debatable, power can be
the metric that provides real guidance in achieving high
performance. When hardware is added to a machine, the
power impact is readily tangible. If the goal of a
microarchitecture is low power and, more specifically, low
work (the product of power and time as it affects battery
life), only those features that pervasively provide low CPI
are included. Features that only help CPI sometimes (and
that hurt cycle time all of the time) are eliminated if low
power is a goal. Those elements should also be eliminated
if high performance is a goal.

As the industry pushes processor design into the GHz
range and beyond, there will be a resurgence of the RISC
approach. While superscalar design is very fashionable, it
remains so largely because its impact on cycle time is not
well understood. Complex superscalar design stands in the
path of the highest performance; he who achieves the
highest MHz runs the fastest.

A clear focus on power yields a clear focus on high
performance. This trend will make the microarchitectures
of the client and the server converge. In the client
processor, the circuit design will be optimized for low
power. Since CMOS is wiring-driven, adding active silicon
area via resizing devices can usually be done with little
impact to the physical floorplan. The high-performance
server can then be derived directly from the client core by
resizing devices to optimize for speed.

IBM J. RES, DEVELOP. VOL. 41 NO. 3 MAY 1997

IBM J. RES. DEVELOP. 1

Complex CPl, relativity, and adiabatics
In a previous subsection on complex CPI, the discussion
was limited to values of CPI in the first quadrant only.
Now that the discussion has turned to power, the other
quadrants in Figure 5 take on significant physical interest.
In particular, points in quadrants I1 and Ill have negative
real components. The only reasonable interpretation of
such points is that they represent the performance of a
processor that is running the program backward.

One possible interpretation of quadrants I11 and IV,
which have negative complex components, is that they
represent a new paradigm in circuit performance; in
particular, they represent processors that run faster than
the speed of light. According to simple relativistic theory,
when the machine runs faster than light, time moves
backward relative to our inertial frame of reference.
According to this theory, quadrants I and 111 are
indistinguishable, since quadrant 111 has the computation
being run in reverse while time moves backward. As such,
quadrant I11 is uninteresting.

Quadrants I1 and IV are of real interest, particularly
with the recent advent of adiabatic computing. A
processor that can run adiabatically in quadrant I1 acts as
a power source, hence a perpetual motion machine. In
quadrant IV, if a machine enters an adiabatic realm, it
becomes a black hole. If this happens, it will change the
world as we know it.

10. Conclusion
In this paper, several points were made that are
antithetical to some of the modern philosophy in
processor microarchitecture. These points are based on
simple observations relating to the machinations of
electronic von Neumann computers, which have been in
existence since the onset of this industry.

First, the most popular performance metric, IPC
(instructions per cycle), is the reciprocal of the metric that
should be used, CPI (cycles per instruction). This is
primarily because CPI is a simple dot product of a few
numbers that any experienced designer should have at his
fingertips. It is intuitive, and it makes for remarkably
quick and remarkably accurate estimates.

On the other hand, IPC does not yield to intuition.
Instead, it shrouds fundamental issues in mystery, and it
has much of the industry (and academia) running down
blind corridors in a state of general confusion.

Second, the separability of CPI into three independent
components was demonstrated. The three components
account for the intrinsic work done by the computer, the
pipeline structure of the computer, and the memory
hierarchy. It was argued that a solid grasp of each of these
three components is necessary in understanding the
performance of a superscalar processor, because the scalar
components are hard bounds for the analogous superscalar

IOL. 41 NO. 3 MAY 1 991

components. Essentially, the argument is that one must
have a grasp of the simple case before one can hope to
understand the general case.

Third, attention was focused on a trend in future
systems in which data bus utilizations cross a threshold
that will make queueing at the memory bus a limitation of
system performance. A new family of bus protocols that
can mitigate this effect was proposed. These protocols will
emerge in the coming decade because of the impending
delays due to queueing.

will drive the development of microarchitecture in
the coming decade, and that the aspects of a
microarchitecture that result in low power also result in
high performance. This is particularly true in CMOS,
which is a wiring-driven technology. This trend will cause
the client microarchitecture and the server
microarchitecture to converge.

Finally, an argument was made that power consumption

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or registered trademark of Standard
Performance Evaluation Corporation.

References
1.

2.

3.

4.

5.

6.

7.

8.

J. P. Hayes, Computer Architecture and Organization,
McGraw-Hill Book Co., Inc., New York, 1988.
J. von Neumann, Collected Works, Vol. 5, Design of
Computers, Theory of Automata and Numerical Analysis,
The Macmillan Company, New York, 1963.
P. Emma, J. Knight, J. Pomerene, R. Rechtschaffen, and
F. Sparacio, “Components of Uniprocessor Performance,’’
Research Report RC-12203, IBM Thomas J. Watson
Research Center, Yorktown Heights, New York, October
1986.
P. Emma and E. Davidson, “Characterization of Branch
and Data Dependencies in Programs for Evaluating
Pipeline Performance,’’ ZEEE Trans. Computers C-36,

R. Tomasulo, “An Efficient Algorithm for Exploiting
Multiple Arithmetic Units,” ZBM J. Res. Develop. 11, No. 1,
25-33 (January 1967).
J. Liptay, “Computer System with Logic for Writing
Instruction Identifying Data into Array Control Lists for
Precise Post Branch Recoveries,” US. Patent 5,134,561,
July 1992.
J. Smith and A. Pleszkun, “Implementation of Precise
Interrupts in Pipelined Processors,” presented at the 12th
Annual International Symposium on Computer
Architecture, June 1986.
G. Sai-Halasz, “Performance Trends in High-End
Processors,” Proc. ZEEE 83, 20-36 (1995).

NO. 7, 859-875 (July 1987).

Received August 8, 1996; accepted for publication
February 19, 1997

231

P. G. EMMA

Philip G. Emma ZEM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York
10598 (pemma@watson.ibm.com). Dr. Emma received his B.S.,
M.S., and Ph.D. degrees in electrical engineering from the
University of Illinois at Urbana-Champaign. In 1983, he
joined the Advanced Computer Architecture group at the
IBM Thomas J. Watson Research Center in Yorktown
Heights, New York, where he did research in high-
performance computer architecture. In 1992, he became
Manager of VLSI Systems and Design, and was a design-team
leader on a future IBM CMOS mainframe processor. He is
currently the Technical Assistant to the Vice President of
Systems Technology and Science. Dr. Emma has achieved 18
Invention Plateaus and has earned the IBM Research Division
honorary title of “Master Inventor.” He is a Fellow of the
IEEE.

232

P. G. EMMA IBM J. RES. DEVELOP. VOL. 4 I1 NO. 3 MAY 1997

