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To understand  processor  Performance, it is 
essential to use metrics that are intuitive,  and 
it is essential to be  familiar with a  few  aspects 
of  a  simple  scalar  pipeline  before  attempting 
to understand  more  complex  structures.  This 
paper  shows that cycles  per instruction (CPI) 
is a  simple dot product of  event  frequencies 
and  event  penalties,  and that it is far more 
intuitive than its more  popular  cousin, 
instructions per  cycle (IPC).  CPI is separable 
into three  components that account for the 
inherent  work, the pipeline,  and  the  memory 
hierarchy,  respectively.  Each  of  these 
components is a  fixed  upper  limit,  or  “hard 
bound,” for the superscalar  equivalent 
components. In the last decade, the memory- 
hierarchy  component  has  become  the  most 
dominant  of the three  components,  and in the 
next decade,  queueing at the  memory  data  bus 
will become  a  very  significant part of  this. In a 
reaction to this trend,  an  evolution in bus 
protocols will ensue.  This  paper provides  a 
general sketch of  those  protocols. An 
underlying  theme in this paper is that power 
constraints have  been a  driving force in 
computer  architecture  since the first 
computers  were built fifty years  ago. In CMOS 
technology,  power  constraints will shape 

future  microarchitecture in a  positive  and 
surprising way.  Specifically,  a  resurgence  of 
the RlSC approach is expected in high- 
performance  design which will cause  the client 
and  server  microarchitectures to converge. 

1. Introduction 
As late as the  17th  century in  many European universities, 
only the very best  students  were  told  that  they could 
someday  hope  to  conquer  long division if they  applied 
themselves. At  that  time,  Roman  numerals  were  the 
preferred system of numerical  representation.  This 
demonstrates  that if a bad system is chosen  to  represent 
aspects of a problem, relatively  simple problems  can  be 
made  quite difficult. 

The  popular  instructions  per cycle (IPC) is a poor 
metric  to  use in  discussing processor  performance  because 
it does  not  lend itself to  intuition  about  what  the 
components of that  performance  are.  That is, if a pipeline 
that  runs  at x IPC  has  improvements  made  to it so that it 
runs  at x + A IPC,  there is no way to  intuit A (in  units of 
IPC)  on  the basis of those  improvements. 

The first point  made in this  paper is that while IPC 
makes  for  good  marketing, its inverse is what makes  for 
good  engineering  intuition.  This  paper strongly advocates 
the  use of cycles per  instruction  (CPI) as the  metric of 
choice in processor  microarchitecture discussions. 
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The  second  point  made in this  paper is  a  corollary to 
this first point.  That is, scalar  pipeline  performance  (in 
units of CPI)  can  be split into  three relatively independent 
pieces: one involving the  inherent execution component of 
the  workload  (cited incorrectly as  “performance” in  many 
studies),  one involving pipeline  effects,  and  one involving 
the memory  hierarchy. Changes  to  the p r o c p o r  
microarchitecture  can  be  translated  into  changes in CPI 
almost intuitively by considering  these  three  components 
independently. 

Since  this is the fiftieth anniversary of electronic digital 
computing,  von Neumann’s machine  built  at  the  Institute 
for  Advanced  Studies  (henceforth called the  IAS  machine) 
is used to illustrate  the  point.  This  first-generation 
machine  shares many similarities with modern  processors, 
and it is used  to  demonstrate  that  it is crucial  to 
understand  instruction flow in  a  simple processor  before 
hoping  to  understand flow in  a  complex (e.g., superscalar) 
processor.  This  notion is self-evident, but surprisingly 
many  resist it. 

The  third  point  made in the  paper  builds on the first 
two points:  The  CPI  components of scalar (single decode 
per cycle) flow imply bounds  for  the  CPI  components of 
superscalar  (multiple  decodes  per cycle) flow. Therefore, 
if understanding  (or  undertaking  the  development of a 
detailed  simulator  for)  the flow in  a superscalar  processor 
is an overwhelming  task,  a great  deal  can  be  gained by 
understanding  the flow for a  much simpler  (scalar) case. 
Given  a  simple understanding of that  simple  (scalar)  case, 
extrapolation  to  the  more  general  case  can  be  (at  least) 
bounded. 

The  fourth  point is a divergence  from  the first three 
points; it focuses  on  an  aspect of performance  that will 
become  more  dominant in the coming decade,  hence, 
on  an  aspect of design that must  evolve. This is the 
performance  and design of the memory  bus. The  simpler 
designs and slower cycle times of past designs have not 
stressed  bus  utilization  the way future designs will. 
Queueing  effects grow nonlinearly  once  utilization  exceeds 
certain  thresholds.  This  must  be  mitigated with a new 
approach  to  bus  arbitration. 

The final point of the  paper is that  as  an industry, 
we are devoting disproportionate  resources  to overly 
complex superscalar designs because we have not  found 
a metric  that  helps us to avoid those  features in the 
microarchitecture  that  hurt cycle time.  That  metric is 
power consumption. A clear  focus on power will ultimately 
lead  the industry through  the  GHz  barrier,  and will 
converge the  microarchitectures of the  client  and  server 
spaces in the  process. 

2. Separable  components of CPI 
A digital  computer  executes  an  instruction  stream, which 
is a translated  statement of a  high-level problem. ~ 216 
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Computer  performance is “benchmarked” using 
instruction  streams  that  are  thought  to  be  representative 
of the typical  work done by the  computer. 

An  instruction  stream is  a sequence of instructions 
that  effects a sequence of events  when  executed  on a 
computer.  The  particular  events  effected  depend  on  the 
microarchitecture of the  computer,  but  the  frequency of 
those  events is inherent in the  instruction  stream. 

The basic unit of time within  a computer is the cycle, 
and  each  event  caused by an  instruction in the  program 
takes  an  integer  number of cycles. Some  events  are 
concurrent,  and  some  events  take  zero cycles when they 
occur in certain  microarchitectures. 

Cycles per  instruction  (CPI) is the  most  natural  metric 
for expressing processor  performance  because it is the 
product of two measurable things: 

CPI= (cycles per  event) (events per instruction). 

The  number of cycles per  event is determined by the  event 
type for a particular  microarchitecture  (it  can  be  zero  for 
some  event types), and  the  number of events  per 
instruction is known for  each  workload  (independent of 
the  microarchitecture). 

out of  five instructions in  a program is  a branch 
instruction,  the  event  frequency is 0.2 branches  per 
instruction  for  that  program. If a branch causes  a three- 
cycle delay  in  a processor,  the  CPI  contribution of 
branches  in  that  processor is 0.6 CPI  for  that  program. 
That is, on  the  average,  an  instruction  incurs 0.6 cycles of 
delay because of branches in the  program. A performance 
enhancer such  as  a branch  prediction  mechanism  can  be 
thought of as a mechanism  that  either  reduces  the 
frequency of branches  or  reduces  the  average  penalty  for a 
branch. 

For  example,  consider  branches in the  program. If one 

Other  events  that  can  cause delay include  data 
dependencies  (instructions  that  are  delayed  because  they 
need  the  results of previous  instructions  that have not yet 
executed),  cache misses (referenced  data  that  are  not in 
the local cache  and  must  be  fetched  from  the  memory 
hierarchy),  and  serialization  events (explicit draining of 
the  processor  pipeline  to  ensure  correct  function of 
certain complex operations).  For  the  most  part,  the 
frequencies of these  events  can  be  measured directly 
from a program  (benchmark)  without knowledge of the 
microarchitecture of the  processor  that will execute  the 
program. 

Therefore, a benchmark is really  a  specification of 
event  frequencies,  and  those  frequencies apply to any 
microarchitecture. A specific microarchitecture  determines 
the delay (penalty)  associated with each  event  type (which 
can  be  zero).  CPI is the  most  natural expression  of 
performance  because it is the  dot  product of a benchmark 
(event  frequencies)  and a microarchitecture  (event 
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penalties)  for all event types. Further, a very small 
number of events  account  for  most of the  performance of 
a processor. 

3. Some observations  on von Neumann’s IAS 
machine 
Figure 1 shows  a sketch of the  organization of the, IAS 
machine, which is considered  to  be  the first stored- 
program  computer.  This  sketch was taken directly from 
Prof.  John Hayes’s book [l] as he  adapted  it  from von 
Neumann’s verbal  description of the  machine [2], and it is 
reproduced  here  courtesy of Prof.  Hayes  and of McGraw- 
Hill. The  machine  comprises a central processing unit 
(CPU)  that is coupled  to a main memory and  some simple 
input-output  equipment (I/O). For  the  purposes of this 
discussion, we ignore  the I/O portion of the figure because 
we are primarily concerned with the active processing  part 
of the  computer.  In  the  case of the IAS machine,  the 1/0 
equipment is used  to  preload  the  main  memory with  a 
program  and  its  data,  and  then  to  start  the  CPU.  The 
program  and  its  data live completely in  main memory until 
completion of the  program; i.e., the  I/O  does  not  interact 
with the  program. 

program  control  unit.  The  data processing unit  contains  an 
arithmetic logic unit  and  some  internal  registers,  and  the 
program  control  unit  contains  buffer  registers  that hold 
instructions  and circuitry for  decoding  those  instructions 
and  generating  the  requisite  control signals that govern 
the  operation of the  aggregation in Figure 1. In modern 
parlance,  the  data processing unit is called an  execution 
unit (EU), and  the  program  control  unit is called  an 
instruction  unit  (IU). 

In  the IAS machine, main  memory has  the  appearance 
of a large  register file from  the  instruction-level  semantic 
point of view, but  some of the  register  space  contains  the 
program itself. (The  instructions of the  program  are within 
the  data  space,  and  can  be dynamically  modified by the 
program.) By program  construction,  the  program  and its 
data fit completely  in  main  memory.  Roughly speaking, 
main  memory has  the  appearance of a modern-day 
cache  that  never misses (both  because  the  program is 
constrained  to live in  main memory  and  because  it is 
semantically  impossible to miss within  a register file). 

instruction is fetched  and  executed in  its entirety only 
after  the previous instruction  has  completed in its 
entirety,  and  before  the following instruction is fetched. 
Furthermore,  each  instruction is processed in two 
nonoverlapped  phases. First, the  instruction is fetched  and 
decoded  (I  phase),  and  then  the  instruction is executed 
by the  data processing  unit (E phase).  These  phases 
are  not  pipelined;  they  are  done  sequentially  for  each 
instruction. 

The  CPU  comprises a data processing unit  and a 

The  operation of the IAS machine is as follows. Each 
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Structure of von  Neumann’s IAS processor.  Reprinted  with  the 
permission of the  McGraw-Hill Book Company from page 23 of 
the  second  edition of Computer Architecture and Organization by 
John P. Hayes, published  by the McGraw-Hill Book Company, 
copyright 1988. 

Note  that  there is a  single bus  between main  memory 
and  the  CPU.  This  bus is used to  transfer  an  instruction 
during  the I phase,  and  an  operand  during  the E phase. 
This is what is commonly referred  to as the  “von 
Neumann  bottleneck,” which is widely (and  incorrectly) 
perceived to  be  the “flaw” of the von Neumann 
programming  model.  (Very interestingly, the von 
Neumann  bottleneck  has its genesis in the  solution  to a 
power-budget  constraint, as is explained  later.) 

A programming  model is the high-level part of a 
computer  architecture.  Computer  architecture is the 
contractual  interface  between  the  hardware  and  the 
program;  that is, a computer  architecture is a set of rules 
that  describe  the logical function of a machine  as 
observable by a program  running  on  that  machine. 

Computer  architecture  does  not specify what  the 
hardware actually does; it  specifies  what the  hardware 
appears  to do. The  entire  point of defining an  architecture 
is to  isolate  the  programmer  from  those  details. 
Architecture is a level of abstraction that allows a  program 
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A modem  processor:  Conceptualization of performance. 

to have consistent  function when run on machines having 
different  implementations  (microarchitectures). 

The von Neumann  programming  model is simply this: 
A program (which is  a sequence of instructions)  generates 
outputs  that  are  consistent with the  outputs  generated by 
that  program if each of the  instructions  in  the  program 
sequence is fetched  and  executed in  its entirety only after 
all instructions  preceding it  have completed,  and  before 
any instructions following it  are  fetched. A simpler  (albeit 
ambiguous)  statement of the  same  thing is that “executing 
a sequence of instructions  should have the  effect of 
executing  the  instructions in the  order  in which they 
appear in the  sequence,”  or  more simply, “a  sequence of 
instructions is executed in sequence.” 

The von Neumann  programming  model is merely  a 
formal  statement  that  the  execution of a program  should 
not  be nonsensical. It  does  not imply that  the  hardware 
cannot  execute  instructions  out of order,  and it does  not 
imply that  there is only one  bus  or  an  inherent  bottleneck. 
All it  implies is that  the  hardware  must  not  generate 
program  outputs  that  are  inconsistent with the  outputs 
that would be  generated by hardware  that is constrained 
in the  fashion implied by the  programming  model. 

In  fact,  the IAS machine  has a  single bus  to  memory, 
and  the I and E phases  are  not  overlapped  (not 
pipelined).  Each  vacuum  tube in the  IAS  machine  runs 
with its  cathode  at 200 V, and  turns on when its grid 
exceeds 20 V. Putting 20 V on  the grid is most easily 
accomplished by using  a  resistive  divider, but  this  results 
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in  an  undesirable  steady-state  power  dissipation. To  
contain  their power budget,  the  designers of the IAS 
machine  used a more  complex  scheme  to  propagate logic 
values. 

Instead of having resistive  dividers between  the  stages 
of the  arithmetic-logic  unit (i.e., the  carry  chain),  the IAS 
machine,uses bypass capacitors  to  couple  the  stages. 
Therefore,  instead of propagating  static  states  (high  or low 
voltages),  the IAS machine  propagates pulses.’ (This  was 
the first  dynamic logic.) 

If logic pulses  are passed repeatedly  through a capacitor 
with no  quiescent  period, a dc  bias  builds  up,  creating 
unacceptable noise  susceptibility. The  nonpipelined  nature 
of the IAS microarchitecture  provides a natural  solution 
to  this  problem:  The  execution  unit  quiesces  during  the 
I phase,  and  the  instruction  unit  quiesces  during  the 
E phase. 

The von Neumann  bottleneck  has  little  to  do with 
architecture  and a lot  to  do with  power. As described 
later, power budgets will steer  microarchitecture  in  the 
next decade in  a  fairly  obvious way. 

4. The modern  processor  and its performance 
Figure 2 is a  high-level diagram of a modern  processor. 
The  processor  core  comprises  an  instruction  unit  (IU),  an 
execution unit (EU),  and a cache  (C).  The  processor  core 
is coupled  to a  main  memory which can  be a hierarchical 
system. 

At  this level of abstraction,  the  processor  core is very 
similar to  the IAS machine in  many ways. (The  greatest 
similarity  is that  the  IAS  machine  never  experiences a 
cache miss, just  like any modern  processor when running 
ISPEC.) 

The  major  difference in the  microarchitecture is that 
the IU and  the EU operate  concurrently in modern 
processors.  This is basic  “pipelining,” and in  a well- 
designed  processor,  the  cache  can  accommodate  the 
bandwidth  requirements of both  units  running 
concurrently.  In  some  modern  architectures,  instruction 
data  and  operand  data  are distinct, and  reside in separate 
caches  that  are (necessarily) visible to  the  instruction  set 
architecture (ISA). In the IAS machine,  the two forms of 
data  are  indistinguishable,  and  the  interpretation of a 
datum is contextual. 

The  performance  components of this  processor 
correspond  to  its  major  hardware  components, which are 
enclosed by the  dotted  lines in Figure 2. Therefore, 
partitioning  performance  into  these  three  major 
components  (as  described below) is the  most  natural 
means  for  understanding  processor  performance. 

cache  performance  and a  finite-cache  effect (FCE).  The 
The  total  CPI  for a processor is the  sum of an infinite- 

1 Related in a conversation with J. Pomerene, engineer on the IAS project. 
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infinite-cache performance is the  CPI  for  the  core 
processor  under  the  assumption  that  there  are  no  cache 
misses. Roughly  speaking,  this is raw processor  speed 
when the effects of the memory  hierarchy are  ignored. 
The  FCE  accounts  for  the effects of the  memory 
hierarchy. 

Finite-cache effect (FCE) 
The  FCE is the  CPI associated  with cache misses: 

FCE = (cycles per miss) * (misses per instruction). 

The  misses-per-instruction  component is commonly 
called the miss rate,  and  the cycles-per-miss component is 
called the miss penalty. (In the  literature,  the  terms “miss 
rate”  and “miss ratio”  are  often used interchangeably. 
This is incorrect.  The miss ratio is the  ratio of misses to 
references,  and  this  can only be  related  to  the  instruction 
frequency by knowing the  average  number of references 
per  instruction.) 

The  beauty of separating  the  FCE in  this way is that 
for a given cache  geometry (size, line size, and  set 
associativity),  it allows a benchmark  to  be  characterized 
by its miss rate  quite  independently of the  details of the 
cache-to-memory  interface.  That miss rate  applies to 
any other  processor whose cache  shares  the  same 
geometry. 

Measuring  the miss rate  does  not  require complex 
simulation,  but it requires  simulating many  misses (e.g., 
millions) for  an  accurate  measurement. A miss rate 
simulation  merely  requires a data  structure  that reflects 
the  cache  geometry  (the  “simulated  cache”),  and a  long 
reference  stream  to  run  through  that  data  structure  to 
effect replacements (misses). The  simulation  does  not 
require any level of detail,  or any emulation of actual 
hardware  mechanisms. 

Characterization of the miss penalty  requires a detailed 
simulation of the  processor  and  the  memory system to 
which it is coupled,  but  an  accurate  characterization  can 
be  done with  a  relatively  small number of misses (e.g., 
thousands).  That is, to  characterize miss penalty, the 
actual  hardware  mechanisms  that  process a miss must be 
simulated in detail,  and  they must be  simulated within the 
context of the  processor.  This  ensures  certainty  regarding 
the  average delay associated with  a miss, and  this  average 
converges  rapidly. 

Therefore,  the complex simulation  (to  characterize miss 
penalty)  can  be fairly short,  and  the lengthy simulation  (to 
characterize miss rate)  can  be very simple.  It is also  true 
that a (good)  performance  practitioner  can  make a fairly 
accurate guess  as to miss penalty  for a given processor- 
memory  structure if he  has  experience with similar 
structures (i.e., detailed  simulation of derivative  designs 
might be  unnecessary  for  someone who is knowledgeable). 

f CPI as a function of m i s s  rate. 

” . .. ” 

Note  that  simulation is unnecessary  in the trivial case of a 
blocking cache,  because  nothing  overlaps  the processing of 
the miss. 

Figure 3 shows an  idealized  plot of a  processor’s CPI  as 
a function of miss rate.  Note  that  the  slope of the finite- 
cache  CPI is the miss penalty (cycles per miss), and  the 
y-intercept  for  this  line is the infinite-cache CPI. Since 
the  infinite-cache  CPI is independent of miss rate, it is 
horizontal. 

Therefore, if the infinite-cache CPI  can  be  determined 
for a processor,  this fixes the  y-intercept. If the miss 
penalty  can  be  determined,  this fixes the  slope of the 
finite-cache CPI,  and  that  line  can  be  drawn.  For a given 
miss rate (x coordinate),  the  CPI is determined. 

Infinite-cache performance 
Measuring infinite-cache performance  requires a detailed 
simulation of the  processor  core.  This  simulation (using no 
cache misses) can  be relatively short if there is reasonable 
confidence  that  both  the  instruction mix and  the  software- 
module mix are representative of steady-state  performance. 

The infinite-cache CPI is the  sum of two parts  (each of 
which is independent of the miss rate),  as is shown  in 
Figures 2 and 3. These  are  the  execute busy (EBusy)  and 
the  execute  idle  (EIdle)  components. 

EBusy represents  the  average  intrinsic  work  (execution 
cycles) done  per  instruction.  In a scalar  processor, EBusy 
corresponds  to  the  CPI  that would be  obtained if there 
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were  no  pipeline delays. Another  interpretation of EBusy 
is infinite-cache CPI with the  EU utilization  at 100%. For 
a scalar  RISC  machine, EBusy = 1; for a CISC  machine, 
EBusy > 1. Note  that EBusy is independent of pipeline 
delays.  EBusy is the  dot  product of the  instruction 
frequencies  and  their execution  times; it is a pure  measure 
of intrinsic  work, 

EIdle  represents  the  average delay per  instruction 
caused by pipeline effects. Very simply, EIdle is the 
difference  between  the infinite-cache CPI  and EBusy. In 
general, it accounts  for all of the  numerous  pipeline 
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effects,  but only  a few of these  are really  significant. EIdle 
can also be  separated  into a number of relatively 
independent  components [3], although  this is not  done  in ' 
detail  here. 

As can be  surmised  from  some of the  previous 
discussion, the first crude  separation of EIdle is as follows: 

1. Events in which instructions  are  not available  in time  to 
keep  the EU busy. These  are  branches, dynamic  effects 
associated with cache  utilization,  and effects associated 
with the  fetching of variable-length  instructions (if 
applicable). 

2.  Events in which operand  data  are  not  ready  in  time 
to  keep  the  EU busy. The most predominant is the 
address  generate  interlock  (AGI)  associated with 
indirect  data  fetching (e.g., pointer chasing), but 
execution dependencies in general fall into  this 
category. 

3. Serialization  events  in which the  pipeline is deliberately 
drained  between  instructions  to  ensure  correct  function. 
These  events  are  predominant in MP environments. 

Note  that  each of these  events  has a frequency  that  can 
be  measured  for any benchmark,  and  that  frequency is 
independent of the  microarchitecture.  Each  event  has an 
associated  penalty  that  can  be  determined  from  the 
microarchitecture.  The  CPI  contribution of each  event 
type  has  the  form 

CPI = (cycles per event) * (events per instruction). 

A further  interesting  observation is that  most of the  EIdle 
events,  and  all of the  predominant  ones  (branches,  AGIs, 
and  serialization), have penalties  that  are directly 
proportional  to  the  number of stages in the  pipeline  (in 
general),  and specifically to  the  number of cycles required 
for a cache access. That is, EIdle  CPI  varies linearly  with 
the  number of stages in the  pipeline (Le., with the  degree 
of pipelining). 

Superpipelining  and wave pipelining  are  techniques 
that achieve  a fast cycle time by making the  pipeline 
granularity fine. It  has  been shown that  processor cycle 
time decays to  an  asymptote when the  pipeline  granularity 
is increased, while CPI  increases linearly, as shown 
respectively  in Figures 4(a) and 4(b) [4]. The  performance 
(MIPS) is the  inverse of the  product of the two, and  that 
product  has a quadratic  form  (thus, a unique maximum), 
as shown  in Figure 4(c). 

Because of unpredictable  branching,  and  because of a 
high AGI  frequency  due  to heavy pointer use, EIdle 
events  in  commercial  code  render  superpipelining 
techniques  fruitless.  These  techniques  are  better  suited 
to  the  realm of scientific workloads. 
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Real workloads 
Figure 3 is an idealized  plot,  but in fact, r e d  workloads 
exhibit  a  small correlation  between EBusy and miss rate. 
This  does  not  mean  that miss rate is causal  to EBusy;  it 
merely means  that  there is a statistical  dependence 
(correlation).  This is why rigorous  benchmark  selection 
requires  an  accurate  module mix. An  accurate  instruction 
mix alone is insufficient. 

Furthermore,  the  actual  finite-cache  CPI  becomes 
superlinear  when  the miss rate is very low or very high, 
for  different  reasons: 

1. When  the miss rate is very low, the misses do  not 
cluster (in time)  quite as much  as  they  would  in steady 
state;  therefore,  no  portions of misses overlap  each 
other.  The  net effect is that  the  average miss penalty is 
slightly larger. 

and  its buses become  saturated servers. The misses 
serviced by the  saturated system then  incur  inordinate 
queueing delays, and  the  average miss penalty 
increases. This effect is nonlinear,  and is discussed later 
in this  paper. 

2. When  the miss rate is very high, the memory system 

Out-of-order execution in modern pipelines 
Tomasulo  described a “common  data-bus  algorithm”  that 
permits  out-of-order execution  in the  floating-point 
hardware of the System/360* Model 91 computer [5]. In 
the 1960s, floating-point  operations  required  multiple 
execution cycles, so allowing a logically subsequent 
instruction  to bypass an  operation  that was in progress 
helped  performance. 

The  Tomasulo  algorithm was extended  for  use in the 
S/390* ES/9000* family of processors  to  include  register 
renaming  and a means  for  taking  precise  interrupts while 
executing out of order [6]. The  general  scheme is 
described by Smith  and Pleszkun [7], and is now used in 
many modern  processors. 

Two aspects of the  general  scheme  can  be compelling 
under  certain circumstances: 

1. If the  number of architected  registers is insufficient for 
supporting  the maximum number of instructions  that 
can  be in progress  at any time  (proportional  to  the 
product of the  number of pipeline  stages  and  the 
number of instructions  decoded  per cycle), register 
renaming  provides a means  to  increase  the  number of 
physical registers so as to  support this peak  rate. 

2. Register  renaming  can simplify the  control  required  to 
take  precise  interrupts  and/or  to  initiate  retry 
operations. 

However, the  out-of-order  aspect of the  broad  scheme is 
generally not  valuable in modern  processors,  where  the 
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number of execution cycles needed  per  instruction is 
almost always one  (exceptions  are divide, square  root,  and 
some decimal operations). 

Out-of-order  execution is not usually valuable  because 
in-order flow is generally maintained in all of the  pipeline 
except for  the  execution  phase, which is usually  a  single 
cycle. Specifically, the  in-order  decoding of instructions is 
required so that  the  hardware  can  make  sense of the 
logical instruction  sequence,  and  in-order  instruction 
completion is required so that  exceptions  are  handled 
properly  and  interrupts  are  taken precisely. Between  the 
decoding  and  the  completion of an  instruction,  CISC 
pipelines access an  operand  and  then  execute  the 
instruction,  and  RISC  pipelines merely execute  the 
instruction.  In  general,  the  ordering of operand accesses is 
preserved  to satisfy constraints  imposed by MP-coherency 
issues (specifically, fetches  are  kept in order,  stores  are 
kept in order,  and  fetches  and  stores  to  the  same  location 
are  kept in order). 

Therefore,  the  situation in modern  processors is that 
order within the  pipeline is maintained  up  until  execution, 
it is restored  immediately  after  execution,  and execution 
takes a  single cycle. Enabling  out-of-order  execution in 
this  environment is not worthwhile, because it will seldom 
happen. If enabling  out-of-order  execution  complicates a 
design,  it should  not  be  done. 

to  enable  out-of-order  execution (i.e., if the two 
circumstances listed  above are  not motivating factors), it 
should  certainly  not  be  done.  Not only will this mechanism 
fail  to improve performance,  but  the  renaming  steps will 
lengthen  the  pipeline  (or will have  a  cycle-time impact) 
which will increase  CPI as  previously described,  thereby 
actually hurting  performance. 

In addition  to  arithmetic multicycle operations,  there 
are  other classes of multicycle operations in some 
instruction-set  architectures. Specifically, there  can  be 
long moves, and  there  can  be  operating-system assist 
instructions.  In  both cases, the  opportunity  for  them  to 
overlap  other  operations is very slight.  Long  moves fully 
utilize  critical resources (e.g., buses)  and  prevent much 
else  from  happening while they  are in progress. Operating- 
system  assists are usually serialization  events which 
explicitly preclude  overlap. 

High-MIPS effects and workload characterization 
The initial velocity of a  falling object is determined 
predominantly by gravity. As this predominant effect 
increases  the velocity, second-order effects  (which increase 
with  velocity) gain significance, and  work  against  the  effect 
of gravity. In physics, this  situation is clearly described by 
a  simple differential  equation in which the  object  reaches 
a terminal  (constant) velocity. The falling object  can  go  no 
faster  than this. 

Further, if register  renaming is used specifically 
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CPI in the complex number domain. 

Similar phenomena affect  processor speed,  although 
the effects cannot  be crisply described by differential 
equations. Collectively “high-MIPS’’ effects (HMEs)  are 
effects that  tend  to slow a  processor as it runs  faster. 
Most of the  HMEs  arise  because  the latency (not  the 
bandwidth)  associated  with the I/O subsystem does  not 
scale with processor  speed. 

In a  multiprogramming environment,  as  the  processor 
speeds  up (via faster circuits,  higher ILP,  or higher degree 
of MP),  the latency of the I/O subsystem appears  larger 
from  the perspective of an executing program. If the 
multiprogramming level is maintained,  the  added  speed 
causes  the  processor utilization to  drop (i.e., the  added 
speed is not utilized). To  maintain a high utilization, the 
multiprogramming level is increased. 

When  the multiprogramming level increases,  the 
software queues  become  longer, which causes dispatchers 
and  other operating-system modules  to utilize  a  higher 
percentage of the system time.  Operating systems 
compensate  for this by using different algorithms, which 
changes the basic instruction mix somewhat. Further,  the 
larger  number of coexistent  processes generate a  higher 
rate of synchronization  events, and  those events  must 
synchronize with more processes. Since the aggregate 
“footprint” of the coexistent  processes is larger,  the  cache 
miss rate  and  the  TLB miss rate will be  larger  for  each 
process. These effects all slow the system down. 

Note  that as  processes (mainstream  and I/O) and 
processors  (mainstream  and I/O) interact, they necessarily 
spend  some  portion of their  time  in wait-loops  waiting for 
asynchronous  events to  complete (e.g., a  page-in). As  the 
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those  processors  run  faster,  and  as  the  degree of 
multiprogramming  increases, the  portion of time  spent 
waiting  increases. 

When  measuring  the  real  performance of a running 
system by measuring instruction  throughput  (MIPS), it is 
important  to  subtract  out  that  portion of the  performance 
that is spent in wait loops  (or  other  analogous  code). Not 
only are wait loops  nonproductive  (and  should  not  be 
included in any measure of “work),  but they  can  actually 
run very fast, and  can bias  a measurement of MIPS in  an 
artificially favorable way. 

5. IPC and  other  metrics that defy  intuition 
Thus  far,  the case  has been  made  for  CPI as the 
performance  metric  that most naturally  lends itself to 
intuitive interpretation  and simple estimation techniques. 
CPI is a dot  product involving a set of event types, where 
the  contribution of each event  type is the  product of its 
frequency and its  associated  penalty. The  frequencies  are 
intrinsic to workloads, and  the  penalties can be readily 
derived from  the  microarchitecture. 

An  experienced  designer should know approximate 
numbers  for key events, key workloads, and basic 
microarchitectures.  Changes  to a microarchitecture rarely 
affect more  than  one  or two event types, and  that  effect 
should be readily understood by an experienced  designer. 
Quick estimation using this dot  product is  simple and 
remarkably accurate. 

IPC is the inverse of CPI.  It defies intuition while 
hinting at high performance. Merely intoning  “instructions 
per cycle” creates a  subliminal feeling  that massive 
instruction-level  parallelism (ILP) is  being  achieved. 
It is not. 

When  performance is  expressed as IPC, EBusy and 
EIdle  become intermingled and  inseparable. This does  not 
clarify performance; it shrouds it. The  use of IPC  has 
been  the largest impediment to the  understanding of 
pipeline effects, and  the largest contributor  to  the  notion 
that  EIdle defies  intuitive  quantification. It has been  the 
largest  impediment to simple  analyses of superscalar  and 
VLIW processor designs. 

maximum speed in the  absence of any possible  accounting 
for  pipeline effects as  “performance,”  that  for several 
years we assumed that most of the industry was measuring 
CPI in  the complex-number domain,  as shown in Figure 5 .  

In fact, so many papers  quote  some  theoretical 

Complex  CPI 
As was explained in the previous section  on infinite-cache 
performance, 

CPI = EBusy + EIdle. 

On the basis of the  numbers  quoted  in many papers,  the 
only reasonable conclusion that is possible  is that 
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published  performance is just EBusy, which can  be 
inte;preted as a projection of complex CPI  onto  the real 
axis, 

Re  (CPI) = EBusy, 

where  the  angle  associated with the  projection is 

arccos 
EBusy 

The  corresponding  projection  onto  the imaginary axis is 

Im (CPI)  = (EBusy + EIdle) sin(@). 

Think of the imaginary component of CPI  as  that 
component of performance many authors would  like to 
imagine  they need  not  deal with. Complex  CPI is 

CPI = EBusy + i Im  (CPZ). 

A good  indicator of the  usefulness of a measurement is 
the sensitivity of that  measurement  to a parameter of 
interest. Since changes  to a microarchitecture usually 
target  EIdle (i.e., improving E U  utilization),  the sensitivity 
of CPI  to  EIdle is this  indicator.  This is 

d (CPI) 
d(EId1e) 
" - 1  

EBusy 
EBusy + EIdle 

E B U S ~ ~  + 
(EBusy + EIdle) JEIdle(2EBu~y + EIdle) ' I 

which is a  purely  imaginary complex  trigonometric 
function  that is messy, hence  unintuitive.  (It  also  happens 
that if EBusy and  EIdle  are  comparable,  this sensitivity is 
small, so complex CPI is not a useful  measurement 
anyway. 1 

Thus,  just as for  the inverse of CPI  (IPC),  it is apparent 
that  the complex form of CPI does  not  lead to clear 
intuition.  Nonetheless,  computing complex CPI  from 
published  performance  numbers  does yield another useful 
metric. In particular, 0 is  a direct  measure of the  degree 
to which the  published  number is out of phase with 
reality. 

6. Limits of superscalar  performance  as 
understood from scalar  components 
Thus  far, discussion has  focused  on  performance  for 
pipelined  machines  that issue  a  single instruction  per 
cycle. It  was  argued  that  CPI  can  be  partitioned  into 
independent  pieces  for such  a machine,  and  those  pieces 
can  be easily understood. 

Superscalar  processors  decode  and  execute  multiple 
instructions  per cycle, and  the  execution  can  be  done  out 
of order with respect  to  the  decoding.  Understanding  the 
pipdined flow  of multiple  instructions  per cycle (possibly 
out of order) is more difficult than  understanding  the flow 
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of single instructions  per cycle. Similarly, implementing a 
superscalar  simulator is more difficult than  implementing 
a scalar  simulator. 

For  some  proposed  microarchitectures,  the tasks of 
understanding  performance  and of simulating  performance 
seem overwhelming.  While the dissection of superscalar 
performance  into its components is not  done in this  paper, 
its key is a solid  grasp of the  analogous  scalar flow. 
Frequently,  this  grasp is  sufficient for  making very good 
estimates.  Understanding  superscalar  performance  without 
understanding  the  analogous  scalar flow is hopeless. 

Every designer  and  performance analyst who is  working 
on a superscalar  processor  without a detailed  model of 
such and  without  the  resources  or  time  to  construct  one 
should  construct  (at  least)  the  analogous  scalar  model. 
That is, construct a model of the  same  pipeline,  and  study 
that  pipeline  running in scalar  mode. 

The  scalar  performance  components  are  hard  bounds 
(fixed CPI limits) for  the  superscalar  components;  they 
give definite  indications of what  levels of performance  are 
and  are  not achievable in  superscalar  mode.  In  particular, 
the  FCE is identical;  scalar EBusy is an  upper  bound;  and 
scalar  EIdle is a  lower bound. 

Recall  that  FCE is the  product of the miss rate  and  the 
miss penalty. The miss penalty  depends  on  the  memory 
hierarchy,  not  on  the  microarchitecture of the  processor. 
The miss rate (misses per  instruction) is a characteristic of 
the  workload,  and is independent of the  rate  at which 
instructions  are  executed.  (Note  that  prefetching 
mechanisms,  branch  prediction mechanisms, and explicit 
speculation  can  increase  the miss rate,  but  that  increase 
can  be accurately estimated  without a detailed  model of 
the processor.) Therefore, it is an excellent approximation 
that  the FCE in  superscalar  mode is identical  to  the 
FCE  in  scalar  mode.  (This  paper  does  not  address 
multithreading; suffice it to say that it makes  the  FCE 
component  worse,  and  it  should  not  be  used if a  primary 
goal is high performance.) 

EBusy is the  inherent work done by the  program.  This 
work  is identical in scalar  and  superscalar  modes.  The 
difference is that in superscalar  mode,  some of the  work is 
done  in  parallel. As such,  the  scalar EBusy is an  upper 
bound,  and  the  superscalar EBusy should  be  smaller. If 
there  are n functional  units,  it  cannot  be  more  than n 
times  smaller.  Estimates  that  approach EBusy/n are 
probably wrong. 

EIdle is (primarily) a measure of the  functional 
interlocks  that  are  intrinsic  to  the  program, e.g., branches, 
AGIs,  and  serialization events. The  penalties  associated 
with these  intrinsic  interlocks  depend  on  the  pipeline,  and 
on the  temporal proximities of the  interlocks  to  the  events 
that resolve them (e.g., AGI). 

The  interlocks  do  not  disappear in superscalar  mode;  on 
the  contrary,  their effects are amplified. If superscalar 
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operation is  having the  desired effect (i.e., the  execution 
rate is increased),  the  temporal proximities of interlocks 
are  shortened with respect  to  the  events  that resolve them. 
That is, sequences of instructions  are  compressed  into a 
smaller  temporal “window,” and  the resolving events have 
less time  to resolve the  interlocks  before  the  interlocks 
stop  pipeline flow. 

bound. As the  execution  rate  increases,  EIdle  can only 
become  larger. 

There  are  also  EIdle  effects  that  arise  because of 
resource conflicts (e.g., insufficient  buffering, buses,  or 
ports).  These  are called “bottlenecks.”  They  are 
(generally) extrinsic to  the  program,  and  should  be 
relatively  small. If these  effects  are  manifest in  a scalar 
design,  the design is poor. Design resource  should  be 
directed  at  these  bottlenecks  instead of at a superscalar 
control  structure. 

If these  effects  are  ignorable in  a scalar  design, they 
nonetheless might be manifest in a superscalar design if 
buffers  and  bandwidth-related  resources  are  not scaled 
accordingly. Therefore,  as was true of the  intrinsic  EIdle, 
extrinsic EIdle in  a scalar design (if any) can only become 
worse  in  a superscalar design. Scalar  EIdle is a  lower 
bound. 

Of the  three  scalar  bounds,  EIdle is the  most difficult to 
extrapolate  to  the  superscalar  realm. As was  discussed  in 
the  subsection on infinite-cache performance,  the  principal 
components of EIdle have penalties  that  are directly 
proportional  to  the  number of cycles required  for a cache 
access. For  this  reason, a designer  should know the 
coefficient of infinite-cache CPI with respect  to this 
number.  Recall  that  this is strictly linear, so the  increase 
in  CPJ per cycle increase in the cache-access time is 
constant.  This coefficient  is useful in quickly evaluating 
whether a potential  reduction in miss rate  from a larger 
cache justifies the  potential  exposure of a longer cache- 
access time. 

Therefore,  the  intrinsic  part of scalar  EIdle is a  lower 

Small  fast LO caches 
A caveat  in  regard to the  aforementioned  pipeline 
coefficient is that it should  not  be  used  to  extrapolate  CPI 
downward into  the  realm of LO caches. LO caches  cannot 
be  conceptualized in the  same  manner  as L1 caches 
because  their  (rare)  benefits  cannot  be  quantified in terms 
of hit  rate.  This is because LO caches  are very small and 
have hit  rates  that  are below the “critical  mass” required 
to  conceptualize  their  steady-state  operation. 

which are  sequences of instructions  between successive 
taken  branches  (or  between successive mispredicted 
branches). If all data  and  instruction  references in  a  basic 
block are satisfied by the  L1  cache,  that basic  block “sees” 

Specifically, the  quanta of pipeline flow are basic  blocks 

224 the  pipeline flow involving the  L1 access path. If L1 

misses are  rare  (relative to the  number of instructions in 
the basic  block), “the  pipeline” is the  pipeline  associated 
with  the L1, and  L1 misses can  be  treated as isolated 
events  that  are  accounted  for in the FCE. 

The LO cache allows the basic  block to start early 
(assuming  that  the  initial access of the block  hits in  the 
LO), and  therefore  to finish early (assuming  that all 
references in the basic  block  hit in the LO). If any access 
in the basic  block  misses in the LO and  requires  an  L1 
access, the flow for  that block reverts  to  the  L1  pipeline 
flow, and  the  “head  start”  afforded by the LO is lost. 

Therefore, only those basic  blocks that live completely 
in the LO benefit  from  the LO. For typical LO sizes and 
miss rates, most workloads do  not  have a predominance 
of basic  blocks  with this  characteristic.  In any case,  the 
probability of losing performance  due  to LO misses is not 
proportional  to  the LO miss rate;  instead, it is closer to a 
geometric  distribution of the miss rate  whose  degree is 
proportional  to  the  average  number of accesses per basic 
block. 

The disadvantage of decoupling the I and E phases 
A model of high-performance  computing  that  has  become 
pervasive  in the  last  several  years  has  the I phase 
decoupled  from  the E phase.  The two phases  are 
implemented with engines  that  are  autonomous with 
respect  to  each  other,  and  they  operate on a common 
instruction  queue. 

In  this  model,  the I engine is directed by an extremely 
accurate  branch-prediction  mechanism,  and  it is able to 
run  far  ahead of the E engine,  fetching  instructions  at a 
high rate  and  dispatching  them  to  the  common  instruction 
queue.  The E engine is a superscalar dataflow machine. 
The dataflow  analyzer chooses  instructions  that  are  not 
interlocked,  and  dispatches  them  out of order (if 
necessary) to a set of parallel  execution  elements  at a 
hypothetically high rate.  The  cache  and  the  register file 
are  assumed  to  be highly multiported so that they do  not 
bottleneck execution. 

Many studies  that involve this  model  ignore  the  details 
of the I phase  and  assume  that  it can keep  ahead of the 
E phase.  The  focus  then shifts to the dataflow  analyzer, 
which is a more  tractable  problem. If the  constraints 
imposed by considerations  for  an  MP  environment  are 
loosened (specifically, the  ordering of fetches  and  the 
completion of stores),  and if the  cache miss rate is 
extremely low, the  execution  time is a very impressive 
(and very unsurprising)  number  that is proportional  to  the 
depth of the dataflow graph. 

This  model yields very impressive results  that  are flawed 
on several levels. The first level is a pure “catch-22’’ that 
does  not  require any understanding of microarchitecture: 
If the E phase  accelerates to its theoretical  speed limit 
(determined by the dataflow graph),  it  must  catch  up with 
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the I phase.  Therefore,  there  cannot  be  instructions in the 
common  queue  to  dispatch (i.e., if the E phase  goes as 
fast  as it  is supposed  to,  the  processor  runs  out of 
instructions).  The  point is that  the I phase is not 
ignorable. 

In  real  commercial workloads, the  frequency of 
unpredictable  branches  prevents  the I phase  from  getting 
far  ahead of the E phase. Given the  best  techniques 
available,  a branch will be guessed  wrong  every 20-30 
instructions  in  real  commercial  code. (In SPEC**,  the 
numbers  are much better.)  Therefore,  the  theoretical 
maximum  execution rate  can only be  maintained  for 
intervals of 20-30 instructions,  and  each  interval is 
followed by a  wrong-guess  recovery action  that  requires 
restarting  the I phase.  For  real  hardware  to  approach  the 
bounds implied by this  model,  branch  prediction must 
become much better  than it is today (except in SPEC). 

10-20 instructions  for L1 sizes  in the 64KB to 256KB 
range (in SPEC,  the  numbers  are much better);  thus, 
maintaining a  high execution  rate  requires moving cache 
lines at a rate  corresponding  to  the  resulting miss 
frequency.  This is not  realistic  at very high execution 
rates.  For example, if a processor  can  execute five 
instructions  per cycle, and  there is an L1 miss every ten 
instructions,  the memory hierarchy  must  be  able  to move 
an  entire  cache  line in two processor cycles for  the 
processor  to  sustain  this  rate.  (This is still an 
unrealistically optimistic  statement,  because it assumes 
that  there is no miss latency, which would require  perfect 
prefetching.) 

Another  characteristic of real  commercial  code is 
that a majority of conditional  branches  are resolved 
by instructions  that have an  AGI  interlock with an 
immediately preceding  instruction.  (An  example is a loop 
that  searches  for a record in  a linked list.) When  this is 
the case,  it is disadvantageous  to  separate  (temporally)  the 
I and E phases by adding  pipeline  stages  (the cycles 
required  to  put  instructions  into a queue, analyze them, 
and  redispatch  them).  Instead, it is desirable  to  couple  the 
phases tightly so that  there is minimal latency  between  the 
initial  dispatch of a load  instruction  and its execution 
outcome.  (This is  much  less of a constraint in SPEC.) 

In  real  commercial  code,  an L1 cache miss occurs every 

7. Future  trends in cache miss penalty 
In high-performance systems of the 1980s, cost was  a  less 
crucial  factor  than  it has become in the 1990s. Symmetric 
multiprocessor  (SMP) systems of the 1980s typically had 
private  unidirectional  point-to-point  buses  between 
processors  and  the memory  system. Those buses were 
driven by water-cooled circuits onto low-dielectric 
packaging, and  they  ran  at  the  same  speed as the 
processor.  Cache  line sizes were  moderate by today’s 
standards. 

I Temporal components of a cache miss. 

In  the 1990s, processors have become  faster  (shorter 
cycle time)  and buses  have not  kept  pace.  There  are many 
systems  in which the  processor  runs  at a higher  frequency 
than  the bus, and  that  difference is becoming  larger.  The 
number of processors in SMPs has  increased,  and  to 
contain costs,  many  systems are  shared-bus systems. With 
the growth of object-oriented  programming, miss rates 
have increased,  and with higher  instruction-level 
parallelism,  miss frequencies  (in  time)  are  larger  for  the 
same miss rates.  Further, it is becoming the  fashion  to 
increase  line size. 

Each of these  trends  increases bus utilization,  and  thus 
exacerbates  the effects of bus utilization. Bus queueing 
(which was an  ignorable effect  in high-performance 
systems of the 1980s) will dominate system-level 
performance in the next decade if new protocols  are  not 
adopted  to  mitigate it. 

components of a cache miss. The  leading-edge  component 
is the  time it takes  the  memory system to  deliver  the first 
datum of a miss. Since  a miss causes  the  transfer of both 
the  datum  that  caused  the miss and all other  data  in  the 
same line, the  trailing-edge  component  accounts  for  those 
cycles that  are lost because  an  entire  line was transferred, 
i.e., the cycles following the  leading  edge. 

processor is  less than  the  total  number of cycles that it 
takes  to  transfer a line,  but  it is directly proportional  to 
that  number,  and  thus  directly  proportional  to  the  line 
size. Roughly  speaking,  trailing-edge  effects  fall  into  three 
categories: 

Figure 6 is  a conceptual drawing of the  temporal 

Note  that  the  trailing-edge delay that  affects  the 

Since  spatial locality  exists, there is frequently  an 
upstream  reference  (immediately following the miss 
event)  to a datum  that is in the  same  line as the  datum 
that  caused  the miss. This  should  not  be  counted as  a 
second miss, but  the  second  reference will experience a 
delay if the  associated  datum is still  in transit  at  the 
time of the  reference  event. 225 



The incoming line consumes bandwidth at the L1 cache 
and interferes with the running processor. 
There are finitely  many  systems at the L1 interface (e.g., 
only one system  in  many processors) for containing the 
necessary state for controlling the processing of each 
miss  in progress. That is, there is a maximum number of 
misses that can be in progress at any time, and that 
number is  typically  small. If all of these systems are 
occupied, a new  miss cannot  be  started until a miss  in 
progress has completed in its entirety (i.e., until an 
entire trailing edge is over). 

BR = fp/fR = bus ratio (number of processor cycles per 
bus cycle). 

Description of miss rates 

mr = miss rate  for  a single processor (misses per 
instruction). 
CPI = cycles per instruction for  a single processor. 
P = number of processors that  share  the bus. 
BMF = (mr X P)/CPI = bus  miss frequency (misses 
per cycle on the bus). 

Assessment of the leading-edge penalty is more 
straightforward. When a miss  is recognized by the L1 
cache, there can be queueing at the address bus in some 
systems. Once the processor gets control of the address 
bus, it transmits an address to the L2 cache (or whatever 
is next in the hierarchy). At the receiving end,  there could 
be an ECC verification cycle, and queueing at the L2. 
Once the request is accepted, there is a (fixed) L2 access 
time, perhaps followed by another  ECC verification cycle. 
Again, there can be queueing at  the  data bus that returns 
the first datum to the processor, followed by the transfer 
of that  datum  (and  perhaps  another  ECC verification cycle 
at the receiving end). The trailing edge follows this. 

Therefore, leading edge comprises several fixed delays 
that can be estimated directly from the microarchitecture 
of the cache hierarchy, and a few chances for queueing. 
Whenever there is a chance for queueing, the average 
delay incurred is a nonlinear function of the utilization of 
the subject resource (in this case the address bus, the L2, 
and the  data bus). 

The address bus is used for only one bus cycle  every 
miss, so its utilization is small. The L2 utilization can  be 
large, but there are many straightforward techniques for 
mitigating these effects, e.g., interleaving. The utilization 
of the data bus is strongly related to the trailing edge. All 
current system-level  design trends  tend toward increasing 
this utilization, hence its associated queueing delay. As  is 
described below, queueing delay explodes if utilization is 
driven past some general thresholds. 

For the sake of illustration, the general trend in 
queueing effects is analyzed below,  using  an open 
queueing model. While this is not accurate because the 
real system is closed, the solution for the open system is 
simple, and yields valuable intuition as to the general 
trend. (The solution for a closed  system is very complex, 
and  does not yield to intuition.) The notation used  is as 
follows: 

Description of trailing edge 

L = line size (bytes per line). 
W = width of the bus (bytes). 
P, = L/W = number of “packets” per line. 

Service time for a  miss 

TE = P, X BR = trailing edge (number of processor 
cycles to transfer a line). 

Bus utilization 

U = BMF X TE = bus utilization (a probability). 

Note that  the trailing edge is the service time for a miss 
when the bus is the ‘‘server’’  in the queueing model. (Keep 
in  mind that  the trailing edge is distinct from the trailing- 
edge effect, as was  previously described.) 

definition of utilization above. In particular, since 
utilization is a probability, it is  physically bounded 
between zero and one. In the open definition, it is the 
product of a  rate and a service time which are assumed to 
be constant; hence, there is no feedback and no implicit 
bounding. In the real closed  system, there is feedback to 
bound the utilization. Specifically, increasing bus 
utilization increases the queueing effect, which  increa:es 
CPI, which decreases BMF, which keeps the utilization 
less than  one. 

The open aspect of the model is easily seen in the 

Nevertheless, the queueing delay (Q) is calculated for 
the  open system  below. The calculation is expressed in  two 
forms to illustrate a point (as explained later). Q is the 
average number of  cycles that each miss spends waiting to 
get control of the  data bus. This is part of the leading- 
edge penalty. 

Description of bus rate 

fp  = frequency of the processor in MHz. 
226 fB = frequency of the bus  in  MHz. 

BMF x T E ~  n - l  
x -  

2 
+ i x BMF’ x TE’+’. 

i = l  
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The first form o - --e equation is written directly from 
the following intuition. If a miss requires service, there  are 
i misses in progress with  probability U',  and  the new miss 
must wait for  the  trailing  edges of all i misses to  complete. 
On  the average, the first  trailing edge is half over when 
the new miss finds that  the  bus is busy (hence,  the 
negative term  before  the  summation  to  correct  for  this). 
There  can  be  as many  as n misses outstanding in the 
system, so a  new miss can  have no  more  than n - 1 
misses ahead of it  (which is the limit of the  summation). 
Most processors  today can  only  have  a  single miss 
outstanding, so in  most shared-bus  MP systems, n = P. 

The first expression  for Q shows that  the  average 
queueing delay is a  polynomial in U ,  and  the  degree of 
the polynomial is one less than  the  number of misses that 
can  be simultaneously outstanding in the system. In most 
systems, the  degree is P - 1. The  second  expression  for Q 
is the  same  as  the first, but it has  been  rewritten  to show 
that  the first term is proportional  to  the  square of the 
trailing  edge,  hence,  the  square of the  line size. 

If U is kept relatively  small, U' dies  out,  and  the 
queueing delay  is proportional  to  the  square of the  line 
size. If U is allowed to grow large (say, > O S ) ,  U' does  not 
die  out,  and  the  queueing delay  explodes. 

For example, consider a four-processor system where 
each  processor  runs  at 2 CPI,  and  each  processor  can have 
(at  most)  one miss outstanding.  Assume  that  the  bus is 
32 bytes  wide, and  that it runs  at half the  speed of the 
processor.  Let  the  line size be 128 bytes. If the miss rate is 
0.02 (i.e., if the  intermiss  distance is one miss every 50 
instructions),  the  equations  above yield a queueing delay 
of 3.71 cycles per miss. These system-level assumptions  are 
fairly  conservative for most  systems that  are  being 
projected,  and  this  queueing delay is quite significant. 

Figure I is a plot of queueing delay  as  a function of 
trailing  edge  for  various miss frequencies.  The  dotted  lines 
show constant utilizations. This shows that if U is kept 
reasonably small (e.g., <0.3), the  queueing delay is fairly 
flat,  but if U is large (e.g., > O S ) ,  the delay becomes 
exceedingly large. 

it demonstrates  that  modern systems are  on  the  edge of a 
nonlinear  range in bus  queueing. A new approach  to 
transferring  data is needed in the coming decade.  The 
effect of queueing delay on the  base  CPI is 

Q X BMF X CPI CPZ 

The example above is shown as  point A on  the  plot,  and 

A(CPI) = ~ 

P P 
- - 

In  the example above, A(CPI) = 0.074, which is nearly 
4% of the  total system performance.  Figure 7 shows that 

i Bus queueing delay as a function of trailing edge for various m i s s  
frequencies. 

this is headed in  a very dramatic  direction as utilization is 
increased  further. 

8. Future  trends in bus  protocols 
In  the previous section,  the  various  trends in system 
design that drive bus  utilization  were discussed, and  the 
effects of utilization on queueing delay were shown. To 
summarize,  the  trends  that drive  bus utilization  are  the 
following: 

More  processors in  a  system. 
More  processors  sharing a  bus. 
Faster  processors (cycle time)  and  higher  bus ratios. 
Larger  line sizes (= larger  trailing  edge). 
Lower CPI (= higher miss frequency  for  the  same 

Higher miss rates  (new  code with larger working sets). 
Multiple misses outstanding  per  processor  (larger n). 
Speculative  execution (= higher miss rate). 
Prefetching (= higher miss rate). 

miss rate). 

These  are all good  trends,  but  they  make a  previously 
ignorable effect  significant. It is very simple  to  propose 
solutions such  as  making the  buses  faster  and/or  wider, 
adding  more  buses  to  the system, or  reducing  the miss 
rate.  However,  these  are  not  real  solutions.  Much  effort is 
already  spent making buses  as  fast  as possible and  as wide 
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as possible. They  cannot  be  made  faster  and  wider  than 
what is possible. Miss rates  are  inherent,  and  they  are 
getting bigger. 

demand miss occurs,  the exigent datum  (the  word  that 
the  processor  needs  immediately) is queued  behind 
nonessential  and  nonurgent traffic that is flowing in the 
system. Those  data fall into  three  categories: 

The  problem with  a highly utilized bus is that when  a 

1. Trailing  edges  that follow other exigent data. 
2.  Speculatively fetched  data  that  are  not actually needed. 
3. Prefetched  data  that  are  not  needed  anytime soon. 

Current  bus  protocols  treat  the  transfers of cache  lines as 
atomic  events,  and allow exigent data  to  queue  behind 
nonexigent data. 

Since data  bus  utilization will become  large in the next 
decade, a family of protocols is needed  that allows the 
transfers of lines  to  be  broken  up so that exigent data  can 
be  transferred  on  demand.  This  requires  that a  small 
amount of control  information  be  added  to a miss request 
that identifies the urgency and/or  priority of the miss. In 
current  protocols,  limited  control  information is already 
sent  that tells the  hierarchy  the  nature of the  request (e.g., 
read, write, fetch exclusive). The new information  requires 
a few more  bits  depending  on how exotic the  protocol is. 

When  future memory  systems send  data back to a set of 
processors,  they will have to  arbitrate  each  bus cycle. This 
will allow the  trailing  edges of multiple misses to  be 
interleaved. Specifically, future  protocols must allow the 
first datum of a demand miss to  interrupt  the  returning 
traffic (other  trailing  edges)  to  get  that  urgently  needed 
datum  to  the  requesting  processor,  to  then  resume 
transferring  the  interrupted  stream,  and  to  merge  the 
trailing  edge of the new stream  into  the existing stream. 

transactions.  Instead,  they will be divisible strings of 
contiguous  data.  The  returning  control  bus must be active 
every cycle to  handle this; Le., since a miss will not  be 
returned as an  atomic  transaction,  control  data  are 
required  to identify the  data  on  the  bus  for every cycle in 
which there  are  data  on  the bus.  (Minimally,  it must 
indicate  what  processor  the  data  are  for,  and  the miss ID 
number, as  it currently must for  each  atomic  transaction.) 

This will be  required in shared-bus systems, and will 
obviate  mainstream  point-to-point systems because it 
enables  point-to-point  bus  performance  (electrical 
considerations  aside) in  a shared-bus  environment by 
minimizing queueing delay even  at very high bus 
utilizations. 

In  future systems,  misses will not  be  atomic 

Line  buffers  at  both  the  memory  and  the  processor  ends 
of a bus will be  required  to time-multiplex the  bus  among 
multiple  trailing edges. At  the  memory  end,  the  buffer 
must hold  as  many lines  as  there  can  be misses 228 
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outstanding in the system. At  the  processor  end,  the 
buffer  must  hold  as many  incoming lines as the  processor 
can have  misses outstanding. 

In  current  bus  protocols, when  a processor issues  a miss 
request, it sends  the following three  pieces of information 
to  the memory  hierarchy: 

1. Address  (real) of the  datum  that is to  be  returned first 
(and  thereby, explicitly, the  address of the  line  that 
contains  the  datum). 

2.  A miss ID, which (on a shared-bus system) comprises 
two parts: 

The  ID of the  processor  that is  issuing the miss. 
The ID of the miss (in case  the  processor  can have 
more  than  one miss outstanding). 

3. The miss type,  which tells  the  memory what status is 
needed  for  the  line (e.g., shared, exclusive). 

When existing memory systems return  data, they send 
back the  second field above  with the  data.  In  this way, the 
processors on the  bus  can  tell  what  the  data  are (Le., who 
they are  for,  and  the miss to which they  correspond). 

Existing protocols  treat  each miss as  an  atomic 
transaction,  and they  lock up  the  bus  for  the  duration of 
the  associated  line  transfer.  For  these  protocols,  the 
second field (above)  need  not  be  sent  back on every bus 
cycle; it is just  sent  at  the beginning of each  transaction. 
In  future  bus  protocols,  each  bus cycle will be  used  for a 
unique  transaction,  and  the  second field (above) will be 
sent on every cycle to identify the  data  for  that cycle. 

In  future  protocols,  there  could  be as  many  as three 
additional  control fields sent with each miss request. 
All three  together would  provide  a much  richer  set of 
protocols  than is actually needed.  Nonetheless, all fields 
are listed  below to  provide a complete specification for 
future  protocols.  Each field is optional,  and  each  can  be 
arbitrarily simple or complex. The new  fields are  the 
following: 

1. A priority level is used  to distinguish as many of the 
following  types of misses  as desired: 

Demand  data  fetch (exigent). 
Demand  instruction  fetch  (exigent). 
Demand  data  fetch down conditional  path 

Demand  instruction  fetch down conditional  path 

Data  fetch down speculative  path (speculatively 

Instruction  fetch down speculative  path 

(conditionally exigent). 

(conditionally exigent). 

exigent). 

(speculatively exigent). 
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Data  prefetch  initiated by prefetch  mechanism 

Instruction  prefetch  initiated by prefetch 
(prefetch). 

mechanism  (prefetch). 

2. Multiplex control specifies how this  data  stream is to  be 
multiplexed  with respect  to  the  other active streams. 
Assuming that Field 1 above is not  used, Field 2 might 
specify one of the following actions: 

Put  the  entire  stream  behind  the  currently active 
traffic. (This is the  current  default; Le., this is what 
current  protocols  do.) 
Suspend all other active  traffic for  one  bus cycle to 
return  the first datum  from  this miss immediately, 
then  resume  the  suspended traffic, and  put 
the  remainder of this  stream  at  the  end of the 
queue. 
Suspend all other active  traffic to  return  this  entire 
stream,  then  resume  the  suspended traffic. 
Suspend all other active  traffic for  one  bus cycle to 
return  the first datum  from  this miss immediately, 
then  interleave  the  packets of this  stream with the 
ongoing traffic. 
Return  the  packets  from  this  stream only.if there is 
no  other traffic present. 
Other things deemed useful. 

If Field 1 above is used, Field 2 would specify the  same 
control  functions listed above, except that it  would 
enforce  them with respect  to  priority levels, e.g.: 

Suspend traffic of equal  or lower priority  for  one 
cycle to  return  the first packet of this  stream,  then 
queue  the  remainder of this  stream  behind traffic of 
higher  or  equal priority. 

packet of this  stream,  then  queue  the  remainder of 
this  stream  behind traffic of higher  or  equal 
priority. 

Suspend all traffic for  one cycle to  return  the first 

3. A command field  rescinds or  changes  instructions as to 
how previously  issued  misses are  to  be  handled.  This 
allows for  the changing of characteristics of misses that 
have not yet begun,  or of misses that  are in  progress. 
For  example, Field 3 could specify the following: 

Change  the  type of request of an  outstanding miss. 
This allows the  upgrade of a read-only  request  to 
an exclusive request,  or  the  downgrade of an 
exclusive request. 

the  upgrade of the  priority of a miss, which would 
be  appropriate if a speculative  prefetch  became a 
known demand miss. 

Change Field 1 on an  outstanding miss. This allows 

Rescind miss request (i.e., cancel a  previous 
request).  This would be useful if it were  found  that 

a prefetch  that  had previously been issued  was 
down  a path  that is now  known not  taken. 
Reset  starting  address.  This is useful if a  previously 
initiated  prefetch  for a line was done  without 
specific knowledge of the  address of the  datum  that 
would be  needed first, and  the  address of that 
datum is now known. 
Add a new starting  address.  This is useful if an 
upstream  reference  to  an incoming line is 
discovered. It is different  from  the  previous 
command  because it does  not  change  the first 
doubleword  address; it just says that  instead of 
returning  the  line  sequentially,  the  line  should  be 
returned  starting with the first two explicitly named 
(nonsequential) words. 
Other things deemed useful. 

This new family of protocols will emerge in the coming 
decade.  It  enables high performance on a shared  bus,  and 
it allows the  bus  to  be  run  at very high utilization with 
minimal queueing delays. 

There is currently a resurgence of interest in sectored 
caches  for  some of the  reasons  outlined  above.  In a future 
generation of processors,  sectoring will re-emerge  as  an 
intermediate  step in the  evolution toward these  protocols. 

9. Power  and  microarchitecture  for  high- 
frequency  design 
In  the  description of the  IAS  machine,  the power budget 
was shown to  be partly responsible  for a  basic aspect of 
many modern ISAs  known as the von Neumann 
bottleneck.  In  fact, power will play an  important  role in 
shaping  microarchitecture in the coming decade. 

A popular viewpoint is that power is an  unfortunate 
constraint which causes a divergence in the 
microarchitectures  that  target  the  server  and client  spaces. 
The  reasoning is that  the  client  requires low power, and 
thus a  simple core,  and  the  server  requires a high degree 
of ILP,  hence high power. 

guiding microarchitectural  development  into  the highest 
performance  realm  for  the  server.  The  client  and  server 
spaces will converge  to  the  same  microarchitectural  core 
with the  same physical floorplans,  albeit with different 
circuit  designs. 

Specifically, there  has  been confusion  in the last decade 
because  there is no  general  methodology  for assessing the 
impact of a microarchitectural  feature on cycle time.  Most 
proposed  changes  to a microarchitecture  target  ILP.  It is 
known that  adding  microarchitectural  features  to a 
processor  makes it  bigger, and  that making  a processor 
bigger  probably does  not  improve  its cycle time,  but  the 
extent  to which an  added  microarchitectural  feature  hurts 
cycle time is generally  not known. 

Instead,  consider power to  be a metric  that is useful for 
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It is human  nature  to give credit  to a  design where 
there is a tangible benefit (quantifiable  CPI  reduction), 
and  to  discount  the  unknown.  That is, if the cycle-time 
impact of an  added  feature might be negligible, we tend  to 
assume  that  it is negligible; if the  CPI  benefit is known, 
adding a feature  to a machine  to achieve higher  ILP is 
perceived  to  be  desirable  on  balance. 

This is a dangerous  trend,  particularly in CMOS, 
because  CMOS is a  wiring-driven  technology. In  CMOS, 
the  area of a machine is (almost)  unrelated  to  the  number 

230 of gates in the  machine,  and is more strongly dependent 
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on the  number of wires that must be  run  to  connect  them. 
Things  that drive ILP  tend  to drive  wiring-track usage in 
an  exponential  manner.  When  parallel execution units, 
parallel buses, and  multiple  ports  are  added  to  parts of a 
machine, wiring (hence  area)  increases  dramatically. 

While it is true  that  planarization technology allows for 
more levels of wiring, more  than a few levels are useless 
for increasing  interconnectivity. Very simply, once  the 
lower  levels of metal  are heavily congested, vias cannot  be 
dropped  through  them,  and  the  upper levels of metal 
cannot  be  connected  to  the silicon surface. Sai-Halasz 
advocates using upper levels of metal  for  “fat wires” which 
have  lower resistance,  hence  higher  speed  for signals that 
must travel  more  than a few millimeters [8]. 

Figures 8(a) and 8(b) respectively  show the cycle time 
and  the  CPI  as a function of the  degree of ILP in  a 
superscalar  processor. In this case, CPI  decreases  to  an 
asymptote,  and cycle time  increases  linearly as more 
parallelism is added  to  the  processor.  This is the  dual of 
Figure 4 (the  superpipelining  case), so MIPS as  shown  in 
Figure 8(c) has  the  same  form  as in Figure  4(c).  The 
lesson  is that  there is an  optimal level of ILP, and  the 
level appears  to  be small  (say 2 to 4, or when pressed  for 
an exact number, T), mostly because of the sensitivity of 
cycle time  to  adding wires to  the  machine. 

While  the coefficient of the  line in Figure  8(b) is very 
difficult to assess, and is highly debatable, power can  be 
the  metric  that provides real  guidance in  achieving high 
performance.  When  hardware is added  to a machine,  the 
power impact is readily tangible. If the goal of a 
microarchitecture is low power and,  more specifically, low 
work (the  product of power and  time  as it  affects battery 
life), only those  features  that pervasively provide low CPI 
are  included.  Features  that only help  CPI  sometimes  (and 
that  hurt cycle time all of the  time)  are  eliminated if low 
power is a goal.  Those  elements  should  also  be  eliminated 
if high performance is a  goal. 

As the industry pushes  processor design into  the  GHz 
range  and  beyond,  there will be a resurgence of the  RISC 
approach.  While  superscalar design is very fashionable,  it 
remains so largely because its impact  on cycle time is not 
well understood.  Complex  superscalar design stands in the 
path of the highest performance;  he  who achieves the 
highest MHz  runs  the  fastest. 

A clear  focus  on power  yields  a clear  focus  on high 
performance.  This  trend will make  the  microarchitectures 
of the  client  and  the  server converge. In  the client 
processor,  the circuit  design will be  optimized  for low 
power. Since  CMOS is wiring-driven, adding active  silicon 
area via resizing  devices can usually be  done with little 
impact  to  the physical floorplan.  The  high-performance 
server  can  then  be  derived directly from  the client core by 
resizing  devices to  optimize  for  speed. 
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Complex CPl, relativity, and adiabatics 
In a  previous subsection  on complex CPI, the discussion 
was limited to values of CPI in the first quadrant only. 
Now that  the discussion  has turned  to power, the  other 
quadrants in Figure 5 take on significant  physical interest. 
In particular,  points  in  quadrants I1 and Ill have  negative 
real  components.  The only reasonable  interpretation of 
such points is that  they  represent  the  performance of a 
processor  that is running  the  program backward. 

One possible interpretation of quadrants I11 and  IV, 
which have  negative  complex components, is that  they 
represent a new paradigm in  circuit performance; in 
particular,  they  represent  processors  that  run  faster  than 
the  speed of light.  According to simple  relativistic theory, 
when the  machine  runs  faster  than light, time moves 
backward relative  to  our  inertial  frame of reference. 
According to this theory,  quadrants I and 111 are 
indistinguishable, since quadrant 111 has  the  computation 
being  run in reverse while time moves  backward. As  such, 
quadrant I11 is uninteresting. 

Quadrants I1 and IV are of real  interest,  particularly 
with the  recent  advent of adiabatic  computing. A 
processor  that  can  run adiabatically  in quadrant I1 acts as 
a  power source,  hence a perpetual  motion  machine. In 
quadrant  IV, if a machine  enters  an  adiabatic  realm, it 
becomes a  black hole. If this  happens, it will change  the 
world as we know it. 

10. Conclusion 
In this paper,  several  points  were  made  that  are 
antithetical  to  some of the  modern philosophy  in 
processor  microarchitecture.  These  points  are  based on 
simple observations  relating  to  the  machinations of 
electronic von Neumann  computers, which have been in 
existence  since the  onset of this  industry. 

First,  the most popular  performance  metric, IPC 
(instructions  per cycle), is the  reciprocal of the  metric  that 
should  be  used, CPI (cycles per  instruction).  This is 
primarily because CPI is a  simple dot  product of a few 
numbers  that any experienced  designer  should have at his 
fingertips. It is intuitive, and it makes  for  remarkably 
quick and  remarkably  accurate  estimates. 

On the  other  hand, IPC does  not yield to  intuition. 
Instead, it shrouds  fundamental issues in mystery, and it 
has  much of the  industry  (and  academia)  running down 
blind corridors in a state of general  confusion. 

Second,  the separability of CPI into  three  independent 
components was demonstrated.  The  three  components 
account  for  the  intrinsic work done by the  computer,  the 
pipeline  structure of the  computer,  and  the memory 
hierarchy.  It was argued  that a  solid grasp of each of these 
three  components is necessary in understanding  the 
performance of a superscalar  processor,  because  the  scalar 
components  are  hard  bounds  for  the  analogous superscalar 
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components. Essentially, the  argument is that  one must 
have  a grasp of the simple case  before  one  can  hope  to 
understand  the  general  case. 

Third,  attention was focused  on a trend in future 
systems  in which data  bus  utilizations  cross a threshold 
that will make  queueing  at  the  memory  bus a limitation of 
system performance. A new family of bus  protocols  that 
can  mitigate  this effect  was proposed.  These  protocols will 
emerge in the coming decade  because of the  impending 
delays due  to  queueing. 

will drive the  development of microarchitecture in 
the coming decade,  and  that  the  aspects of a 
microarchitecture  that  result in low power also result  in 
high performance.  This is particularly  true in CMOS, 
which is a  wiring-driven  technology. This  trend will cause 
the client microarchitecture  and  the  server 
microarchitecture  to converge. 

Finally, an  argument was made  that  power  consumption 
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Machines Corporation. 

**Trademark or registered trademark of Standard 
Performance Evaluation Corporation. 
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