
QUEUEING NETWORKS†

Peter J. Denning, Naval Postgraduate School, Monterey, California

January 2008
Rev 7/7/08

Abstract: Queueing networks model workflow in distributed computing
systems and networks. They predict throughput, queue length,
response time, and bottlenecks with simple, fast algorithms.

Keywords: queueing networks, performance calculation, performance
prediction, operational laws, throughput, response time, bottlenecks,
mean value analysis, capacity planning

A major airline has set up a computerized transaction system used by its ticket
agents to sell seats on its aircraft. The airline has authorized 1000 agents around
the country to make reservations from their workstations. A “disk farm”--- a
large collection of magnetic-disk storage devices --- in New York contains all the
records of flights, routes, and reservations. On average, each agent issues a
transaction against this database once every 60 seconds. One disk contains a
directory that is consulted during every transaction to locate other disks that
contain the actual data; on average, each transaction accesses the directory disk
10 times. The directory disk takes an average of five milliseconds to service each
request, and it is busy 80% of the time.

On the basis of this information, can we calculate the throughput and response
time of this system? Can we find the bottlenecks? Can we say what happens to
the response time if we reduce directory disk visits by half or doubled the
number of agents?

These performance questions are typical. The answers help analysts decide
whether a system can perform well under the load offered, and where to add
capacity if it is too slow. Most people think that no meaningful answers can be
given without detailed knowledge of the system structure --- the locations and
types of the agents’ workstations, the communication bandwidth between each
workstation and the disk farm, the number and types of disks in the farm, access
patterns for the disks, local processors and random-access memory within the
farm, the type of operating system, the types of transactions, and more. It may

† This article is adapted from two articles published by the author in American Scientist magazine in 1991: (a)
Queueing in Networks of Computers, May-June, 206-209, and (b) In the Queue: Mean Values, September-
October, 402-403. Copyright held by the author.

Queueing Networks © Copyright 1991 Sigma Xi Page 2

come as a surprise, therefore, that the first two questions --- concerning
throughput, response time, and bottlenecks --- can be answered precisely from
the information given. The second two questions --- concerning effects of
configuration changes --- can be answered with reasonable estimates made from
the information given and a few plausible assumptions.

These questions illustrate the two important types of performance questions:
calculation and prediction. Calculation questions seek metrics in the same
observation period where parameters were measured. Prediction questions
provide metrics in a different (future) observation period from when parameters
were measured.

Operational Laws

A computer network is composed of interconnected servers. Servers include
workstations, disks, processors, databases, printers, displays, and any other
devices that can carry out computational tasks. Each server receives and queues
up messages from other servers that specify tasks for the server to carry out; a
typical message might ask a server to run a computationally intensive program,
to perform an input-output transaction, or to access a database. A transaction is
a specified sequence of tasks submitted to the network; when a server completes
a particular task, it deletes the request from its queue and sends a request to
another server to perform the next task in the same transaction.

Measurements of servers are always made during a definite observation period.
Basic measures typically include event counters and timers. These and other
measures derived from them are called operational quantities. Invariant
relations among operations quantities that hold in every observation period are
called operational laws.

By counting outgoing messages and by measuring the time that a server’s queue
is nonempty, it is easy to measure the output rate X, the mean service time S, and
the utilization U of a server. These three empirical quantities satisfy the relation
U = SX, known as the utilization law (Fig. 1). Similarly, by measuring the
“space-time” accumulated by queued tasks, it is easy to determine the mean
queue length Q and the mean response time R: These quantities satisfy the
relation Q = RX, which is known as Little’s Law (Fig. 2).

Queueing Networks © Copyright 1991 Sigma Xi Page 3

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

arrivals counter A

timer B

completions counter C

arrivals completions

Figure 1. The task-processing server is the basic element of a network of computers.
Over an observation period of length T, the counter A records the number of tasks
that arrive at the server, the counter C records the number of tasks completed, and
the timer B measures the total busy time (time when tasks are present). The
utilization of the server is U = B/T, the output rate is X = C/T, and the mean service
time per completed task is S = B/C. The identity B/T = (C/T)(B/C) translates to the
utilization law: U = XS. Because utilization cannot exceed 1, the output rate cannot
exceed the saturation rate of 1/S.

area = Wta
sk

s,
 n

(t
)

time, t0 T

Figure 2. The average response time of a server can be calculated from just a few
measurements. Let n(t) denote the number of tasks in the server at time t. Let W
denote the area under the graph of n(t) in the interval from time 0 to time T; W is the
number of task-seconds of accumulated waiting. The mean number of tasks at the
server is Q = W/T, and the mean response time per completed task is R = W/C. The
identity W/T = (C/T)(W/C) translates to Little’s law: Q = XR. The mean service time S
and the mean response time R are not the same; R includes queueing delay as well as
service time.

Queueing Networks © Copyright 1991 Sigma Xi Page 4

The utilization law and Little’s law are counterparts of well-known limit
theorems for stochastic queueing systems in a steady state. These theorems will
usually be verified in actual measurements, not because a steady state has been
attained, but because the measured quantities obey the operational laws (1,2).

The tasks that make up a transaction can be regarded as a sequence of visits by
the transaction to the servers of the network. The average number of visits per
transaction to a particular server i is called the visit ratio Vi for that server; the
server’s output rate Xi and the system’s output rate X0 satisfy the relation Xi =
ViX0, which is known as the forced-flow law (Fig. 3). This remarkable law shows
that knowledge of the visit ratios and the output rate of any one server is
sufficient to determine the output rates of every other server and of the system
itself. Moreover, any two networks with the same visit ratios have the same
flows, no matter what is the interconnection structure among their servers.

server i

server j

server k

Vi

jV

kV
Ci

Cj

Ck
Xi

Xj

Xk

X0

C0

observation
point

Figure 3. Flow of transactions through a network of servers can be calculated from a
few selected measurements. Over an observation period T, the system completes C0
transactions. The average number of tasks per transaction for server i is Vi = Ci/C0; Vi
is called the visit ratio because each task is regarded as a “visit” by the transaction to
the server. Here the transaction visits servers i and k once and server j twice. The
identity C/T = (Ci/C0)(C0/T) translates to the forced-flow law: Xi = ViX0. This law says
that the task flow at one point in the system determines the task flows everywhere.
This law holds regardless of the interconnections among the servers; any two
networks with the same visit ratios will have the same flows. The local throughput
constraint Xi ≤ 1/Si translates to a system throughput constraint X0 ≤ 1/ViSi.

Queueing Networks © Copyright 1991 Sigma Xi Page 5

In a network, a server’s output is a portion of another server’s input or of the
system’s output. It simplifies an analysis to assume that the input and output
flows of a server are identical --- a condition known as flow balance. Strictly
speaking, “throughput” refers to the rate of a flow-balanced server. The
definitions do not imply flow balance. In most real systems, a bound is placed
on the number of tasks that can be in the system at once; as long as the number of
completions at every server is large compared with this bound, the error
introduced by assuming flow balance will be negligible. For this reason, flow
balance does not generally introduce much error into the models.

When a network of servers receives all of its requests from a finite population of
N users who each delay an average of Z seconds until submitting a new
transaction, the response time for a request in the network satisfies the response-
time formula R = N/X0 - Z (Fig. 4). This formula is exact for flow balance.

thinkers waiters

Z R

X0

Figure 4. Users of a transaction system alternate between periods of “thinking” and
“waiting” when using the system. The total number of thinkers and waiters is the
number of users N. The average (waiting) response time per transaction is R and the
average thinking time is Z. Little’s law says that the mean number of active users in
an entire system is equal to the mean cycle time of the system multiplied by the flow
through the system. These three quantities are, respectively, N, R+Z, and X0.
Solving N = (R+Z)X0 for the response time, we obtain the response-time formula: R =
N/X0 - Z. In the extreme case of response time almost zero --- because all the servers
are ultra-fast --- the system throughput would be X0 = N/Z because transactions are
flowing at the rate individual users complete their thinking intervals.

Queueing Networks © Copyright 1991 Sigma Xi Page 6

These formulas are sufficient to answer the throughput and response-time
calculation questions posed earlier for the airline reservation network. We are
given that each transaction generates an average of 10 directory-disk requests,
and so Vi= 10 for the server represented by the directory disk. The mean service
time at the directory disk is five milliseconds, so that Si = 0.005 second. The
directory disk’s utilization is 80%: Ui = 0.8. Combining the forced-flow law and
the utilization law, we have for total system throughput:

X0 = Ui/ViSi = 0.8/(10*0.005) = 16 transactions per second

Thus the entire airline reservation system is processing 57,600 transactions per
hour. The response time experienced by any one of the 1000 agents is:

R = N/X0-Z = (1000/16)-60 = 2.5 seconds.

Bottlenecks

Every network has a bottleneck: A server that is slower than all the others and
limits the overall throughput. Speeding up a bottleneck can yield a significant
improvement in system throughput. Speeding up a nonbottleneck may hardly
affect throughput. Our performance predictions will depend our knowledge of
the bottlenecks.

Finding the bottleneck is easy. Suppose that the visit ratios and mean service
times do not vary with N. Each server generates a potential bottleneck that
would limit the system throughput to 1/ViSi and would give a lower bound to
the response time of NViSi - Z. Obviously, the server with the largest value of
ViSi gives the tightest limit and is the real bottleneck. The products ViSi are
sufficient to determine lower bounds on the response time as a function of N
(Fig. 5).

Queueing Networks © Copyright 1991 Sigma Xi Page 7

R(1)

re
sp

on
se

 t
im

e,
 R

(N
)

number of users, N

NV S - Zb b
NV S - Zi i

NV S - Zj j

1

Figure 5. Bottleneck analysis shows how the response time changes as a function of
N. When N = 1, the single user’s transactions encounter no queueing delays from
other transactions, whence R(1) = V1S1 + … + VKSK, where K is the number of servers.
Combining the utilization and forced-flow laws, X0 = Xi/Vi = Ui/ViSi < 1/ViSi because
Ui < 1. Thus R(N) > NViSi-Z for all i. Each of the lines defined by these relations is a
potential asymptote for R(N) with large N. The actual asymptote is determined by
the largest of the potential asymptotes. Taking server b (for bottleneck) to be the one
with the largest ViSi, we have R(N) >NVbSb-Z. The bottleneck analysis assumes that
the products ViSi do not vary with N.

The operational laws coupled with bottleneck analysis offer a simple but
powerful method for performance analysis. For systems whose visit ratios and
service times do not vary with overall load, the products ViSi ---the total service
time requirement for each server---are sufficient to answer these questions.

Queueing Networks © Copyright 1991 Sigma Xi Page 8

Changing the Configuration

Consider the two prediction questions we asked at the beginning. They ask
about the future effect of reducing directory-disk visit ratio or doubling the
number of agents. The operational laws, which deal only with relations among
quantities observed in a single measurement period, are not sufficient for making
predictions. We must introduce additional forecasting assumptions that
extrapolate measured parameter values from the past observation period into the
future observation period; the laws can then be used to calculate the response
time expected in that future period.

The most common type of forecasting assumption is that, unless otherwise
specified, the visit ratios Vi, mean service times Si, think time Z, and overall load
N will be the same. When we change the workload or the strategy for processing
data, or the electrical, mechanical, parallelism of a server, we alter only the
affected parameters.

Our first prediction question asks what happens when the demand for the
directory disk is cut in half (its speed is doubled). The answer depends on
whether the directory disk is the bottleneck:

1. If another server is the bottleneck, then speeding up the directory disk will
not change the limit on system throughput.

2. If the directory disk is initially the bottleneck, but is no longer the
bottleneck after its speed is doubled, then the throughput improves to the
limit imposed by the second-slowest server.

3. If the directory disk is still the bottleneck after its speed is increased, then
the system throughput improves to the new limit imposed by the
directory disk.

The limits of cases 2 and 3 may be superseded by a think-time-imposed limit. No
matter how fast the servers are, the maximum rate at which users submit
transactions is N/Z; therefore, N/Z is also a limit on the system throughput.
Cases 2 and 3 cannot improve beyond that limit.

The operational laws can yield nonsense if the bottleneck effects are ignored. For
example, if we assume that doubling the directory disk speed will also double
the system throughput, we would change the throughput from 16 to 32 in the
response time formula and calculate an absurdity:

R = N/X0-Z = (1000/32)-60 = -28.75 seconds,

The think-time constraint on throughput is N/Z = 1000/60 = 16.7 transactions per
second. If we hypothesize that throughput X0 can be larger, the response time
law tells us that R = N/X0-Z is less than zero. That is impossible.

All we can say with the given information and the given forecasting assumptions
is that halving the demand for the directory disk will reduce the response time
from 2.5 seconds to some small but still nonzero value. If the 2.5-second

Queueing Networks © Copyright 1991 Sigma Xi Page 9

response time is acceptable, then this proposed change in directory search
strategy would not be cost effective.

Consider the second configuration question: What happens to the response time
if the number of agents is doubled? Again, we are limited by the lack of
knowledge of the other disks. If the directory disk is the bottleneck, then
doubling the number of agents is likely to increase its utilization to 100%, giving
a saturation value of throughput:

X0 = 1/ViSi = 1/(10*0.005) = 20 transactions per second

with corresponding response time,

R = N/X0-Z = (2000/20)-60 = 40 seconds

If the directory disk is not the bottleneck, then some other server will have a
smaller saturation throughput, which forces response time to be longer than 40
seconds. Thus, doubling the number of agents will produce a response time that
is likely to be unacceptably high.

Computational Algorithms

The simple methods described above cannot answer the more complex question
of how throughput and response vary with the load N on the system. These
questions can be answered with very simple algorithms that can be programmed
easily on a spreadsheet or hand-held calculator.

The networks-of-queue model was first proposed by Jackson in 1957 (3), and
mathematical expressions for its steady-state probabilities were presented by
Gordon and Newell in 1967 (4). Their expressions were, unfortunately,
exceedingly complex. To calculate a simple quantity such as central processing
unit (CPU) utilization required summations over enormous state spaces whose
size grew exponentially with N. The computational algorithms for these models
thus seemed to be intractable. Consequently, these models were not taken
seriously, even though a few sporadic experimental studies showed they worked
well. In 1973, Jeffrey Buzen presented a breakthrough: an algorithm that
computed performance metrics from the Gordon-Newell model in time O(N2) (5).
Buzen’s algorithm led to many studies that validated the models and extended
them to many new cases and systems. Performance evaluation became the focus
of a large and flourishing industry. One of the important extensions was Mean
Value Analysis from Martin Reiser and Steve Lavenberg in 1980 (6), which
eventually became the industry standard.

The Mean Value Algorithm is so named because it computes a set of means for a
closed network (fixed load N) --- the response times Ri(N), queue lengths Qi(N),
throughputs Xi(N), and the system throughput X(N) and response time R(N).
(Note that we have dropped the subscript “0” from the system throughput

Queueing Networks © Copyright 1991 Sigma Xi Page 10

notation.) It does this iteratively for N=1,2,3,… starting with the observation that
the queue lengths are all 0 when N=0.

The box below summaries the equations that the algorithm uses to obtain the
mean values for load N once the mean values for load N-1 have been calculated.
Following is an explanation for each of the equations.

Mean Value Equations

(1)

€

Ri(N) = Si(1+Qi(N −1)) for all i

(2)

€

R(N) = Vi
i=1

K

∑ Ri(N)

(3)

€

X(N) =
N

R(N) + Z

(4)

€

Qi(N) = X(N)ViRi(N) for all i

(1) When a job arrives at server i, it waits in the queue. That queue’s length just

before the arrival is approximated as the overall mean queue length when
the arriving job is not present (load N-1). Just after the arrival, that queue’s
length is one larger. The arriving job’s response time is one service time Si
for each job in the queue just after its arrival. (We will discuss the accuracy
of this approximation shortly.)

(2) The overall response time is the sum of all per-visit server response times

over all visits. This sum is actually an operational law. Multiply both sides
by X(N), apply Little’s law to reduce the left side to N, and apply both the
forced-flow law and Little’s law to convert each term X(N)ViRi(N) to
Xi(N)Ri(N) and then to the mean queue Qi(N). The result is the identity that
N is the sum of the queue lengths of all the servers.

(3) This equation is the response-time law solved for X(N).

(4) This equation is Little’s law applied at each server.

Figure 6 is a very simple version of the airline reservation system. Figure 7
illustrates what the Mean Value Algorithm yields when applied to this model. It
is easy to answer the two prediction questions simply by altering the parameters
to their new values and applying the algorithm.

Queueing Networks © Copyright 1991 Sigma Xi Page 11

agents

CPU
directory

disk

data
disk

Figure 6. The hypothetical airline reservation system serves as an example of a
computer network subject to mathematical performance analysis. In the initial
configuration, 1000 agents access a database at the airline’s central computing
facility. Each agent thinks an average of 60 seconds between transactions. A typical
transaction requires 10 lookups on the directory disk to locate the information
requested, and then one lookup on the data disk to deliver the result. Each of these
11 disk accesses also requires service from the CPU. The total CPU time of a
transaction averages 50 milliseconds. The directory disk service time is 5
milliseconds and the data disk service time is 60.7 milliseconds.

Queueing Networks © Copyright 1991 Sigma Xi Page 12

2.5 2.4

61

16 16 16.5
0.8

0.4
0.825

R X U R X U R X U
initial

configuration
faster

directory search
twice as

many agents

Figure 7. The bar graphs show the results of three network analyses. The original
system has an average response time (R) of 2.5 seconds and a throughput (X) of 16
transactions per second; the directory, which seems likely to be the bottleneck, has a
utilization (U) of 0.8. If the directory accesses are halved, the utilization of the
directory disk falls to 0.4, but the improvement in response time is imperceptible. If
the number of agents is doubled, then the response time jumps to 61 seconds.

The Random Arrival Assumption

Our explanation for the Mean Value equations shows that only the first equation
contains an approximation; the other three equations are operational laws. Let
us consider the nature of this approximation. Whatever errors exist between
values calculated from the model and values measured in a system develop from
this approximation.

The approximation has two parts: (1) the arriving job observes the same queue
length as a random outside observer would with one less job in the system, and
(2) all jobs in the queue require the average service time to complete. These
assumptions are not necessarily good assumptions. Here’s why.

In violation of part 1, the system may have a scheduling algorithm that admits
new jobs to active status only when another job leaves. It synchronizes job
arrivals with departures. In this case the arrivals do not act as random outside

Queueing Networks © Copyright 1991 Sigma Xi Page 13

observers. The arriving job may observe a queue that is shorter than what the
random outside observer sees.

In violation of part 2, when a job arrives at a busy server, there is already a job in
progress when it arrives. We know from queueing theory that the expected time
until the job-in-progress completes is equal to Si only if the distribution of service
times is exponential. If the service times have a long-tail distribution (not
unusual), then the expected time until the job-in-progress completes may be
considerably larger than Si. Thus, the assumption that every job in queue needs
Si time to complete may not hold for servers with long-tailed distributions. The
arriving job may observe a response time that is longer than the approximation
implies.

In both cases, Mean Value Equation (1) will underestimate the true response
time. The underestimate may be considerable for long-tailed service
distributions.

Few real systems exactly satisfy the assumption behind Equation (1). Yet
extensive experiment studies have demonstrated that the models based on it are
nonetheless robust: It is almost always possible to construct a model whose
estimates of throughput and utilization are within 5% of the true values and
whose estimates of response time are within 25% of the true values.

This is quite a remarkable track record for such a simple algorithm.

Extending the Mean Value Equations

The Mean Value Equation (1) is not the only way to approximate the response
time. Yon Bard introduced another approximation in consultation with Paul
Schweitzer in 1979 (7). The idea was to approximate the mean queue observed
by the arriving job as a simple downward proration of the current mean queue
length:

Qi(N − 1) = N −1
N

Qi (N)

After this subsitution, all the mean values mentioned in the equations are
functions only of the load N, which can be dropped as an explicit parameter. The
result is the simplified equations in the box below.

Queueing Networks © Copyright 1991 Sigma Xi Page 14

Bard-Schwetizer Equations for load N

(5)

€

Ri = Si(1+
N −1
N

Qi) for all i

(6)

€

R = Vi
i=1

K

∑ Ri

(7)

€

X =
N

R + Z

(8)

€

Qi = XViRi for all i

For a given N, these equations are solved iteratively. The algorithm starts with
any guess for the mean queue lengths, for example all 1. It then cycles through
the equations (5)-(8), which produces successive new guesses for mean queue
lengths. The sequence of guesses converges to a set of values that solve the
equations. Those mean values are the estimates of response time, throughput,
and queue lengths for the system at load N.

Experimental validations have confirmed that the Bard-Schweitzer equations
give good approximations in practice, usually with the same errors as the
original Mean Value equations.

Another approximation addresses one problem mentioned earlier, that the actual
response time is much larger than the Mean Value Equation (1) assumes for long-
tailed service distributions. It borrows from queueing theory the Pollaczek-
Khintchine formula, which says

€

Ri = Si 1+
Ui

1−Ui

1+ Ci
2

2










where Ci is the coefficient of variation, namely the ratio of service time standard
deviation to mean. This formula can replace Equation (5) in the Bard-Schweizer
equations, with Ui=XiSi,. Exponential service time distributions have Ci=1,
simplifying the formula to Ri=Si/(1-Ui) for those servers.

Operational Analysis

The discussion above is couched in operational terms: All parameters are taken
directly from measured data, and all computed metrics represent measured
metrics. For this reason, the analytic approach outlined above is called
operational analysis. It begins with the laws and relationships among quantities
observable in a system over a time period. It uses these laws to determine the
limits bottlenecks impose on throughput and response time. With the additional

Queueing Networks © Copyright 1991 Sigma Xi Page 15

assumptions of flow balance and random arrivals, it leads to the Mean Value
Equations for calculating the throughput, response times, and mean queues.
Operational analysis allows the measurement of errors caused by assumptions
such as flow balance or random arrivals.

Traditional queueing theory assumes that stochastic (random) processes govern
the performance quantities. Its more powerful methods allow calculation of
metrics based on entire service distributions, not just the means. Many steady-
state limit theorems of queueing theory turn into operational laws or formulas
that hold for flow-balanced networks.

Operational analysis is more intuitive and easier to understand in the most
common performance evaluation cases than traditional queueing theory. It gives
more credibility to performance models because its assumptions are verifiable. It
is commonly used in performance evaluation textbooks to introduce the basic
ideas of queueing theory for computing systems and networks (8). Operational
analysis, however, is not a replacement for traditional queueing theory.

The genesis of the operational interpretation was in the mid-1970s, when
performance analysts were discovering that the formulas of Markovian queueing
systems worked very well to predict utilizations, throughputs, and response
times in real networks of computers, even though the Markovian assumptions
themselves were grossly violated. Jeffrey Buzen proposed the operational
hypothesis: Many traditional steady-state queueing formulas are also relations
among observable quantities under simple, general conditions (9). This
hypothesis has been substantiated in practice and has underpinned many
computer programs that accurately calculate performance measures for network-
of-server models of computer systems, computer networks, and manufacturing
lines.

References

1. P. J. Denning and J. P. Buzen, Operational analysis of queueing networks,

ACM Comput. Surv. 10(3): 225-261, 1978.

2. E. D. Lazowksa, J. Zahorjan, G. S. Graham, and K. C. Sevcik, Quantitative

System Performance, Upper Saddle River, NJ: Prentice-Hall, 1984.

3. J. R. Jackson, Networks of waiting lines, Operations Res. 5: 518-521, 1957.

4. W. J. Gordon and G. F. Newell, Closed queueing systems with exponential

servers, Operations Res. 15: 254-256, 1967.

5. J. P. Buzen, Computational algorithms for closed queueing networks with

exponential servers. ACM Commun. 16 (9): 527-531, 1973.

6. M. Reiser and S. Lavenberg, Mean value analysis of closed multichain

queueing networks, J. ACM 27: 313-322, 1980.

Queueing Networks © Copyright 1991 Sigma Xi Page 16

7. Y. Bard, Some extensions to multiclass queueing network analysis. Proc. of

the Fourth International Symposium on Computer Performance Modeling,
Measurement, and Evaluation (H. Beilner and E. Gelenbe, eds.) Amsterdam:
North-Holland, 1979.

8. D. Menascé, V. Almeida, and L. Dowdy, Capacity Planning and Performance

Modeling, Upper Saddle River, NJ: Prentice-Hall, 1994.

9. J. P. Buzen, Operational Analysis: The key to the new generation of

performance prediction tools. Proc. IEEE COMPCON 76, Washington, DC:
166-171, 1976.

Further Reading

K. C. Sevcik and I. Mitrani, The distribution of queueing network states at input
and output instants. J. ACM 28: 358-371, 1981.

