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Abstract 

 

The history of computing is a history of virtualization. Each increase in the number of 

abstraction layers separating the end user from the hardware makes life easier for the user but 

harder for the system capacity planner who must understand the relationship between logical 

and physical configurations to guarantee performance.  In this paper we discuss possible 

architectures for virtual systems and show how naïve interpretations of traditional metrics like 

“utilization” may lead planners astray.  Then we propose some simple generic prediction 

guidelines that can help planners manage those systems. We close with a benchmark study that 

reveals a part of the architecture of VMware
2
. 
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1. Introduction 

 

One can view the modern history of computing 

as a growing stack of layered abstractions built 

on a rudimentary hardware processor with a 

simple von Neumann architecture. The 

abstractions come in two flavors. Language 

abstraction replaced programming with zeroes 

and ones with, in turn, assembly language, 

FORTRAN and C, languages supporting object 

oriented design, and, today, powerful 

application generators that allow 

nonprogrammers to write code. At the same 

time, hardware abstraction improved perceived 

processor performance with microcode, RISC, 

pipelining, caching, multithreading and 

multiprocessors, and, today, grid computing, 

computation on demand and computing as a 

web service. 

 

In order to master the increasing complexity of 

this hierarchy of abstraction, software and 

hardware engineers learned that it was best to 

enforce the isolation of the layers by insisting 

on access only through specified APIs. Each 

layer addressed its neighbors as black boxes. 

 

But there’s always a countervailing trend. Two 

themes characterize the ongoing struggle to 

break the abstraction barriers, and these are 

both themes particularly relevant at CMG.   

 

First, the hunger for better performance always 

outpaces even the most dramatic improvements 

in hardware. Performance problems still exist 

(and people still come to CMG) despite the 

more than 2000-fold increase in raw processor 

speed (95% in latency reduction) and the more 

than 100-fold expansion in memory module 

bandwidth (77% in latency reduction) of the 

last 20 years [P04].   And one way to improve 

performance at one layer is to bypass the 

abstraction barriers in order to tweak lower 

levels in the hierarchy. A smart programmer 

may be smarter than a routine compiler, and so 

might be able to optimize better, or write some 

low level routines in assembler rather than in 

whatever higher level language he/she uses 

most of the time. A smart web application 

might be able to get better performance by 

addressing some network layer directly rather 

than through a long list of protocols.  

 

Second, the economics of our industry calls for 

the quantification of performance – after all, 

that’s what CMG is about. But layered 

abstractions conspire to make that 

quantification difficult. We can know how long 

a disk access takes, but it’s hard to understand 

how long an I/O operation takes if the I/O 

subsystem presents an interface that masks 

possible caching and access to a LAN or SAN, 

or even the Internet. Measurement has always 

been difficult; now it’s getting tricky too. And 

without consistent measurement, the value of 

prediction and hence capacity planning is 

limited.  

 

That’s a lot of pretty general philosophizing. 

Now for some specifics. One particular 

important abstraction is the idea of a virtual 

processor or, more generally, a virtual 

operating system.  

 

Reasons for virtualization are well known and 

we won’t go into detail here.  Vendors provide 

it and customers use it in order to 

 

• Isolate applications 

• Centralize management 

• Share resources 

• Reduce TCO 

 

In this paper we will present a framework 

which helps us begin to understand 

performance metrics for a variety of virtual 

systems. 

 

 

2. A Simple Model for Virtualization 

 

Figure 1 illustrates a typical computer system.   



 
Figure 1. A basic computer system without 

virtualization. 

 

In principle, any part of this diagram below the 

application layer can be virtualized. In practice, 

there are three basic architectures for 

virtualization, depending on where the 

virtualization layer appears. It may be  

 

• below the OS (Figure 2) 

• above the OS (Figure 3) 

 

(or, possibly, in part above and in part below).  

 

 
Figure 2. Virtualization layer below the 

operating system. 

 

If the virtualization layer is below the operating 

system, then the OS has a very different view 

of the “hardware” available (Figure 2).  If the 

virtualization layer is above the operating 

system (Figure 3), then the virtualization 

manager is, in fact, a new OS.  

 

Historically, the first significant example of 

virtualization was IBM’s introduction of VM 

and VM/CMS in ‘70s. Typical production 

shops ran multiple images of MVS
3
 (or naked 

OS360).  Various current flavors (each 

implementing some virtualization, from 

processor through complete OS) include 

 

• Hyper-threaded processors  

• VMware  

• AIX micropartitions  

• Solaris N1 containers  

• PR/SM  

 

Table 1 shows some of these virtualization 

products and where the virtualization layer 

appears.     

 

  

Vendor 

Below 

or 

Above 

OS? 

Hyper-threaded 

Processor 

Intel Below 

VMware 

ESX Server 

VMware 

(EMC) 

Below 

VMware 

GSX Server 

VMware 

(EMC) 

Above 

Microsoft 

Virtual Machine

Technology 

Microsoft Above 

Micropartition IBM Below 

Sun N1 SUN Above  

and  Below

nPar, vPar HP Below 

PR/SM IBM Below 

Table 1. Examples of virtualization products 

showing where the virtualization layer appears. 
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In this paper we will focus on systems that 

offer virtual hardware to operating systems. 

Although we use VMware as an example in 

this paper, the model and methods discussed 

could be used for other virtualization 

architecture as well. 

 

In the typical virtual environment we will study 

several guest virtual machines 
n

GGG ,,,
21
L  

running on a single system, along with a 

manager that deals with system wide matters. 

Each guest runs its own operating system and 

knows nothing of the existence of other guests. 

Only the manager knows all.  Figure 3 

illustrates the architecture.  We assume that 

each virtual machine is instrumented to collect 

its own performance statistics, and that the 

manager also keeps track of the resource 

consumption of each virtual machine on the 

physical system.  The challenge of managing 

the entire virtual system is to understand how 

these statistics are related. 

 

 
Figure 3. A virtualized system with 3 guests.  

Each guest has its own operating system, which 

may be different from the others.  The 

Virtualization Manager schedules access to the 

real physical resources to support each guest. 

3. Life before Virtualization 

 

Perhaps the single metric most frequently 

mentioned in capacity planning studies is 

“processor utilization”.  

 

For a standalone single processor the processor 

utilization over an interval is the dimensionless 

number u  defined as the ratio of the time the 

processor is executing “useful” instructions 

during the interval divided by the length of the 

interval. u  is usually reported as a percentage 

rather than as a number between 0 and 1. The 

latter is better for modeling but the former is 

easier for people to process. 

  

The usual way to measure the utilization is to 

look at the run queue periodically and report 

the fraction of samples for which it is not 

empty. The operating system may do that 

sampling for you and report the result, or may 

just give you a system call to query the run 

queue, in which case you do the sampling and 

the arithmetic yourself. The literature contains 

many papers that address these questions 

[MD02]. We won’t do so here.   

 

In this simple situation the utilization is a good 

single statistic for answering important 

performance questions. It tells you how much 

of the available processing power you are 

using, and so, in principle, how much more 

work you could get out of the system by using 

the remaining fraction 1- u .  

 

That’s true if the system is running batch jobs 

that arrive one after another for processing. The 

run queue is always either empty or contains 

just the job being served; when it’s empty you 

could be getting more work done if you had 

work ready. But if transactions arrive 

independently and can appear simultaneously 

(like database queries or web page requests) 

and response time matters, the situation is more 

complex. You can’t use all the idle cycles 

because transaction response time depends on 

hardware 
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the length of the run queue, not just whether or 

not it is empty. The busier the system the 

longer the average run queue and hence the 

longer the average response time. The good 

news is that often the average queue length q  

can be computed from the utilization using the 

simple formula 

 

u

u
q

−

=

1
.                                                    (3.1) 

 

      

Now suppose the throughput is x  jobs/second. 

Then Little’s Law tells us that 

 

xqr /= .                                                     (3.2) 

 

If each job requires an average of s  seconds of 

CPU processing then sxu =  and we can 

rewrite formula (3.2) as 

 

u

s
xqr

−

==

1
/ .                                         (3.3) 

 

  

The response time is greater than s  because 

each job contends with others for processor 

cycles.  The basic concepts presented above 

can be found in [B87] [LZGS].  We will use 

and interpret those basic formulas in the 

context of virtualization.  

 

Measuring CPU consumption s  in seconds is a 

historic but flawed idea, since its value for a 

particular task depends on the processor doing 

the work. A job that requires s  seconds on one 

processor will take st ×  seconds on a 

processor where, other things being equal, t  is 

the ratio of the clock speeds or performance 

ratings of the two processors. But we can take 

advantage of the flaw to provide a useful 

interpretation for formula (3.3). It tells us that 

the response time R  is the service time in 

seconds that this job would require on a 

processor slowed down by the factor )1( u−  – 

that is, one for which )1/(1 ut −= . So rather 

than thinking of the job as competing with 

other jobs on the real processor, we can 

imagine that it has its own slower processor all 

to itself. On that slower processor the job 

requires more time to get its work done. It’s 

that idea that we plan to exploit when trying to 

understand virtualization. 

 

We can now view the simple expression  

 

sxu ×=   

 

for the utilization in a new light. Traditionally, 

planners think of u  both as how busy the 

system is and simultaneously as an indication 

of how much work the system is doing. We 

now see that the latter interpretation depends 

on the flawed meaning of s . We should use the 

throughput x , not the utilization u  as a 

measure of the useful work the system does for 

us. 

 

When there are multiple physical processors 

the system is more complex, but well 

understood. The operating system usually hides 

the CPU dispatching from the applications, so 

we can assume there is a single run queue with 

average length q . (Note that a single run queue 

for multiple processors is more efficient than 

multiple queues with one for each processor 

[D05].)  Then (3.2) still gives the response 

time, assuming that each individual job is 

single threaded and cannot run simultaneously 

on several processors. Equation (3.1) must be 

modified, but the changes are well known. We 

won’t go into them here. 

 

When there is no virtualization, statistics like 

utilization and throughput are based on 

measurements of the state of the physical 

devices, whether collected by the OS or using 

APIs it provides. Absent errors in 

measurements or reporting, what we see is 

what was really happening in the hardware.  

The capacity planning process based on these 



measurements is well understood.  

Virtualization, however, has made the process 

less straightforward. In the next section we will 

discuss some of the complications.   

 

 

4. What does virtual utilization mean? 

 

Suppose now that each guest runs its own copy 

of an operating system and records its own 

utilization 
i

V  (virtual), throughput 
i
x  and 

queue length
i

q , in ignorance of the fact that it 

does not own its processors. Perhaps the 

manager is smart enough and kind enough to 

provide statistics too. If it does, we will use 
i

U  

to represent the real utilization of the physical 

processor attributed to guest 
i

G  by the 

manager. We will write 
0

U  for the utilization 

due to the manager itself. 
0

U  is the cost or 

overhead of managing the virtual system. One 

hopes it is low; it can be as large as 15%. 

 

5. Shares, Caps and Guarantees 

 

When administering a virtual system one of the 

first tasks is to tell the manager how to allocate 

resources among the guests. There are several 

possibilities: 

 

• Let each guest consume as much of the 

processing power as it wishes, subject of 

course to the restriction that the combined 

demand of the guests does not exceed what 

the system can supply. 

 

• Assign each guest a share 
i
f of the 

processing power (normalize the shares so 

that they sum to 1, and think of them as 

fractions). Then interpret those shares as 

either caps or guarantees: 

 

o When shares are caps each guest owns 

its fraction of the processing power. If it 

needs that much it will get it, but it will 

never get more even if the other guests 

are idle. These may be the semantics of 

choice when your company sells 

fractions of its large web server to 

customers who have hired you to host 

their sites. Each customer gets what he 

or she pays for, but no more.  

 

o When shares are guarantees, each 

guest can have its fraction of the 

processing power when it has jobs on 

its run queue – but it can consume more 

than its share when it wants them at a 

time when some other guests are idle. 

This is how you might choose to divide 

cycles among administrative and 

development guests. Each would be 

guaranteed some cycles, but would be 

free to use more if they became 

available. 

 

The actual tuning knobs in particular virtual 

system managers have different names, and 

much more complex semantics.  To implement 

a generic performance management tool one 

must map and consolidate those non-standard 

terms. Here we content ourselves with 

explaining the basic concepts as a background 

for interpreting the meaning of those knobs 

with similar but different names from different 

vendors.    

 

In each of these three scenarios, we want to 

understand the measurements reported by the 

guests. In particular, we want to rescue 

Formula (3.3) for predicting job response 

times. 

 

 

6. Shares as Caps  

 

The second of these configurations (shares as 

caps) is both the easiest to administer and the 

easiest to understand. Each guest is unaffected 

by activity in the other guests. The utilization 

and queue length it reports for itself are 



reliable. The virtual utilization 
i

V  accurately 

reflects the fraction of its available processing 

power guest 
i

G  used, and the queue length 
i

q  

in Formula (3.3) correctly predicts job response 

time.  

 

If the manager has collected statistics, we can 

check that the utilizations seen there are 

consistent with those measured in the guests. 

Since guest 
i

G sees only the fraction 
i
f of the 

real processors, we expect 

 

i

i

i

f

U
V =  

 

As expected, this value approaches 1.0 as 

i
U approaches

i
f  . 

 

Let 
i

S  be the average service time of jobs in 

guest
i

G , measured in seconds of processor 

time on the native system. Then
iii

USx =× . 

Since the job throughput is the same whether 

measured on the native system or in guest
i

G , 

we can compute the average job service time 

on the virtual processor in guest
i

G ,
i
s :  

 

i

i

i

i

i

i

i

i
S

U

Vi

S

U

V

x

V
s ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
===                               (6.1) 

  

Thus 
ii

UV /  is the factor by which the virtual 

processing in guest 
i

G  is slowed down from 

what we would see were it running native. That 

is no surprise. And there’s a nice consequence. 

Although the virtual service time doesn’t 

measure anything of intrinsic interest, it is 

nevertheless just the right number to use along 

with the measured virtual utilization 
i

V  when 

computing the response time for jobs in 

guest
i

G : 

 

i

i

i

V

s
R

−

=

1
                                                  (6.2) 

 

But, as we saw in the last section, you should 

not use either 
i

V  nor 
i
s  to think about how 

much work the system is doing. For that, use 

the throughput
i
x .  It’s more meaningful both in 

computer terms and in business terms. 

 

7. How contention affects performance – no 

shares assigned 

 

In this configuration the planner’s task is much 

more complex. It’s impossible to know what is 

happening inside each guest using only the 

measurements known to that guest. 

Performance there will be good if the other 

guests are idle and will degrade when they are 

busy. Suppose we know the manager 

measurements
i

U . Let 

 

∑
=

=

n

i

i
UU

0

                                                   (7.1) 

 

be the total native processor utilization seen by 

the manager. Note that the manager knows its 

own management overhead
0

U .  

 

In this complicated situation the effect of 

contention from other guests is already 

incorporated in the guest’s measurement of its 

utilization. That’s because jobs ready for 

service are on the guest’s run queue both when 

the guest is using the real processor and when 

it’s not. So, as in the previous section, we can 

use the usual queueing theory formulas for 

response time and queue length in each guest. 

 

So far so good. But to complete the analysis 

and to answer what-if questions, we need to 

know how the stretch-out factor 
ii

UV /  

depends on the utilizations 

j
U , niij ,,1,1,1,0 LL +−= , of the other guest 



machines. When the guest 
i

G  wants to 

dispatch a job the virtualization manager sees 

the real system busy with probability 

 

∑
≠

=

=−

n

ij
j

ji
UUU

0

.                                         (7.3) 

Note that the overhead 
0

U  is included in this 

sum. Thus the virtual system seen by 
i

G  is 

slowed down by a factor ))(1(
i

UU −−  relative 

to the native system. So we expect to see 

 

)(1
i

i

i

UU

U
V

−−

= .                 (7.4) 

 

In the analysis so far we have assumed that the 

manager could supply the true guest 

utilizations 
i

U . What if it can’t – suppose we 

know only the measured values ,
i

V  

ni ,,2,1 L= ? No problem (as they say). If we 

assume the virtualization management 

overhead 
0

U  is known we can think of the n 

equations (7.4) (one for each value of i) as n 

equations in the n unknowns ,
i

U  ni ,,2,1 L= , 

and solve them. That reduces the what-if 

problem to a problem already solved. The 

solution is surprisingly easy and elegant. When 

we cross multiply to clear the denominators 

and reorganize the result we see that the 

equations (7.4) are actually linear in the 

unknown values
i

U :  

 

⎪
⎪

⎩

⎪
⎪

⎨

⎧

−=+++

−=+++

−=+++

)1(

)1(

)1(

021

022212

011211

UVUUVUV

UVUVUUV

UVUVUVU

nnnn

n

n

L

L

L

L

        (7.5) 

 

Solving by any standard mechanism 

(determinants, Cramer’s rule) leads to 

 

)1(
)1()1)(1(

01

32

1
UV

D

VVV
U n

−

−−−

=

L

  (7.6) 

 

where the denominator D is given by the 

formula 

 

n

lkji

lkji

kji

kji
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ji

VVVn
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,,,
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,

)1(

3

2

1

                           (7.7) 

 

To find the value of 
j

V , nj ,,3,2 L=  use 

equation (7.6) with 1 replaced by i in the 

obvious way. 

 

Note that in any particular virtualization system 

it may or may not be possible to assign “no 

shares.” Assigning equal shares may or may 

not have this effect.  

 

 

8. How Contention Affects Performance – 

Shares as Guarantees 

 

Although users often configure shares as caps, 

and may occasionally use no shares at all, it’s 

clear that they will often want to use the tuning 

knobs provided by their particular system to 

provide shares as guarantees in order to 

achieve business goals that balance 

performance with the efficient use of 

computing resources.  

 

When shares are guarantees, in a baseline 

system the guest utilizations 
i

V  can be trusted 

to incorporate the stretch-out of 
i

U  caused by 

contention from the other guests and can be 

used in normal ways to predict transaction 

response times. But formula (7.4) no longer 



expresses the relationship between the guest’s 

virtual utilization 
i

V  and the manager’s true 

utilizations
i

U . Computing 
i

V  from the 
j

U  (or, 

using the equations in the previous section, the 

other guests’ measured utilizations
j

V ) calls for 

a complex function 

 

),,,,,(
11 nni

UUffFV LL= , 

 

which depends on the precise semantics of 

share assignments. In the several systems we 

have studied these are subtle and different, and 

often not encapsulated in a single parameter 

that can be normalized to our generic share
i
f . 

 

Nevertheless, we are still hopeful that we can 

find a reasonable generic approximation based 

on known analyses of priority queueing 

systems and fair share scheduling. One 

possible place to start is with the share 

algorithm developed for Solaris modeling 

[BD][BDR].. 

 

 

9. VMware measurements 

 

To test our models we ran a sequence of 

benchmarks on a virtual system with two 

guests. The manager was a VMware ESX 

Server; each guest ran Windows 2000. We 

instructed a load generator to force a specified 

utilization on each target machine by sending it 

a Poisson stream of computation intensive jobs 

(finding logarithms). The load generator was 

instrumented to collect statistics about the 

actual amount of work done and the job 

response time. While the benchmark was 

running we collected performance statistics for 

the guests and the VMware host using 

Collector and Agent from BMC Software. 

 

We configured the load generators to run a 

sequence of experiments in which guest 

Bermuda was targeted to be busy 25% of the 

time while target utilization on guest Largo 

varied from 20% to 50%. CPU affinity in the 

dual processor VMware system was set so that 

the two guests competed with each other for 

the same processor but did not compete with 

the manager. Guests were told not to take 

advantage of Hyper-threading available on the 

physical system. Guests were assigned equal 

shares as guarantees; VMware does not provide 

a way to assign “no shares”. Figures 4 and 5 

show the results for Bermuda and Largo 

respectively. Utilizations are reported as 

percentages. Throughput and response time are 

essentially logarithms computed per second, 

scaled arbitrarily (but consistently) so that they 

can be displayed on the same graph. The 

former is an average over time. The latter 

captures the queueing delay when individual 

requests are backlogged by the randomness in 

their arrivals. 
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Figure 4. Experimental results from Bermuda, 

while Largo was working too. 
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Figure 5. Experimental results from Largo, 

while Bermuda was working too. 

 

Here is what we discover from those results. 

 

• In all the experiments on both machines the 

guest’s measurement of its utilization was 

larger than the utilization attributed to it by 

the manager. That we expected. But the 

amount of stretch-out does not vary 

significantly with the total load, as the 

analysis in Section 7 predicts, because that 

analysis is predicated on the assumption 

that no shares have been assigned. The 

proportional stretching is roughly constant 

for each machine, but different for the two 

machines. We do not understand why.  

 

• The response time on each machine 

depends on the total utilization. That is 

particularly clear in the Bermuda data, 

where the load is constant but the response 

time increases from 10 to 15 seconds as the 

load on Largo increases. In the Largo data 

the effect is compounded by the increase 

due to the increase in load on Largo itself. 

When both guests ran at the same 

(approximate) load in Experiment 2, job 

response time was essentially the same on 

each. Had we not seen that happen we’d 

have worried about our benchmark driver. 

 

 

10. Conclusions and Future Work 

 

So far we have set down a generic framework 

that helps deal with the subtleties and 

complexities of measuring and modeling 

virtual systems. In particular, we have  

 

• shown that processor utilizations measured 

by the guest and by the virtualization 

manager need not agree, 

 

• discussed the relationship between those 

utilization measurements when no shares 

have been assigned, 

 

• suggested the value of using throughput 

rather than utilization as the independent 

variable when attempting to answer what-if 

questions about transaction response time, 

and 

 

• proposed a methodology for computing 

how activity in one guest can affect the 

performance in others. 

 

In the future we hope to 

 

• find a virtualization system that allows us 

to specify “no shares” so that we can 

validate the model in Section 7, 

 

• continue our experiments on VMware and 

other systems in order to understand share 

allocation semantics, and 

 

• develop a reasonably generic methodology 

for modeling at least the simplest of the 

share allocation semantics. 
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