
Virtual performance won't do: Capacity planning for virtual systems

Ethan Bolker1, Yiping Ding

BMC Software

Abstract

The history of computing is a history of virtualization. Each increase in the number of

abstraction layers separating the end user from the hardware makes life easier for the user but

harder for the system capacity planner who must understand the relationship between logical

and physical configurations to guarantee performance. In this paper we discuss possible

architectures for virtual systems and show how naïve interpretations of traditional metrics like

“utilization” may lead planners astray. Then we propose some simple generic prediction

guidelines that can help planners manage those systems. We close with a benchmark study that

reveals a part of the architecture of VMware
2
.

1 Ethan Bolker is also Professor of Computer Science at the University of Massachusetts, Boston.

2 VMware is a registered trademark of VMware, an independent subsidiary of EMC.

1. Introduction

One can view the modern history of computing

as a growing stack of layered abstractions built

on a rudimentary hardware processor with a

simple von Neumann architecture. The

abstractions come in two flavors. Language

abstraction replaced programming with zeroes

and ones with, in turn, assembly language,

FORTRAN and C, languages supporting object

oriented design, and, today, powerful

application generators that allow

nonprogrammers to write code. At the same

time, hardware abstraction improved perceived

processor performance with microcode, RISC,

pipelining, caching, multithreading and

multiprocessors, and, today, grid computing,

computation on demand and computing as a

web service.

In order to master the increasing complexity of

this hierarchy of abstraction, software and

hardware engineers learned that it was best to

enforce the isolation of the layers by insisting

on access only through specified APIs. Each

layer addressed its neighbors as black boxes.

But there’s always a countervailing trend. Two

themes characterize the ongoing struggle to

break the abstraction barriers, and these are

both themes particularly relevant at CMG.

First, the hunger for better performance always

outpaces even the most dramatic improvements

in hardware. Performance problems still exist

(and people still come to CMG) despite the

more than 2000-fold increase in raw processor

speed (95% in latency reduction) and the more

than 100-fold expansion in memory module

bandwidth (77% in latency reduction) of the

last 20 years [P04]. And one way to improve

performance at one layer is to bypass the

abstraction barriers in order to tweak lower

levels in the hierarchy. A smart programmer

may be smarter than a routine compiler, and so

might be able to optimize better, or write some

low level routines in assembler rather than in

whatever higher level language he/she uses

most of the time. A smart web application

might be able to get better performance by

addressing some network layer directly rather

than through a long list of protocols.

Second, the economics of our industry calls for

the quantification of performance – after all,

that’s what CMG is about. But layered

abstractions conspire to make that

quantification difficult. We can know how long

a disk access takes, but it’s hard to understand

how long an I/O operation takes if the I/O

subsystem presents an interface that masks

possible caching and access to a LAN or SAN,

or even the Internet. Measurement has always

been difficult; now it’s getting tricky too. And

without consistent measurement, the value of

prediction and hence capacity planning is

limited.

That’s a lot of pretty general philosophizing.

Now for some specifics. One particular

important abstraction is the idea of a virtual

processor or, more generally, a virtual

operating system.

Reasons for virtualization are well known and

we won’t go into detail here. Vendors provide

it and customers use it in order to

• Isolate applications

• Centralize management

• Share resources

• Reduce TCO

In this paper we will present a framework

which helps us begin to understand

performance metrics for a variety of virtual

systems.

2. A Simple Model for Virtualization

Figure 1 illustrates a typical computer system.

Figure 1. A basic computer system without

virtualization.

In principle, any part of this diagram below the

application layer can be virtualized. In practice,

there are three basic architectures for

virtualization, depending on where the

virtualization layer appears. It may be

• below the OS (Figure 2)

• above the OS (Figure 3)

(or, possibly, in part above and in part below).

Figure 2. Virtualization layer below the

operating system.

If the virtualization layer is below the operating

system, then the OS has a very different view

of the “hardware” available (Figure 2). If the

virtualization layer is above the operating

system (Figure 3), then the virtualization

manager is, in fact, a new OS.

Historically, the first significant example of

virtualization was IBM’s introduction of VM

and VM/CMS in ‘70s. Typical production

shops ran multiple images of MVS
3
 (or naked

OS360). Various current flavors (each

implementing some virtualization, from

processor through complete OS) include

• Hyper-threaded processors

• VMware

• AIX micropartitions

• Solaris N1 containers

• PR/SM

Table 1 shows some of these virtualization

products and where the virtualization layer

appears.

Vendor

Below

or

Above

OS?

Hyper-threaded

Processor

Intel Below

VMware

ESX Server

VMware

(EMC)

Below

VMware

GSX Server

VMware

(EMC)

Above

Microsoft

Virtual Machine

Technology

Microsoft Above

Micropartition IBM Below

Sun N1 SUN Above

and Below

nPar, vPar HP Below

PR/SM IBM Below

Table 1. Examples of virtualization products

showing where the virtualization layer appears.

3 Note for young folks – MVS has morphed into

z/OS

applications

operating system

hardware

processors memory

i/o
subsystem

network
interface

applications

operating system

hardware

processors memory

i/o
subsystem

network
interface

virtualized layer

processors memory

i/o
subsystem

network
interface

virtualization manager

In this paper we will focus on systems that

offer virtual hardware to operating systems.

Although we use VMware as an example in

this paper, the model and methods discussed

could be used for other virtualization

architecture as well.

In the typical virtual environment we will study

several guest virtual machines
n

GGG ,,,
21
L

running on a single system, along with a

manager that deals with system wide matters.

Each guest runs its own operating system and

knows nothing of the existence of other guests.

Only the manager knows all. Figure 3

illustrates the architecture. We assume that

each virtual machine is instrumented to collect

its own performance statistics, and that the

manager also keeps track of the resource

consumption of each virtual machine on the

physical system. The challenge of managing

the entire virtual system is to understand how

these statistics are related.

Figure 3. A virtualized system with 3 guests.

Each guest has its own operating system, which

may be different from the others. The

Virtualization Manager schedules access to the

real physical resources to support each guest.

3. Life before Virtualization

Perhaps the single metric most frequently

mentioned in capacity planning studies is

“processor utilization”.

For a standalone single processor the processor

utilization over an interval is the dimensionless

number u defined as the ratio of the time the

processor is executing “useful” instructions

during the interval divided by the length of the

interval. u is usually reported as a percentage

rather than as a number between 0 and 1. The

latter is better for modeling but the former is

easier for people to process.

The usual way to measure the utilization is to

look at the run queue periodically and report

the fraction of samples for which it is not

empty. The operating system may do that

sampling for you and report the result, or may

just give you a system call to query the run

queue, in which case you do the sampling and

the arithmetic yourself. The literature contains

many papers that address these questions

[MD02]. We won’t do so here.

In this simple situation the utilization is a good

single statistic for answering important

performance questions. It tells you how much

of the available processing power you are

using, and so, in principle, how much more

work you could get out of the system by using

the remaining fraction 1- u .

That’s true if the system is running batch jobs

that arrive one after another for processing. The

run queue is always either empty or contains

just the job being served; when it’s empty you

could be getting more work done if you had

work ready. But if transactions arrive

independently and can appear simultaneously

(like database queries or web page requests)

and response time matters, the situation is more

complex. You can’t use all the idle cycles

because transaction response time depends on

hardware

processors memory

i/o
subsystem

network
interface

virtualization manager

applications

os

processors

virtual

 i/o

network

memory

applications

os

processors

virtual

 i/o

network

memory

applications

os

processors

virtual

 i/o

network

memory

the length of the run queue, not just whether or

not it is empty. The busier the system the

longer the average run queue and hence the

longer the average response time. The good

news is that often the average queue length q

can be computed from the utilization using the

simple formula

u

u
q

−

=

1
. (3.1)

Now suppose the throughput is x jobs/second.

Then Little’s Law tells us that

xqr /= . (3.2)

If each job requires an average of s seconds of

CPU processing then sxu = and we can

rewrite formula (3.2) as

u

s
xqr

−

==

1
/ . (3.3)

The response time is greater than s because

each job contends with others for processor

cycles. The basic concepts presented above

can be found in [B87] [LZGS]. We will use

and interpret those basic formulas in the

context of virtualization.

Measuring CPU consumption s in seconds is a

historic but flawed idea, since its value for a

particular task depends on the processor doing

the work. A job that requires s seconds on one

processor will take st × seconds on a

processor where, other things being equal, t is

the ratio of the clock speeds or performance

ratings of the two processors. But we can take

advantage of the flaw to provide a useful

interpretation for formula (3.3). It tells us that

the response time R is the service time in

seconds that this job would require on a

processor slowed down by the factor)1(u− –

that is, one for which)1/(1 ut −= . So rather

than thinking of the job as competing with

other jobs on the real processor, we can

imagine that it has its own slower processor all

to itself. On that slower processor the job

requires more time to get its work done. It’s

that idea that we plan to exploit when trying to

understand virtualization.

We can now view the simple expression

sxu ×=

for the utilization in a new light. Traditionally,

planners think of u both as how busy the

system is and simultaneously as an indication

of how much work the system is doing. We

now see that the latter interpretation depends

on the flawed meaning of s . We should use the

throughput x , not the utilization u as a

measure of the useful work the system does for

us.

When there are multiple physical processors

the system is more complex, but well

understood. The operating system usually hides

the CPU dispatching from the applications, so

we can assume there is a single run queue with

average length q . (Note that a single run queue

for multiple processors is more efficient than

multiple queues with one for each processor

[D05].) Then (3.2) still gives the response

time, assuming that each individual job is

single threaded and cannot run simultaneously

on several processors. Equation (3.1) must be

modified, but the changes are well known. We

won’t go into them here.

When there is no virtualization, statistics like

utilization and throughput are based on

measurements of the state of the physical

devices, whether collected by the OS or using

APIs it provides. Absent errors in

measurements or reporting, what we see is

what was really happening in the hardware.

The capacity planning process based on these

measurements is well understood.

Virtualization, however, has made the process

less straightforward. In the next section we will

discuss some of the complications.

4. What does virtual utilization mean?

Suppose now that each guest runs its own copy

of an operating system and records its own

utilization
i

V (virtual), throughput
i
x and

queue length
i

q , in ignorance of the fact that it

does not own its processors. Perhaps the

manager is smart enough and kind enough to

provide statistics too. If it does, we will use
i

U

to represent the real utilization of the physical

processor attributed to guest
i

G by the

manager. We will write
0

U for the utilization

due to the manager itself.
0

U is the cost or

overhead of managing the virtual system. One

hopes it is low; it can be as large as 15%.

5. Shares, Caps and Guarantees

When administering a virtual system one of the

first tasks is to tell the manager how to allocate

resources among the guests. There are several

possibilities:

• Let each guest consume as much of the

processing power as it wishes, subject of

course to the restriction that the combined

demand of the guests does not exceed what

the system can supply.

• Assign each guest a share
i
f of the

processing power (normalize the shares so

that they sum to 1, and think of them as

fractions). Then interpret those shares as

either caps or guarantees:

o When shares are caps each guest owns

its fraction of the processing power. If it

needs that much it will get it, but it will

never get more even if the other guests

are idle. These may be the semantics of

choice when your company sells

fractions of its large web server to

customers who have hired you to host

their sites. Each customer gets what he

or she pays for, but no more.

o When shares are guarantees, each

guest can have its fraction of the

processing power when it has jobs on

its run queue – but it can consume more

than its share when it wants them at a

time when some other guests are idle.

This is how you might choose to divide

cycles among administrative and

development guests. Each would be

guaranteed some cycles, but would be

free to use more if they became

available.

The actual tuning knobs in particular virtual

system managers have different names, and

much more complex semantics. To implement

a generic performance management tool one

must map and consolidate those non-standard

terms. Here we content ourselves with

explaining the basic concepts as a background

for interpreting the meaning of those knobs

with similar but different names from different

vendors.

In each of these three scenarios, we want to

understand the measurements reported by the

guests. In particular, we want to rescue

Formula (3.3) for predicting job response

times.

6. Shares as Caps

The second of these configurations (shares as

caps) is both the easiest to administer and the

easiest to understand. Each guest is unaffected

by activity in the other guests. The utilization

and queue length it reports for itself are

reliable. The virtual utilization
i

V accurately

reflects the fraction of its available processing

power guest
i

G used, and the queue length
i

q

in Formula (3.3) correctly predicts job response

time.

If the manager has collected statistics, we can

check that the utilizations seen there are

consistent with those measured in the guests.

Since guest
i

G sees only the fraction
i
f of the

real processors, we expect

i

i

i

f

U
V =

As expected, this value approaches 1.0 as

i
U approaches

i
f .

Let
i

S be the average service time of jobs in

guest
i

G , measured in seconds of processor

time on the native system. Then
iii

USx =× .

Since the job throughput is the same whether

measured on the native system or in guest
i

G ,

we can compute the average job service time

on the virtual processor in guest
i

G ,
i
s :

i

i

i

i

i

i

i

i
S

U

Vi

S

U

V

x

V
s ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=== (6.1)

Thus
ii

UV / is the factor by which the virtual

processing in guest
i

G is slowed down from

what we would see were it running native. That

is no surprise. And there’s a nice consequence.

Although the virtual service time doesn’t

measure anything of intrinsic interest, it is

nevertheless just the right number to use along

with the measured virtual utilization
i

V when

computing the response time for jobs in

guest
i

G :

i

i

i

V

s
R

−

=

1
 (6.2)

But, as we saw in the last section, you should

not use either
i

V nor
i
s to think about how

much work the system is doing. For that, use

the throughput
i
x . It’s more meaningful both in

computer terms and in business terms.

7. How contention affects performance – no

shares assigned

In this configuration the planner’s task is much

more complex. It’s impossible to know what is

happening inside each guest using only the

measurements known to that guest.

Performance there will be good if the other

guests are idle and will degrade when they are

busy. Suppose we know the manager

measurements
i

U . Let

∑
=

=

n

i

i
UU

0

 (7.1)

be the total native processor utilization seen by

the manager. Note that the manager knows its

own management overhead
0

U .

In this complicated situation the effect of

contention from other guests is already

incorporated in the guest’s measurement of its

utilization. That’s because jobs ready for

service are on the guest’s run queue both when

the guest is using the real processor and when

it’s not. So, as in the previous section, we can

use the usual queueing theory formulas for

response time and queue length in each guest.

So far so good. But to complete the analysis

and to answer what-if questions, we need to

know how the stretch-out factor
ii

UV /

depends on the utilizations

j
U , niij ,,1,1,1,0 LL +−= , of the other guest

machines. When the guest
i

G wants to

dispatch a job the virtualization manager sees

the real system busy with probability

∑
≠

=

=−

n

ij
j

ji
UUU

0

. (7.3)

Note that the overhead
0

U is included in this

sum. Thus the virtual system seen by
i

G is

slowed down by a factor))(1(
i

UU −− relative

to the native system. So we expect to see

)(1
i

i

i

UU

U
V

−−

= . (7.4)

In the analysis so far we have assumed that the

manager could supply the true guest

utilizations
i

U . What if it can’t – suppose we

know only the measured values ,
i

V

ni ,,2,1 L= ? No problem (as they say). If we

assume the virtualization management

overhead
0

U is known we can think of the n

equations (7.4) (one for each value of i) as n

equations in the n unknowns ,
i

U ni ,,2,1 L= ,

and solve them. That reduces the what-if

problem to a problem already solved. The

solution is surprisingly easy and elegant. When

we cross multiply to clear the denominators

and reorganize the result we see that the

equations (7.4) are actually linear in the

unknown values
i

U :

⎪
⎪

⎩

⎪
⎪

⎨

⎧

−=+++

−=+++

−=+++

)1(

)1(

)1(

021

022212

011211

UVUUVUV

UVUVUUV

UVUVUVU

nnnn

n

n

L

L

L

L

 (7.5)

Solving by any standard mechanism

(determinants, Cramer’s rule) leads to

)1(
)1()1)(1(

01

32

1
UV

D

VVV
U n

−

−−−

=

L

 (7.6)

where the denominator D is given by the

formula

n

lkji

lkji

kji

kji

ji

ji

VVVn

VVVV

VVV

VVD

××××−±

+

×××−

××+

×−=

∑

∑

∑

><

><

><

L

L

21

,,,

,,

,

)1(

3

2

1

 (7.7)

To find the value of
j

V , nj ,,3,2 L= use

equation (7.6) with 1 replaced by i in the

obvious way.

Note that in any particular virtualization system

it may or may not be possible to assign “no

shares.” Assigning equal shares may or may

not have this effect.

8. How Contention Affects Performance –

Shares as Guarantees

Although users often configure shares as caps,

and may occasionally use no shares at all, it’s

clear that they will often want to use the tuning

knobs provided by their particular system to

provide shares as guarantees in order to

achieve business goals that balance

performance with the efficient use of

computing resources.

When shares are guarantees, in a baseline

system the guest utilizations
i

V can be trusted

to incorporate the stretch-out of
i

U caused by

contention from the other guests and can be

used in normal ways to predict transaction

response times. But formula (7.4) no longer

expresses the relationship between the guest’s

virtual utilization
i

V and the manager’s true

utilizations
i

U . Computing
i

V from the
j

U (or,

using the equations in the previous section, the

other guests’ measured utilizations
j

V) calls for

a complex function

),,,,,(
11 nni

UUffFV LL= ,

which depends on the precise semantics of

share assignments. In the several systems we

have studied these are subtle and different, and

often not encapsulated in a single parameter

that can be normalized to our generic share
i
f .

Nevertheless, we are still hopeful that we can

find a reasonable generic approximation based

on known analyses of priority queueing

systems and fair share scheduling. One

possible place to start is with the share

algorithm developed for Solaris modeling

[BD][BDR]..

9. VMware measurements

To test our models we ran a sequence of

benchmarks on a virtual system with two

guests. The manager was a VMware ESX

Server; each guest ran Windows 2000. We

instructed a load generator to force a specified

utilization on each target machine by sending it

a Poisson stream of computation intensive jobs

(finding logarithms). The load generator was

instrumented to collect statistics about the

actual amount of work done and the job

response time. While the benchmark was

running we collected performance statistics for

the guests and the VMware host using

Collector and Agent from BMC Software.

We configured the load generators to run a

sequence of experiments in which guest

Bermuda was targeted to be busy 25% of the

time while target utilization on guest Largo

varied from 20% to 50%. CPU affinity in the

dual processor VMware system was set so that

the two guests competed with each other for

the same processor but did not compete with

the manager. Guests were told not to take

advantage of Hyper-threading available on the

physical system. Guests were assigned equal

shares as guarantees; VMware does not provide

a way to assign “no shares”. Figures 4 and 5

show the results for Bermuda and Largo

respectively. Utilizations are reported as

percentages. Throughput and response time are

essentially logarithms computed per second,

scaled arbitrarily (but consistently) so that they

can be displayed on the same graph. The

former is an average over time. The latter

captures the queueing delay when individual

requests are backlogged by the randomness in

their arrivals.

Bermuda

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7

throughput

utilization (guest view)

utilization (manager view)

response time

total utilization (manager view)

Figure 4. Experimental results from Bermuda,

while Largo was working too.

Largo

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7

throughput

utilization (guest view)

utilization (manager view)

response time

total utilization (manager view)

Figure 5. Experimental results from Largo,

while Bermuda was working too.

Here is what we discover from those results.

• In all the experiments on both machines the

guest’s measurement of its utilization was

larger than the utilization attributed to it by

the manager. That we expected. But the

amount of stretch-out does not vary

significantly with the total load, as the

analysis in Section 7 predicts, because that

analysis is predicated on the assumption

that no shares have been assigned. The

proportional stretching is roughly constant

for each machine, but different for the two

machines. We do not understand why.

• The response time on each machine

depends on the total utilization. That is

particularly clear in the Bermuda data,

where the load is constant but the response

time increases from 10 to 15 seconds as the

load on Largo increases. In the Largo data

the effect is compounded by the increase

due to the increase in load on Largo itself.

When both guests ran at the same

(approximate) load in Experiment 2, job

response time was essentially the same on

each. Had we not seen that happen we’d

have worried about our benchmark driver.

10. Conclusions and Future Work

So far we have set down a generic framework

that helps deal with the subtleties and

complexities of measuring and modeling

virtual systems. In particular, we have

• shown that processor utilizations measured

by the guest and by the virtualization

manager need not agree,

• discussed the relationship between those

utilization measurements when no shares

have been assigned,

• suggested the value of using throughput

rather than utilization as the independent

variable when attempting to answer what-if

questions about transaction response time,

and

• proposed a methodology for computing

how activity in one guest can affect the

performance in others.

In the future we hope to

• find a virtualization system that allows us

to specify “no shares” so that we can

validate the model in Section 7,

• continue our experiments on VMware and

other systems in order to understand share

allocation semantics, and

• develop a reasonably generic methodology

for modeling at least the simplest of the

share allocation semantics.

11. Acknowledgements

We would like to thank Ken Hu for valuable

discussions on virtualization in general and

VMware in particular and to Kangho Kim and

Anatoliy Rikun for help in running experiments

and analyzing the results.

12. References

[B87] Ethan Bolker, “A Capacity

Planning/Queueing Theory Primer”,

Proceedings of the 18th Computer

Measurement Group Conference, December

1987. (Best Elementary Tutorial Award)

[BDR] Ethan Bolker, Yiping Ding and

Anatoliy Rikun, “Fair Share Modeling for

Large Systems: Aggregation, Hierarchical

Decomposition and Randomization”,

Proceedings of the 30
th

 Computer

Measurement Group Conference (December

2001), pp. 808-818

[BD] Ethan Bolker and Yiping Ding, "On the

Performance Impact of Fair Share Scheduling”,

Proceedings of the 30
th

 Computer

Measurement Group Conference, (December,

2000), pp.71-8

[BB] Ethan Bolker and Jeff Buzen, “Goal

Mode Scheduling”, Proceedings of the 28
th

Computer Measurement Group Conference,

December 1998.

[B85] Ethan Bolker, “Measuring and Modeling

MVS under VM”, Proceedings of the 16th

Computer Measurement Group conference,

December 1985.

[D05] Yiping Ding, “Bandwidth and

Latency: Their Changing Impact on

Performance,” Proceedings of the 35th

Computer Measurement Group

Conference, December 2005.

[LZGS] E. Lazowska, J. Zahorjan, G. Graham,

K. Sevcik, “Quantitative System Performance:

Computer System Analysis Using Queueing

Network Models,” Prentice-Hall, 1984.

[MD02] Javier Munoz and Yiping Ding,

“Sampling Issues in the Collection of

Performance Data,” Proceedings of the 32nd

Computer Measurement Group Conference,

December 2002.

[P04] David A. Patterson, “Latency Lags

Bandwidth,” Communications of the ACM,

Vol. 47, No. 10, pp 71-75, October 2004

	CMG 2005 Main Menu
	Papers by Subject Area
	Papers by Author
	Acrobat® Help
	Search This Paper

