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Arrival  process. We  assume  that  customers  enter  the  queuing 
system  at times to < t ,  < t, . . * t ,  . . .. The  random  variables 7, = 
t, - tk-' (where k 3 1 )  are called interarrival  times. We  as- 
sume  that  the T~ from  a  sequence of independent  and  identically 
distributed  random  variables,  and we  use  the  symbol T for  an 
arbitrary  interarrival  time.  We  specify  the  arrival  process by 
giving the  distribution  function A of the  interarrival  time, A ( t )  = 
P[T 5 t] . The  most  common  arrival  pattern in queueing  theory 
terminology, random  input,  random  arrival  pattern, or a Poisson 
arrival  process. If the  interarrival  time  distribution is exponential, 
that is, if P [ T  5 t ]  = 1 - e-ht for  each  interarrival  time,  then  the 
probability  of n arrivals in any time  interval of length t is K h t  

( A t ) n / n ! ,  where n = 0, 1,  2; e. Here A is the  average  arrival  rate, 
and  the  arrivals  have a Poisson  distribution.  Other  common 
interarrival  time  distributions  include Erlang-k and  constant 
distributions.' 

Service  time  distribution. Let sk be  the  service  time  required by 
the kth arriving  customer.  In  this  paper,  the sk are  assumed  to  be 
independent, identically  distributed random  variables.  Therefore, 
we  can  refer  to  an  arbitrary  service  time  as s. We  also  assume  the 
common  distribution  function W,( t )  = P [ s  5 t ]  for  service  time. 
The  most  common  service-time  distribution in queuing  theory is 
exponential,'  which  defines  a  service  called random  service. The 
symbol p is reserved  for  average  service  rate,  and  the  distribution 
function  for  random  service is given  by  W,(t) = 1 - e-", where 
t 1 0. Other  common  service  time  distributions  are Erlang-k and 
constant.' 

A statistical  parameter  that  is useful as  a measure of the  char- 
acter of probability  distributions  for  interarrival  time  and  for 
service  time is the squmred cwejicient of vrrriution C i ,  which is 
defined by the following equation: 

2 Var[XI c, =- 
ELXI ' 

If X is  a  constant  random  variable,  then C t  = 0; if X has  an  ex- 
ponential  distribution,  then C,' = 1 ; and if X has  an Erlang-k  dis- 
tribution,  then C; = l/k.  We  conclude  that,  for c,' nearly  equal 
to  zero,  the  arrival  process  has a  regular  pattern; if C,' is nearly 
equal to 1 ,  the  arrival  process is nearly  random in character;  and, 
if C,' is greater  than 1, arrivals  tend  to  cluster.  Similar  statements 
can  be  made  about  the  service  time  distribution,  where small 
values of CS2 correspond  to  nearly  constant  services  times  and 
large values  correspond  to  great  variability in service  times. 

Maximum  queuing  system  capacity. In  some  queuing  systems, 
the  queue  capacity is assumed  to  be infinite. That is, every  arriv- 
ing customer is allowed to wait  until service  can  be  provided. 
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Other  systems,  called “loss systems,”  have  zero waiting  line 
capacity.  That  is, if a customer  arrives  when  the  service facility 
is fully  utilized,  the  customer is turned  away. Still other  queuing 
systems  have a positive (but  not infinite) capacity. 

Number of servers. The simplest  queuing  system is the single- 
server  system, which  can  serve  only  one  customer  at a time.  A 
multiserver  system has c identical  servers  and  can  serve  up  to as 
many  as c customers,  simultaneously.  In  an infinite-server sys- 
tem,  every  arriving  customer is immediately  provided  with a 
server. 

Queue  discipline. The  queue discipline,  sometimes  called  service 
discipline, is the  rule  for  selecting  the  next  customer  to  receive 
service.  The  most  common  queue  discipline is “first-come,  first- 
served,”  abbreviated  as FCFS (or  more  commonly  termed “first- 
in, first-out,’’ and  abbreviated  FIFO).  Another  queue  discipline 
often  used is “last-come,  first-served’’ (LCFS) or “last-in,  first- 
out”  (LIFO).  “Random  selection  for  service” (RSS) or  “service 
in random  order” ( S I R O )  is another  queuing  discipline  used. Fi- 
nally, we  mention  “priority  service” (PRI). 

A  shorthand  notation,  called  the  Kendall notation,‘ has been 
developed  to specify  queuing systems,  and  has  the  form A/B/c /  
K / m / Z .  Here A specifies  the  interarrival  time  distribution, B the 
service  time  distribution, c the  number ‘of servers, K the  system 
capacity, m the  number in the  source,  and Z the  queue  discipline. 
More  often  a  shorter  notation A/B/c  is used  when  there is no 
limit  on the waiting  line, the  source  is infinite, and  the  queue  dis- 
cipline is FIFO. The  symbols used  for A and B are  the following: 

GI General  independent  interarrival  time. 
G General  service  time, usually  with the  independence  as- 

E, Erlang-k interarrival or  service  time  distribution. 
M Exponential  interarrival or  service  time  distribution. 
D Deterministic  (constant)  interarrival or  service  time  dis- 

sumption. 

tribution. 

Thus,  for  example,  an M / E , / 3 / 2 0 / m / s I ~ o  system  has  exponen- 
tial interarrival  time,  three  servers with  identical  Erlang-4  ser- 
vice  time  distributions,  system  capacity of 20 ( 3  in service  and 
17 in the  queue), infinite source of customers,  and  service in 
random  order  (with  each waiting customer having the  same  prob- 
ability  of  receiving  service  next). 

Traf ic  intensity. Traffic  intensity u is  the  ratio of the  mean  ser- 
vice  time E [ s ]  and  the  mean  interarrival  time E [ T ] .  This  ratio 
is  one of the  most  important  parameters of queuing  systems  and 
is defined  by  the  following  formula: 
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E[sI  X 
E [ T I  

u=-- - XE[S]  =- 
El. 

The traffic intensity u determines  the minimum number of ser- 
vers  that  are  required  to  keep  up with the incoming stream of cus- 
tomers.  Thus,  for  example, if E [ T ]  is 10 seconds  and E [ $ ]  is 15 
seconds,  at  least  two  servers  are  required.  The unit of traffic in- 
tensity is the  erlang,  named  after A. K. Erlang,  a  pioneer in 
queuing  theory. 

Server  utilization. Another  important  parameter is the traffic 
intensity  per  server or  ulc, called server  utilization p when  the 
traffic is evenly  divided  among  the  servers.  Server  utilization is 
the  probability  that  any  given  server  is  busy,  and,  thus, by the 
Law of Large  Numbers, p is the  approximate  fraction of time  that 
every  server is busy. 

Probability  that n customers  ure in the  system  at  time  t. This 
probability p , ( t )  depends  not  only  on t ,  but  also  on  the initial 
conditions of the  queuing  system,  that is, the  number of custom- 
ers  present  when  the  service facility starts  up.  For  most useful 
queuing  systems, as f increases, p,(t) approaches  the  value p,, 
which is independent  on both I and  the initial conditions. The sys- 
tem is then said to  be in a  steady-state  condition.  In  this  article, 
we  consider only steady-state  solutions  to  queuing  problems 
because  time-dependent  or  transient  solutions  are  usually  too 
complex  for  practical  use. Also, we usually want  the  steady-state 
solution,  which  exists in most  cases of interest. 

Queuing  theory  provides  statistical  measures  of  queuing  system 
performance  and  thus  helps  the  systems  engineer  to  design  a 
minimum-cost  system  that  provides  the  required  level of service. 
These statistical  measures  and  their  variances  include  the fol- 
lowing: 

Mean waiting  time in the  queue W ,  
Mean waiting  time in the  system W 
Mean  number waiting for  service L, 
Mean  number in the  system L 

These  measures  are  not  independent,  and,  assuming  the  interar- 
rival  time and  service  time  distributions  are  known,  the knowl- 
edge of any  one of them  makes it  possible to  calculate  the  other 
three  easily  from  the  equations of Appendix 2. Thus, if the  value 
of W ,  is computed first,  then the following  values are obtained: 

L, = XW, 

w =  w,+ w, 
L = X W  
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Another useful performance  measurement is the  90th  percentile 
value of the  response of time  of  the  system ~ , ( 9 0 ) ,  which is de- 
fined as  the  amount of  time in the  system  such  that  90  percent of 
all arriving  customers  spend  less  than  this  amount of time in the 
system.  Expressed  symbolically, ~ ~ ( 9 0 )  is defined by the  equa- 
tion p [ w  5 n,(90)] = 0.9.  The 90th  percentile  value of time in 
queue ~ ~ ( 9 0 )  is similarly  defined. This  concept  is  used in Ex- 
ample 15 of Reference 1 .  

Single-server  models M/M/1 

We  now  consider  some  single-server  queuing  system  models  that 
are especially  useful. The M / M / l  queuing  model is widely  used 
because  the  exact  distributions of random  variables of interest 
can  be  determined,  and  because  they  have a  simple  form.  This 
model is one  that  has  exponential  interarrival  and  service  time 
distributions ( M I M )  and a  single server ( 1 ) . In  this  respect,  the 
M / M / 1  system is markedly  different from  many  queuing  models 
for  which  only  average or mean  values  and  (possibly)  standard 
deviations of the  random  variables of interest  can  be  calculated. 
Another  reason  for  the  usefulness of the M / M / 1  system is that 
it  is  often reasonable  to  assume a random  arrival  pattern,  whereas 
the  assumption of random  service  time is a conservative  as- 
sumption  for  some  queuing  systems. For  cpu-type  service time 
distributions,  however,  the  standard  deviation  may  be  much 
larger  than  the  mean,  and  the M / M / 1  model  gives  grossly  opti- 
mistic  predictions. The  steady-state  formulas  for M / M / l  queuing 
system  models  are  given in Appendix 3.  

Several of the  random  variables  for  the M / M / 1  model  have a 
familiar form.  The  number of customers in the  system N has a 
geometric  distribution. The waiting  time in the  system  or  system 
response  time u’ has  an  exponential  distribution. The time  that a 
given  customer  waits in the  queue q has a mixed distribution  that 
is  discrete  at  the origin ( P [  q = 01 = 1 - p )  and  is  continuous  else- 
where.  The  steady-state waiting  time in the  queue  has a  dis- 
tribution  function  that is given  by  the following  formula: I 

1 
W,( t )  = 1 - pe 

valid for all t 1: 0. 

- t / h  [wl 

One of the  things  that  stands  out in the  formulas  for  the M / M / 1  
system is the highly nonlinear  dependence of the  random vari- 
ables  for  the  steady-state  numbers of customers in the  queue 
N ,  and in the  system N (plus q and w, just  defined)  on  the  server 
utilization p. Thus  the mean  queue waiting  time  ratio E [ q ] / E [ s ]  
increases  from 0. I I 1 when p = 0.1 to 4 when p = 0.8 and  to 9 
when p = 0.9.  The nonlinearity is illustrated in Figure 2. This 
figure also  shows  how high server  utilization  leads  to long  wait- 
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Figure 2 M e a n  system wait ing  f ime  and  queue wraifing time  ratios 
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ing times in the  queue  before  receiving  service, q, and to long scaling 
times in the  system, w ,  including  waiting in the  queue.  Of  course, effect 
these  values  increase  without limit as  p approaches 1. Figure 2 
also  shows  that  at  values of p above 0.8 small increases in the 
arrival  rate  dramatically  degrade  system  performance. For  this 
reason,  systems  with high server  utilizations  are  undesirable  for 
systems  without  customer  priorities.  Properly  designed  priority 
queuing  systems  can  function well with high server utilization. In 
Example 6 we  examine  such  an  example. 

, 
The M / M / l  system  can  be  used  to  illustrate  the "scaling  effect." 
This effect is that  given  an MIMI 1 system  with  mean  arrival  rate 

~ A and  mean  service  rate p, if both A and p are  doubled  (with p 
~ unchanged)  the effect is to halve  both  the  mean  waiting  time in 

queue E [ q ]  and  the  expected  or  mean  time  spent in the  system 
E [  w ]  . The mean  number waiting in queue  and  the  mean  number 
in the  system remain unchanged. In fact, if for  the  new  system  we 
replace A by nA and p by np, then we  have  the following  scaling 
relationships: 

and 

E[wl"e ,  = ( ' l a p ) / (  - l i p )  " 1 

E [ W l o , d  1 - P  1 - P n 
- 

The following argument  follows  an  intuitively  appealing line  of 
reasoning  that is illuminated  by the scaling  effect. If the  workload 
of  a  large computer  is  divided  equally  among n smaller  computers 
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-each with l / n  times the  speed of the large system - then the 
response time does  not change, and users  have  more  conveniently 
located computers. The scaling effect shows,  however,  that  the 
response time increases by a factor of n, on the  average.  Streeter3 
discusses  the scaling effect more fully. 

Examples of M/M/1 queuing system models 

waiting Example 1. A  branch office  of a large engineering firm has  one 
time and on-line terminal that is connected  to  a  central  computer  system 

server during the normal eight-hour working day.  Engineers, who work 
utilization throughout  the  city,  drive  to  the  branch office to use the terminal 

to make routine  calculations.  Statistics collected over  a period 
of time indicate  that the arrival  pattern of people at  the branch 
office to use the terminal has  a Poisson (random) distribution, 
with a mean of ten people coming to  use  the terminal each  day. 
The distribution of time spent by an engineer at a terminal is 
exponential, with a mean of thirty  minutes. The branch manager 
receives  complaints from the staff about  the terminal service. It 
is reported  that individuals often wait over an hour  to  use  the 
terminal and that it rarely takes  less  than  an  hour  and  a half  in 
the office to  complete  a few calculations. The manager is puzzled 
because  the  statistics  show  that  the terminal is in use only five 
hours  out of eight, on the  average.  This level of utilization would 
not seem to justify  the acquisition of another terminal. What in- 
sight can queuing theory  provide? 

Solution. The M/M/l  system is a  reasonable model for this sys- 
tem. The arrival rate is X = 10 customers/day = 10 customers/day 
x 1/8 daylhour X 1/60 hour/minute = 1/48 custorners/minute. The 
server utilization is computed as follows: 

Hence, by the  formulas in Appendix 3 ,  we  have 

P [ N  1 21 = p2 = 0.391 Probability that  there 
are two or more 
customers in the 
queuing system 

L = E [ N ] = - P _ - - -  - 5/8 - 1.667 Mean  steady-state 

vN=” * - 2.108 

I - p  1 - 5 / 8  number in the queuing 

system 

Standard  deviation of 

customers in the 
system 

1 - P  the  number of 
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w = E[w] =- = 80 minutes 
1 - P  

Mean  time  that  a 
customer  spends in 
the  system 

(T, = E [ w ]  = 80 minutes 

P2 
%=-- - 1.04 1 - P  

Standard  deviation of 
the  time  a  customer 
spends in the  system 

Mean  steady-state 
number of customers 
in the  queue 

Mean  steady-state 
queue  length of 
nonempty  queues 

W, = E[ql  = 50  minutes Mean  time in the 

~ [ q l  q > 01 = E [  w] = 80 minutes Mean  time in the 

1 
E[N,IN,  > 01 =- = 2.67 

1 - P  

PE [SI 

1 ” p  queue 

queue  for  those  who 
must  wait 

~ ~ ( 9 0 )  = E[w]log( l o p )  Ninetieth  percentile 

= 80 X 1.8326 = 146.6  minutes of the  time in the 
queue 

~ ~ ( 9 0 )  = 2.3 E[w] = 184  minutes  Ninetieth  percentile of 
the  time in the  system 

The overall  average waiting  time to  use  the  terminal, which in- 
cludes  those  engineers  who do not  wait at all, is fifty minutes. 
However,  the  average  wait  for  those  who  must  wait is one  hour 
and  twenty  minutes, a very long  wait for  most  people. The 90th 
percentile  time in the office is 184  minutes,  and  the  probability 
of  spending  ninety  minutes or more in the office is shown  to  be 
nearly  one-third as follows: 

1 - W(90) = I - (1 - = e-”’ = 0.325 

Thus nearly  one-third of the  engineers  must  spend  more  than  an 
hour  and  a half in the office to  achieve  about half an  hour of useful 
work,  and  ten  percent of them  require  over  three  hours.  The 
probability  that  an  engineer  must  wait  to  use  the  terminal is p = 
0.625,  and  the  probability of his  waiting more  than  an  hour is 

P [ q  > 601 = 1 - P [ q  5 601 
- - 0.625e-l/30X3/8x60 - - 0.625e-“’4 

= 0.2952 

These  conclusions  may  seem  a little  startling to  those  who  have 
not  been  exposed to queuing  theory  because  the utilization of the 
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terminal  seems low. Nevertheless,  as  Figure 2 shows,  the  mean 
waiting  time in the  queue E [   q ]  grows  rapidly  with  server utiliza- 
tion p. If two  terminals  are  provided in the  branch office, the 
mean  waiting  time decreases  to 3.25 minutes,  with a 90th  per- 
centile  value of 8.67 minutes. 

single server Example 2 .  Messages  arrive at a switching  center  for a  communi- 
with a cation line in a  random  pattern, with  a mean  arrival  rate of 240 

limited messages  per  hour.  Message  lengths  are  distributed  approxi- 
number of mately  exponentially,  with  a  mean of 150 characters.  The  trans- 
customers mission  time for a  message is directly  proportional to its  length, 

and  the line speed  is 15 characters  per  second.  Assuming  that a 
very  large  message buffer is provided, find the following system 
characteristics:  mean  number of messages waiting Lq; mean  wait- 
ing time in the  queue W,; mean  waiting  time for  messages  that 
are delayed E[qlq  > 01: mean  number of messages in the  system 
L:  mean  system  time E [ w ] :  90th  percentile waiting  time in the 
queue ~ ~ ( 9 0 )  : and  the  90th  percentile of  total  system  time 
T,(90). 

Solution. The formulas in Appendix 3 for  an M / M /  1 system  apply 
to  the  situation in Example 2. Here  we  have a message  arrival 
rate of A = 240 messages/hour = 1 / 1 5  message/second; a mean 
service  time of E [  s] = 1 S O /  15 = 10 seconds;  and a server  utiliza- 
tion of p = hE[ s]  = % = %. Given  these  specifications  we  can  cal- 
culate  the following system  characteristics: 

P2 

1 - P  
L,= E [ N q ]  =- = 1.33 messages Mean  steady-state 

number of 
customers in the 
queue 

W ,  = E [ q ]  = pE[sl = 20 seconds  Mean  time in the 
queue 

E [  q1 q > 01 = - = 30 seconds Mean  time in the 
queue  for  messages 
that  must  wait 

1 - P  

a s 1  
1 - P  

L = E [ N ]  = - = 2 messages 
1 - P  

Mean  steady-state 
number of  messages 
in the  system 

P 

E[sI W = E [ s ]  =- = 30 seconds  Mean  steady-state 
1 - P  time in the  system 

~ ~ ( 9 0 )  = E[w]log( l op)  = 56.91 seconds  Ninetieth  percentile 
of time in the  queue 
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~ ~ ( 9 0 )  = 2.3 E [  w ]  = 69  seconds  Ninetieth  percentile 
of time in the 
system 

The system of Example 2 has a large, but not unlimited, buffer. 
The queuing theory model that fits this  system  better is the M l M l  
1/K model, that is, an M / M /  1 system with a limit of K customers 

~ in the  system. The equations  for this model are  shown in Appen- 
1 dix 4. This system is stable,  moreover,  even when the mean ar- 

rival rate A exceeds  the mean service  rate p because  customers 
are turned away when the  system is full. 

Example 3 .  Consider Example 2, again. Suppose  the switching 
center  were desired to provide a sufficiently large buffer that  an 
arriving message would be turned  away less than five per  cent of 
the time. What message buffer capacity should be provided? 

Solution. The traffic intensity u is 2/3. By Appendix  4, if 2 mes- 
sages can be  stored in the buffer ( K  = 3), then p3  is the probabil- 
ity that  an arriving message is turned  away, or 

(1  - u)u" 
P3 = K + l  = 0.123  Steady-state probability that  there  are 

1 - U  three messages in the  system 

p 4  = 0.076  Steady-state probabilities that  there 
are  4  and 5 messages in the  system 

p5 = 0.048 

Thus  the buffer must  provide  storage  for at least  four  messages. 
The formulas of Appendix  4  also show that,  for a system with 
sufficient buffer storage  for  four messages the following condi- 
tions prevail: mean number of messages waiting is 0.788; mean 
time a message waits for  transmission is 12.417  seconds; mean 
waiting time for messages that  are delayed is 19.57 seconds; 
mean time a message spends in the  system is 22.417 seconds; 
and  the probability that  no  messages are in the  system is 0.3654. 

Examples of M/G/1 queuing system models 

The most useful classical single-server queuing model is the 
MIGII system. For this model, however,  one  cannot generally 
obtain the  distribution  functions of N ,  N, ,  w, and q as is possible 
for the MIMII model. For MlCll  queuing system models, one 
usually obtains mean values. However, if the first three  moments 
of the  service time are known, then both  the mean and standard 
deviation can be obtained for some of the  random  variables. 

Formulas  for MlCll  queuing systems  are given in Appendix 5. 
For this model, the  service times must  be  independent.  but  most 
authors  write MlCll  rather than M l G l l l .  The quantities E [ $ ]  
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uq2. E [  i2] uf and &' can  be calculated only if the first three 
moments of the  service  time are known. The equations  for  the 
mean steady-state  number in the queuing system I, and W are 
commonly referred to  as  the Polla~zek-Khintchine~'~ equations. 
For a given value of mean service time E[s], minimum values of 
L, L,, W and W ,  occur when the variation of the  service time is 
zero  Var[s] = 0, that  is, when the  service time s is constant. 

Example 4. A message processing center  processes  each incom- 
ing message in exactly 10 seconds.  Messages  arrive in a random 
pattern  at  a mean rate of 4 messages  per minute. Calculate the 
descriptive  statistics  for  the  deterministic or  constant service- 
time model M / D / 1  as a special case of the M / C / l  model. Then 
estimate  the  90th and 95th  percentile  values of the time in the 
system, w: and  the time waiting in the  queue  before receiving 
service. q. 

Solution. For a constant  service time E [ s 2 ]  = E [ s ] ' ,  E[s:] = 
E[s,I3 etc.  Thus,  the first three  moments of service time are 10, 
100 and, 1000, respectively. The formulas of Appendix 5 give 
the following quantities: 

Server utilization 

4 L = -  
3 

Mean steady-state  number in the  system 

uN = 1.44 Standard  deviation of N 

2 L =- 
Q 3  

Mean steady-state  number in the  queue, 
not including those in service 

W = 20 seconds Mean steady-state time in the  system 

uw = 12.9 1 seconds  Standard  deviation of MI 

W ,  = 10 seconds  Mean  steady-state time in the  queue 

u, = 12.91 Standard  deviation of q 

The queuing model for  this  example differs from that of Example 
2 only in the  service time distribution. The steady-state mean 
waiting time in the  queue  here is exactly one-half of that  for  Ex- 
ample 2. where the  service time distribution is random. A gen- 
eral result  for M / C / l  models with a given mean service time is 
that  the waiting times for  constant  service time are one-half that 
for  random  service, and the waiting times for all Erlang service- 
time  distributions fall somewhere in between  these  extremes. 
There  are, of course,  service time distributions  that lead to longer 
waiting times in the  queue and in the  system  than  random  service 
yields. Hyperexponential  service time is one  example of such  a 
distribution. 
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1 Table 1 Percentile values for  the  Erlang-k  distribution 

Tx(4 

~.~~ ~ _ _ ~  ~- ~~ - ~~~ ~~~~ ~~ ~ ~ ~ ~~ ~ -~ ~ 

Martin' gives a rule that  the  95th percentile of response time is 
approximately  the mean plus two  standard  deviations. In this 
paper, Martin's rule has been extended  to give the 90th percen- 
tile as mean plus 1.3 standard  deviations. Although Martin stated 
the rule for  system  response  time, it also approximates the 
waiting time in queue. By Martin's rule the  percentiles are  as 
follows: 

~ ~ ( 9 0 )  = 20 + 1.3 x 12.91 = 36.8 seconds 

~ ~ ( 9 5 )  = 20 + 2 x 12.9 1 = 45.8 seconds 

~ ~ ( 9 0 )  = 10 + 1.3 X 12.91 = 26.8 seconds 

~ ~ ( 9 5 )  = 10 + 2 X 12.91 = 35.8 seconds 

Since  the  squared coefficient of variation is less  than  one. i.e.: 
C,' = 0.41 67 < 1 ~ another method of estimating percentile  values 
for total time in the queuing system w is to use an Erlang-k dis- 
tribution,  and obtain the percentile values from Table 1.  If k is 
the largest integer less than or equal  to I/CW2, that is, C is the 
floor of ( 1/Cw2) = 2.4, which is 2, then the  90th and 95th per- 
centiles of the total time in the queuing system are  as follows: 

~ ~ ( 9 0 )  = 1.95 E [  w ]  = 39 seconds 

~ ~ ( 9 5 )  = 2.38 E[w] = 47.6  seconds 

These values  are  conservative  because  the reciprocal of C,,'- 
which we  had approximated by 2-is 2.4. Since  the Erlang-k 
distribution is a special case of the gamma distribution in which 
the  parameter k is not restricted  to integer values, we can use a 
linear  interpolation of the gamma distribution  to  calculate  the 
90th and  95th  percentiles of the  total time in the queuing system 
as follows: 

~ ~ ( 9 0 )  = [1.78 + 0.6 X (1.95 - 1.78)] X 20 

= 1.88 X 20 = 37.6 seconds 

and 

~ , , ( 9 5 )  = 2.27 X 20 = 45.4  seconds 
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Table  2 Percentile  values  for  the  gamma  distribution 

r/ I 00 

0.90 
0.95 
0.99 

?Txx(y) / E [ X l  

c,2 
_____" _ _ _ _ _ _ ~ ~  . _ _ _ _ _ _ ~ .  ~~ ~ 

1.25 1.5 1.75 2.0 2.5 3.0 4.0  5.0 6.0  8.0 10.0 20.0 100 

2.44 2.54 2.63 2.71 2.83 2.91 3.01 3.03 3.01 2.87 2.67 1.53 0.0016 
3.25 3.47 3.67 3.85 4.16 4.42 4.85 5.16 5.39 5.68 5.81 5.16 0.34 
5.17 5.69 6.18 6.64 7.51 8.3 9.74 11.02 12.17 14.18 15.89 11.02 26.51 

These values should be sufficiently accurate  for design purposes 
because  the values obtained by fitting a gamma distribution with 
exactly  the  same mean and  variance as w yields the following 
total  times in the system: 

m,(90) = 37.3 seconds 

and 

~ ~ ( 9 5 )  = 44.8 seconds 

A gamma random  variable,  for which the Erlang-k random vari- 
able is a special case, is useful for estimating percentile values. 
A gamma random variable with parameters a and A has  the fol- 
lowing density  function: 

f(x) = . e where x > 0, and r() is the gamma -AX 

r ( f f )  
function. 

The mean is a l x ,  and  the  variance is ah2. The random variable 
w can often be  approximated by a gamma random variable with 
the  same mean and  variance, as can  the random variable q. 

Table  2  can be used to  estimate  percentile values for  a random 
variable X with C: > 1. The use of this table is equivalent  to 
fitting a gamma distribution  to X ,  which has the  same mean and 
variance as X .  Since Cq2 = 1.67, Table  2  (with  linear interpola- 
tion) gives the 90th and  95th  percentile  values of waiting time 
in the  queue  as follows: 

~ ~ ( 9 0 )  = 2.6 E [ q ]  = 26 seconds 

~ ~ ( 9 5 )  = 3.61 E [ q ]  = 36.1 seconds 

These values are close  to  the  values  obtained using Martin's 
rule,  but  they should be more  precise  estimates. 

The one-sided inequality discussed in  my article on probability 
for  system design' can  also be used to  estimate  percentile  values, 
but  that formula tends  to give conservative  estimates. By the 
one-sided inequality, for  any random variable X ,  the  estimate of 
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we can  use  Table 2 to  estimate  the  90th  percentiles of the waiting 
time in the  queue  and  the  number of customers in the  system  as 
follows: 

~ ~ ( 9 0 )  = 2.65 x 12.5 = 33.125 seconds 

~ , ~ ( 9 0 )  = 2.45 x 1.5 = 3.68 messages 

Using  Table 1 and  linear  interpolation,  we  estimate  the  90th 
percentile of the  total  time  spent in the  queuing  system as follows: 

~ ~ ( 9 0 )  = 2.08 x 22.5 = 46.8 seconds 

since 

1/Cw2 = 1.65 

If we fit a gamma  distribution  to  the  total  time in the  system WJ 

with the  same  mean  and  standard  deviation,  we would compute 
~ ~ ( 9 0 )  to  be 45.8 seconds.  Thus  both  the  Martin’s-rule  estimates 
and  the  estimates using the  tables  with  linear  interpolation  give 
fairly  precise  percentile  values. 

A comparison of the  statistics  for  Example 2 shows  that  the 
system  performance is much  better  with  Erlang-4  service  than 
with  exponential  service.  This is due  to  the smaller  variance of 
the  Erlang-4  service. 

Priority queues 

In  many  queuing  systems  customers  are divided into  priority 
classes,  say  from 1 to n, where  the  lower  the  priority  class  num- 
ber,  the  higher  the  priority.  Thus,  customers of  priority  class i 
are given preference  over  customers in priority  class j if i < j ,  
and  customers in priority  class 1 have  preference  over all other 
customers.  Customers within the  same  priority  class  are  served 
in order of arrival (FIFO). 

There  are  two basic  control policies for  the  situation  wherein 
a customer of the ith class  arrives  to find a customer of thejth 
class in service ( i  < j) , called  preemptive  priority  and  nonpre- 
emptive  priority.  respectively.  In a preemptive  priority  queuing 
system,  service is interrupted  and  the newly arrived  customer 
with  higher  priority  begins  service. As a further refinement. if 
the  preemptive  system  is a preemptive-resume  priority  system. 
the  lower-priority  customer,  whose  service  was  interrupted. 
begins service  at  the  point of interruption  upon  the  next  access 
to  the  service  facility.  In still another  variation. a  preempfive- 
repeat  priority  system,  the  lower-priority  customer  repeats  his 
entire  service  from  the beginning. 

In a  nonpreemptive  priority  queuing  system,  the  newly  arrived 
customer  waits until the  customer in service  completes  service. 
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Then he is allowed access  to  the  service facility. Such  a  system 
is also called a "head-of-line'' system,  abbreviated HOL. 

For  our models we assume  that  each priority class  has  a  Poisson 
arrival  pattern with parameter Ai and a general service time with 
the mean value l /p i .  Appendix  6  gives  the  formulas  for  the 
M / G /  1 nonpreemptive (HOL) priority queueing system.  Appendix 
7 gives the  formulas  for  the M/G/l  preemptive-resume priority 
queueing system. 

Example 6. An on-line computer  system  processes inquiries 
of three  basic  types,  each of which has an independent random 
arrival pattern. Type 1 inquiries arrive at the  rate of 0.5 per 
second,  and  have  a  constant processing (service) time of 0.5 
seconds. Thus, A, = 0.5, E [ s , ]  = 0.5, and E [ s I 2 ]  = 0.25. 

Type 2 inquiries arrive at the  rate of 0.1 per second and  have 
a processing time that is exponentially distributed, with a mean 
of 2 seconds. Thus A, = 0.1, E[s,] = 2, and E[s,'] = 8. 

Type 3 inquiries arrive  at  the  rate of 0.03 per second,  and  have 
an Erlang-5 processing time, with a mean of 5 seconds. Thus 
A = 0.03 E[s,] = 5 ,  and E[s,'] = 30. Here we  have used the  fact 
that,  for  an Erlang-k distribution of service time, E[s2]  = ( ( 1 + 
k )  / k )  E[s ] ' .  Compare  the efficiency of the  system  under the 
following conditions: 

a. M l C l l  system with no priority classes. 
b. MlCll nonpreemptive priority system with priority classes 

numbered in the  order listed. that is, with preference in in- 
verse  order of mean processing time 

c.  MlGl I preemptive-resume priority system, with priority 
classes  the  same as those in b. 

Solution. 

a. No priority classification 

A = A, + A, + X, = 0.63 inquiries per second 

E [ s ]  = _1 E [ s , ]  + - E [ $ , ]  + - E[$,] = 0.95238  seconds 

Thus 

p = AE[s,] = 0.6 

A 
A A X 

A2 X, 
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is to  reduce  the  mean  time in the  queue  (from  2.28  125  seconds 
to  0.74224  seconds) : to  reduce  the  mean  time in the  system  to 
about  one half its  previous  value  (from  3.2336  seconds  to 
1.69462) : and to decrease  the mean  time in the  system  for 
priority Classcs 1 mrld 2. The penalty  is  that  the  mean  time in the 
queue  for Cluss 3 is approximately  doubled.  Since  the  messages 
of the third  priority  class  comprise  less  than five percent of the 
messages.  this  should  not  cause  any  serious  problems. 

I t  is not difficult to  show  that, if the  priority  classes  are  set  up 
to  favor  the  customers  with  smallest  mean  service  times,  then 
the  mean  time in the  system  decreases,  as  we  have  observed in 
Example 6. 

Many  computing  centers  use  this  technique  to  give  better  overall 
customer  service. O n  the  other  hand, if, for  some  reason,  a  sub- 
stantial  proportion of customers with large service  times  must 
be  favored,  then  the  overall  system  performance  suffers. For 
example if the  priority  classes of Example  6 had  been  set  up so 
that  the  longest  messages  were  serviced first.  then. for  the pre- 
emptive-resume model. the  mean  queuing  time would increase 
to  3.3245  seconds.  and  the mean  time in the  system would in- 
crease  to  4.2769  seconds.  (These  values  are  only  2.28  125 
seconds  and  3.2336  seconds.  respectively. with no priority 
classes.) 

Concluding remarks 

The practical examples of the  use of  queuing  models in com- 
puter  system design  and analysis  have  introduced  basic  principles 
and  applications  of  queuing  theory. These principles  may  serve 
as a useful  introduction or review. The cited  references  and 
general  references  may  be  used  to build upon  this  foundation 
by  their  presentations of more  complex  models,  such as those 
that  analyze  machine  interference  and  multiserver  queues. 
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Appendix 1 : Queuing notation and definitions 

A ( t )  Distribution  function of interarrival  time, 
A ( t )  = P [ T  5 t] .  

c Number of identical servers. 

D Deterministic  (constant)  interarrival- or ser- 

E, Erlang-k distribution of interarrival or  service 

vice-time  distribution. 

time. 

E [ N , I N ,  > 01 Mean  (expected  or  average)  steady-state 
queue  length of nonempty  queues. 

E[qlq > 01 Mean  steady-state  time in queue  for  non- 
empty  queues. 

FCFS First  come, first  served  queuing  discipline. 

FIFO 

G 

First in, first out  queuing  discipline  (identical 
with FcFs).  

General  probability  distribution of service 
time,  with  independence usually assumed. 
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GI 

K 

L 

LCFS 

LIFO 

General  independent  interarrival  time  dis- 
tribution,  sometimes  used to  describe  the 
service  time  distribution. 

Maximum  number  allowed in the  queuing 
system, inciuding both  those waiting for 
service  and  those  receiving  service. 

E [ N ] ,  the  mean  steady-state  number in the 
queuing  system. 

E [ N , ] ,  mean  steady-state  number in the 
queue,  not including those in service. 

Last  come,  first  served  queuing  discipline. 

Last  in, first out  queuing  discipline  (identical 
to LCFS) . 

X 

M 

N 

PRI 

Y 

RSS 

Mean  arrival  rate  to  the  queuing  system. 

Exponential  interarrival- or service-time 
distribution. 

Mean  service  rate  per  server. 

Random  variable  describing  the  number in 
the  queuing  system at time t. 

Random  variable  describing  the  steady-state 
number in the  queuing  system. 

Random  variable  describing  number in the 
queue  (excluding  those in service)  at time t. 

Random  variable  describing  the  steady-state 
number in the  queue. 

Random  variable  describing  number  receiving 
service  at  time t. 

Random  variable  describing  the  steady-state 
number  receiving  service. 

Probability  that  there  are n customers in the 
queuing  system a t  time t .  

Steady-state  probability  that  there  are n 
customers in queuing  system. 

Priority  queuing  discipline. 

Random  variable  describing  the  time a cus- 
tomer  spends in the  queue  (waiting  line) 
before receiving service. 

Random  selection  for  service  queuing  dis- 
cipline. 



P 
s 

SI RO 

7 

11 

Server utilization p = X1c.p. 

Random  variable  describing  the  service time. 

Service in random  order  queuing  discipline 
(identical  with R S S ) .  Each waiting customer 
has  the  same  probability of being served  next. 

Random  variable  describing  interarrival  time. 

Random  variable  describing  the total  time  a 
customer  spends in the  queueing  system, 
including both  the  time  spent in the  queue 
waiting  for service  and  the  service  time. 

W ( t )  Distribution  function  for M’, w(r) = P [ w 5  t]. 
W E [  ti3]. mean  steady-state  time in the  system. 

including  both  time in the  queue  and  service 
time. 

W,(t) Distribution  function  for  the  time in the 

W ,  

W,(tI Distribution  function  for  service time. 

W ,  E[s], mean  service  time, W ,  = l/p. 

queue. W y ( t )  = P [ 4  5 t]. 

E[q], mean steady-state waiting  time in the 
queue  excluding  service  time. 

W,(r) = P [ s  5 t]. 

Appendix 2: Relationships used in queuing theory models 

p = LllC 

It’ = 4 + s 

w = E[W] = ~ [ q ]  + E[S] = w, + w, 
N(tj  = N,(rj + N,(t) 

N = N,+ N, 
L = E[N] = XW = E[Nq] + E[N,] Little’s formula.’ 

L, = E [ N , ]  =AW, Little’s formula.‘ 

Appendix 3: Steady-state formulas for M/M/1 queuing 
system  models 

= P[N = n] = ( 1  - p ) p ”  
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