
Basic notions of probability theory are applied to problems of 
performance  analysis of on-line real-time systems. 

Frequently used is A P L  as both  an analytical tool and as a 
scratch  pad in working out  the  examples. 

Elements of probability  for  system design 
by A. 0. Allen 

Modern on-line computer  systems  are complex and,  therefore, 
often difficult to analyze.  This paper aims at providing a  directed 
review of probability theory and problems that  are  necessary  for 
further  study of queuing theory  and queuing models. The ap- 
proach here is to  introduce  the  basic  concepts through practical 
examples. 

It is important to have  access  to a computer when designing and 
analyzing computer  systems.  An APL terminal system  was used 
in writing this paper. Therefore, suggestions, examples, and cal- 
culations are given in terms of that  system. Of course, any 
programming language with computational  capability,  such as 
FORTRAN, ALGOL.  BASIC or PL/l , may be used to Write programs 
for  expressing  the algorithms or models of this  paper. 

Basic concepts of probability theory 

The most  basic  concept in probability theory is that of a sample 
space. The phenomenon under study is assumed to be described 
as an  experiment  that  can  be  repeated  under  the  same  conditions. 
A sample  space of such an experiment  is a set S of sample  points 
or elementary  events so chosen  that  the  outcome of each  event 
of the  experiment  corresponds  to  exactly  one  element of the  set 
S and  vice  versa. The concept of sample space is illustrated by 
the following example. 
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Figure 1 Event A-and its com- 
plement A 
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Figure 2 EventA U 6 

Figure 3 EventA n B 

Figure 4 Mutually exclusive 
events A and B 
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space S for  the  experiment of  polling terminals 1 through 6 might 
be the  set of six-tuples ( x l ,  x%, x,, x4, x5, xs) . Here  each xi is either 
1 or 0 indicating that terminal number i is (1)  or is not (0) ready 
to send a message to  the computer. Thus  the sample point ( 1, 0, 
0, 1 ,  0, 1 ) corresponds to the  outcome that terminals numbered 
1 ,  4, and 6 are  ready  to  transmit  a  message, while terminals 2, 3 ,  
and 5 are  not  ready. The six-terminal sample space  consists of 
2G = 64 sample points. Composite  events,  such as  the  event  that 
five of the  terminals are ready to transmit, may also  be of inter- 
est.  This  event  consists of the six sample points (0, 1,  I ,  1, 1, l ) ,  

I ) ,  and ( I ,  1, 1 ,  I ,  0). 

In general, an event is any  subset of the sample  space S ,  that is, 
any collection of sample points from S. An  event  where A con- 
sists of no sample points is written A = QJ, in which 0 is the empty 
set. Sometimes called the impossible event in probability theory, 
0 is paradoxically considered  to be a perfectly acceptable  event, 
as is S itself. 

To every  event A there  corresponds  the  complementary  event 2, 
also called the complement of A ,  which consists of all points of 
S not  contained in A and is defined by  the condition “A does  not 
occur.” Thus, in particular, s = 0 and 6 = S. This  concept  is illus- 
trated in Figure 1 .  

With each  two  events A and B, there can be associated  two new 
events  that  correspond  to  the intuitive ideas  that  either A or B 
occur  and  that both A and B occur. The first of these  events is 
designated A U B, (that is, A or B), and  consists of  all sample 
points that belong to A or  to B (or possibly both).  The  second 
event, designated A n B ,  (that is, A and B ) ,  consists of those 
sample points that belong both to A and  to B. If A and B have no 
points in common,  that is, if A n B = 0, thenA  and B are mutual- 
/ y  exclusive. These  concepts  are illustrated in Figures 2, 3 ,  and 
4. In Figure 2, A U B is represented by the  shaded  area. A n B 
is shaded in Figure 3 .  In Figure 4, A and B are mutually exclu- 
sive  events. 

Example 2. Suppose  the sample space is that of Example 1 .  Let 
A be an event in which at least two terminals are in the  ready 
state,  and  let B be an  event in which not more than  four  terminals 
are in  the  ready  state.  Then A U B is the whole space S, and 
A fl B is the collection of elements of S in which two,  three, or 
four of the components xi are 1. If C is the  event in which exactly 
one of the terminals is in the ready state,  then A and C are mu- 
tually exclusive  events. 

(1, 0, 1, 1, 1, I ) ,  (1, 190% 1,  1, (1, 1, 1, 0, 1, 11, (1, 1, 1, 1, 0, 
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Combinatorial analysis 

To be able  to  discuss  examples of more practical value, we now 
proceed to some  results from combinatorial analysis. Two of the 
basic  concepts in combinatorial analysis are  those of permuta- 
tion and combination. A permutation is an  ordered  selection of 
objects from a  set S. A combination is an unordered  selection of 
objects  from a set S. Repetitions may or may not  be allowed. Un- 
less a statement is made to  the  contrary, it is assumed in this 
paper  that  repetitions  are  not allowed in permutations and com- 
binations. 

Example 3. Let S consist of the  three  letters x, y, and z. There 
are  the following nine two-letter  permutations in S ,  with repeti- 
tions permitted: x x ,  xy,  xz,  yy,  yx,  yz, z z ,  zx,  zy. And  there  are  the 
following six permutations  without  repetitions: xy, xz,  yx,  yz,  zx, 
zy. There  are  also  the following six combinations with repetitions 
permitted: xx, yy, zz, xy, xz, yz. In  these combinations the permu- 
tations xy and yx, for  example, are not distinguished because 
combinations are unordered. There  are  three combinations with- 
out  repetitions: xy, xz,  yz. 

Many combinatorial formulas  can  be derived from  the multipli- multipli- 
cation principle. Suppose  an  operation can be broken up into cation 
two  phases in a  particular way. The first phase  can be performed principle 
in m different ways. After  the  operation  has  been performed in 
any  one of these  ways,  the  second  phase can be performed in n 
different ways. Then  the whole operation can be performed in 
m X n different ways. 

The product of all positive integers from 1 through n is called 
“n factorial,’’ and  denoted by n !  Thus n !  is expressed as follows: 

n ! = n X  ( n -  1) X ( n - 2 ) . * * 3  X 2 X  1 

Zero factorial O! is defined as 1. 

If n is a positive integer and r is a nonnegative integer r, with 

r 5 n, a binomial coeficient is defined as follows: 

The name binomial coefficient  derives from the binomial formula 

results of 
The following are  the summarized results of combinatorial theory combinatorial 
that  are  needed  for this discussion of probability: theory 

NO. 4 1974 PROBABILITY FOR SYSTEM  DESfGN 327 



The number of permutations of n objects,  taken r at  a  time, 
without repetitions is 

P ( n ,  Y) = 
n !  

( n  - r )  ! 

The number of permutations of n objects  taken Y at a time, 

The number of combinations of n objects  taken Y at a time 
with repetitions allowed, is nr. 

without  repetition is 

The number of combinations of n objects  taken Y at a time 
with repetition permitted is 

In early or classical probability theory, all sample spaces  were 
considered to  be finite, and  each sample point was  considered 
to  be equally likely to occur. The definition of the probability P 
of an  event A was defined by the following expression: 

P [ A ]  = A  
n 
n 

Here nA is the number of sample points in A (called points favor- 
able  to  event A )  and n is the  total  number of sample points. This 
definition is still valid for the  case in Example 4. 
Example 4. There  are 26 = 64 sample points by the combinatorial 
theorem if no assumption is made  about  the  number of terminals 
ready.  Assume now that exactly three of the six terminals are 
ready to transmit. Thus  the sample space  consists of  all six-tuples 
( x l ,  x,, xg, x,, x5, XJ for which exactly  three of the xi  are 1 (and 
three of the xi are 0). The number of sample points in the new 
sample space is the  number of ways of choosing the  three com- 
ponents  that are 1, that  is,  the  number of ways of choosing three 
integers from the  integers 1, 2, 3 ,  4, 5 ,  6, which is computed as 
follows: 

Assume  that  each sample point is equally likely, i.e.,  that  each 
terminal is as likely to be ready to transmit as any  other.  Let A,,  
A,,  A,, and A, be  the  events that  the 1 st, 2nd, 3rd, or 4th terminal 
polled is the first terminal polled that is ready to  transmit. (The 
terminals  are polled  in the sequence 1, 2, 3 ,4 ,5 ,6 . )   The proba- 
bilities of these  events  are  calculated as follows: A ,  occurs only 
if x1 = 1, which means  that  the remaining two 1’s must  be dis- 
tributed in the five positions 2 through 6.  Hence,  the number of 
sample points in A,  and  the probability of occurence of A ,  are 
computed as follows: 
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A ,  occurs only if x ,  = 0, x,  = 1, and  the remaining two 1’s are 
distributed in the remaining four positions 3 through 6. Hence, 

Proceeding in this way, the probabilities of events A ,  and A ,  are 
computed as follows: 

20 20 

and 

20 20 

For a general sample  space, it is no longer assumed  that  each probabitity 
point is equally likely. In Example 4, the first terminal might be measure 
used much more than  the  others, so that  the  event “terminal 
1 is ready  to  transmit” should have  a probability greater  than  the 
event  “terminal 2 is ready to  transmit.”  In modern probability 
theory,  a probability measure P, which assigns a  number P[A] 
to each  event A in a sample space S, is assumed  to  exist  and  to 
satisfy the following axioms or rules: 

P1.  P[A] 2 0 for all events A 

P2. P[S] = 1 

P3. P[A U B ]  = P[A] + P[B] if A and B are mutually exclusive 
events 

Axioms P I ,  P2, and P3 are certainly satisfied for the classical 
sample spaces.  The added generality provided by probability 
measures beyond the simple classical theory  allows many more 
problems to be studied using probability theory. The following 
are immediate consequences of the  previous  axioms: 

R1. P[0] = 0 

R2. P[A] = 1 - P [ a  

R3. P[A U B] = P[A] + P[B] - P[A n B] 
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conditional Conditional probability is another useful concept,  wherein, if 
probability P [ A ]  > 0, the probability of event B ,  given that  the  event A has 

occurred, is defined as follows: 

This definition agrees with the intuitive notion of the re-evalua- 
tion of the probability of B in the light of the information that A 
has occurred. 

This relationship  is  sometimes  written as follows: 

P[A n B ]  = P [ A ] P [ B ( A ]  

and is called the multiplication rule. The multiplication rule is 
stated formally as  the probability of the  joint  occurence of events 
A and B ,  and  is  expressed as follows: 

P [ A  n B ]  = P [ A ] P [ B ( A ]  = P [ B ] P [ A ( B ]  

Example 5 .  The supervisor of a group of programmers  decides 
to randomly select  two of the five programs  that  were  run one 
day  for his analysis. Three of the five programs were  written by 
programmer Smith and  two by programmer  Jones.  What  is the 
probability that  the second program selected  was  written by 
Smith, given that Smith wrote  the first program selected? 

Since,  after  the first program is selected, half the remaining pro- 
grams  were  written by Smith,  the probability is 0.5. The previ- 
ously given definition of conditional probability leads to  the same 
result.  Let A be the  event  that  the first program selected  was 
written by Smith,  and B the  event  that  the  second program se- 
lected is also Smith's. Then, by the multiplication rule,  the prob- 
ability of event B , given event A ,  is computed as follows: 

P[A n B ]  =-x -= -  3 2 3  
5 4 10 

Hence, 

theoremof It is usually much easier  to compute conditional probabilities 
total proba- than  ordinary probabilities because  more information is available 

bilities about conditional probabilities. The main use of conditional 
probability is to unravel a set of conditional probabilities to cal- 
culate  the unconditional probability of an event by the theorem 
of total probabilities. 

Theorem of Total  Probabilities. Let A, ,   A , , .  . e, A,, be  events  such 
that A i  n Aj  = 0, if i # j 
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A ,  U A , ' . .  U A , = S  

Such  a family of events is called a partition of S .  Then for any 
event A we  have  the following probability: 

P[AI = P[A,lP[AIA,l + P[A,lP[AIA,l +-P[A.lP[AIA.l 

Example 6 .  Suppose messages arrive  at  a  computer from three 
different sources with probabilities 0.2,0.5, and  0.3,  respectively. 
Also the probabilities that messages from sources 1,  2,  or 3 will 
exceed 100 characters in length are 0.2,0.8, and 0.6, respectively. 
What is the probability that  the  next message received will ex- 
ceed 100 characters in length? 

Let A , ,   A , ,  and A ,  be the  events  that  a message is received from 
source 1,  2, or 3,  respectively. Let A be the  event  that  the  next 
message exceeds 100 characters in length. Then, by the  theorem 
of total probabilities, we have  the following computation of the 
probability of A : 

Two events A and B are independent if P[A n B] = P[A] P[B]. 
This definition is equivalent  to  the  requirement  that both P [ B ( A ]  
= P[B] and P[AIB] = P[A]. Two independent  events  have  the 
property  that  neither  event influences the  occurrence of the  other. 

A random  variable X is a real-valued function defined on a  sam- random 
ple space. A capital letter  (such  as X) generally indicates a ran- variable 
dom variable,  and  a small letter  (such as x) indicates  a possible 
value of the random variable. Random  variables are usually clas- 
sified as being either  discrete  or  continuous,  although,  occasion- 
ally a  random variable of interest may be of a mixed type.  Typical 
examples of random  variables  that  occur in an  online  computer 
system are  the following, where 1 ,  2, and 3 are  discrete  and 4 and 
5 are continuous: 

1. Number of inquiries received at  the central  computer during 

2. Number of inquiries received,  but  not  processed by time t .  
3. Number of I/O buffers in use at time t. 
4. Time to process  an inquiry that  arrives  at time t .  
5.  Time interval between the  arrivals of the last  two inquiries. 

the  last  hour. 

A random variable X is discrete if: (a) it assumes only a finite 
number of values,  say x,, x,,. . . X,; or  (b) it assumes  countably 
many values x*, x,, x3. . . . The random  variables 1 ,  2,  and 3 just 
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given are  discrete.  Associated with a  discrete  random variable X 
is its  probability mass function p, which is defined for  each xi in 
the range of X by p ( x i )  = P [ X  = xi]. Here “ X  = xi” is a shorthand 
notation  for  the  event  that is the collection of all points s in the 
same  space S for which X ( s )  = xi. Probability mass  function is 
abbreviated in this  paper as “p.m.f.” 

Example 7. Implicitly defined in Example 4 is a discrete  random 
variable X that  counts  the  number of polls made until the first 
ready terminal is found. X assumes only the values 1, 2,3,  and 4. 
Itsp.m.f.pisdefinedbyp(l)=0.5,p(2)=0.3,p(3)=0.15,and 
p (4) = 0.05. 

A random variable X is said to be continuous if it can  assume all 
the values of some  interval of the  real line, and if there  exists  a 
densityfunctionffor X with the following properties: 

f ( x )  3 0 for all x in the range of X and 

b 
P[a 5 X 5 b] = I a f ( x ) d x  

The probability that X assumes  a value in any interval from a to h 
is the  area under  the  density  curve  over the interval. 

The distribution function F of a random  variable X is defined by 
F (x) = P[X 5 x]. Thus, by extension  the  distribution  function 
of a continuous  random variable X is  expressed as follows: 
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Figure 6 Distribution function for the  exponential random variable with parameter 2 

X 

F (x) = [, f ( f ) d t  

The distribution  function of X as a  discrete  random variable with 
p.m.f. p is given as follows: 

x i 5  

The sum on the right is evaluated  for all the xi  such that xi 5 X. 
Thus, if F is the  distribution  function  for  the  random variable of 
Example 7, then 

F ( O ) = O , F ( l ) = p ( 1 ) = 0 . 5 , F ( 2 . 5 ) = p ( l ) + p ( 2 ) = 0 . 8  

F (3)  = p ( l )  + p ( 2 )  + p ( 3 )  = 0.95 

F ( 5 )  = P ( l )  + p ( 2 )  + p ( 3 )  + p(4) = 1.0 

Example 8. Let X > 0. A random variable X is said to be expo- 
nentialiy distributed with parameter X if X has  a  density  function 
fdefined as follows: 

Such a random variable also  has a distribution  function F de- 
fined as follows: 

(" i f x <  0 

1 - i fx  s 0 
F (x) = 

Figure 5 shows  the  density function for  an exponentially distrib- 
uted random variable with parameter X = 2. Figure 6 shows  its 
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distribution  function. To calculate  the probability that  this  ran- 
dom variable assumes  a value between I and 3 ,  find the  area 
under  the  curve in Figure 5 between x = 1 and x = 3 by using the 
following relationship: 

P [ I Z X Z   3 ] = P [ X Z   3 ] - P [ X 5   l ] = F ( 3 ) " F ( l )  

= 1 "e - ( 1  -e- ' )  

= e - e-6 = 0.135335 - 0.002479 = 0.132856 

-6 

-2 

Two random  variables X and Y are independent, if, for  any a ,  b ,  
c, d, the following conditions prevail: 

P [ a 5  X 5  hand c 5  Y I  d]  = P [ u 5  X I  b ] P [ c I  Y 5  d]  

This means  that, if X and Y are  discrete,  then P [ X = x  and Y = y ]  
= p,(x)p,(y) , where px is the p.m.f. of X and pu is the p.m.f. of Y .  
If X and Y are  continuous,  the probabilities of X and Y are com- 
puted as follows: 

P [ u  5 X 5 b and c 5  Y 5 dl = j i 'S , (x)dx ];f,(y)dy 
U 

Functions of random  variables 

Some  parameters of random  variables are important in summariz- 
ing the  properties of that variable in a way that  makes it easy to 
understand how to use it to make probability estimates. Let 
m ( X )  be a function of a  random variable X such as 2X, X' etc. 
Then  the expected  value E [rn ( X )  ] where X is a  discrete  random 
variable is defined as 

E [ m ( x ) l  = m ( x , ) p ( x i )  = m ( x , ) p ( x , )  + m ( x , ) p ( x , )  -+-. . . 

If X is a  continuous  random  variable,  the  expected value is de- 
fined as 

i 

"CO 

The two  most  important  parameters used to describe  a  random 
variable are  the mean (or expected  value) p = E [ X ]  , and the 
standard  deviation cr, where CT" is the variance of X defined by 

a' = v a r [ x ]  = E [ X  - p) ' ] .  

The sequence of moments of X defined by E [ X k ] ,  where k = I ,  
2 ,  3 ,  . . .. is sometimes of interest. The first moment is the ex- 
pected  value  or mean. From  the definition, we see  that, if X is 
discrete,  then  for  each k = 1 ,2 ,3  ,. . . 
E [  X k ]  = Xlkp((x,) + x,"p(x,) + . . . + x;&) + . . . 
and, if X is continuous, then 
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It can be shown  that, if all the  moments for X  exist,  they uniquely 
determine X. That is if X and Y have  the  same  sequence of  mo- 
ments, then X =  Y. 

Example 9. For Example 7, the mean or expected value of X is 
computed as follows: 

p = px = E [X] = Zxip (x i )  

= 1 X 0.5 + 2 X 0.3 + 3 X 0.15 + 4 X 0.05 = 1.75 

and  the variance and standard  deviation of X are computed as 
follows: 

(+' = u i  = v a r [ ~ ]  = Z(xi - p) 'p(x i )  

= (1  - 1.75)' X 0.5 + (2 - 1.75)' X 0.30 

+ (3  - 1.75)' X 0.15 + (4 - 1.75)' 

X 0.05 = 0.7875 

so that (+= Var[X]i = 0.8874. 

This example can be generalized. Consider  a communication 
line with m terminals attached of which n are  ready to transmit. 
Let X  be  the  number of polls made until the first terminal that 
is ready is found. Then X can  assume only the values i = 1 , 2 ,  3,  
* . . , m - n + l  with 

E [  X ]  and  Var[ X] can  then be calculated by the  formulas 

p = E [ X l =  i p ( i )  
m-n+l 

i = l  

A vector P, whose  components are  the probabilities p ( i )  , i = 1, 
2; . e, m - n + 1 ,  can be  generated by the APL statement 

P+( ( N - l ) ! M - - t M - N - I ) + N ! M  

The vector X composed of all values assumed by the random  var- 
iable X ,  is produced by 

X+IM-N-1 
The mean and  variance of X can  then be calculated by the 
formulas 

EX++/PxX 
and 
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VARX++/PX (X-EX)*2 

Consider an installation consisting of 20  terminals with 7  ready 
to transmit. Then  the mean and  the  variance from the formulas 
just given are  the following. 

EX = 2.625 

VarX = 3.17708333 

Hence,  the expected  value of X is p = 2.625 with standard  de- 
viation 

(T = [VarXIt = 1.82145775 

The mean value p of a random variable X can be thought of as 
a typical or average  value of X .  The standard  deviation is a mea- 
sure of how typical this value is. That is, u has  the  same  units 
as p and measures  the  tendency of the values of X to  cluster 
close to p. Chebychev’s  inequality, to be discussed  later in this 
paper, brings this point out more clearly. 

Listed in the following, are properties MI - M4 of the  mean, 
and  properties  V 1 - V4 of the  variance  for  later  reference.  X  and 
Y are  assumed to be arbitrary  random  variables  (except  for the 
requirements  stated  below)  and c is an  arbitrary  constant. 

M 1: E[c] = c (The expectation of a  constant  random variable 
is the value of the  constant.) 

M2: E [  c X ]  = cE [X] 

M3: E[X + Y] = E[X] + E [ Y] (X and Y need not  be indepen- 
dent.) 

M4: E[g(X)h(Y)] = E[g(X)]E[h(Y)] i fX and Yare indepen- 
dent 

V1: Var[c] = 0  

~ 2 :   ~ a r [  ex] = c’var [X] 

V3: Var[X + Y] = Var[X] + Var[Y] if X and Y are indepen- 
dent 

V4: Var  [X] = E [Xz] - (E [X] ) 

Bernoulli Several  important  discrete  random  variables are derived from 
random the  concept of a Bernoulli sequence of trials. A Bernoulli trial 
variable or experiment is one in which there  are only two possible out- 

comes, called “success”  or “failure” with respective probabili- 
ties P and Q, where P + Q = 1. A sequence of such trials is a 
Bernoulli sequence if the probability of success  or failure is con- 
stant from trial to trial, A Bernoulli  random variable is thus  one 
that assumes only two values: 1 (for  success) with probability 
P and 0 (for  failure) with probability Q, where Q = 1 - P .  
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Suppose a Bernoulli trial with probability P of success is repeated binomial 
exactly n times. The random variable X, which counts  the num- random 
ber of successes in the n trials is called a binomial  random vuri- variable 
able with parameters n and P. It can be shown  that E [ X ]  = nP 
and  Var[X] = nQP. The random variable X can  assume only the 
values 0, 1 ,  2, .  . ., n. The p.m.f. p of a binomial random variable 
X is expressed as follows: 

where 

k = 0, l;.., n 

Suppose  a  sequence of Bernoulli trials is continued until the first geometric 
success is recorded. The random variable X, which counts  the random 
number of failures preceding the first success, is called a geomet- variable 
ric random  variable with parameter P. It can be shown that  the 
p.m.f. p of a geometric  random  variable,  the  expected  value,  and 
the variance  can be expressed as follows: 

P ( k )  = P[X = k]  = (1 - P ) k P  = Q”P 

where 

k = 0 ,  1,  2, 3 ; . . ,  

and 

E [ X ]  = p ,  Var[X] =- Q Q 
p“ 

X is a Poisson random vuriuble with parameter A > 0, if P[X = Poisson 
k ]  = e-’ hk/k!, for k = 0, 1, 2 ,  3 , .  . ., and  X  assumes no other random 
values. variable 

For a Poisson random variable 

E[X] = Var[X] = X 

The Poisson random variable is frequently used in queueing 
theory  and many other  areas of applied probability theory.  Such 
diverse  phenomena as  the  number of raisins per cubic inch of 
raisin bread;  the  number of typographical errors per page  of a 
book;  the  number of customers  entering  a bank during the noon 
hour;  the  number of inquiries per minutes in an on-line computer 
system; or the number of seeks per second on a disk drive may 
be  described by a Poisson random  variable. 

The information on  the  discrete  random  variables  we  have  dis- 
cussed is summarized in Table 1. 
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Table 1 Facts about discrete random variables discussed in  this paper 

Random  Probabili ty  Mass  Mean  Variance 
Variable  Parnmeters  Function p ( . )  E [ X ]  d = E [ X 2 ]  - E 2 [ X ]  

Bernoulli 0 5  P 5  1 p(1)  = P  P  PQ 

Binomial n = 1 ,  2,. . . p ( k )  = (;)F*Qn-‘  nP  nPQ 

k = 0 ,  1 ; . . , n  

p ( O ) = Q = l - P  

0 5 P 5 1  

Geometric 0 5 P 5 1 p ( k )  = Q’P Q Q 
P  P2 
- 

k = 0 ,  I ,  2;.. 
- 

Poisson A > 0 p ( k )  = e- A x k e  

k! ’ 
k = 0 ,  1, 2,” .  

Example 10. There is a  master file of 120,000 records  stored as 
a sequential file on a disk pack in blocks of six records  each.  Each 
day  the  master file  is run  against a transaction file, and approxi- 
mately five percent of the master  records are updated. The rec- 
ords  to  be updated are assumed  to be distributed uniformly over 
the  master file. An  entire block of records on the disk pack must 
be  updated if any  records in a block have to be updated.  Approx- 
imately how many blocks must be updated? 

Let X be the  random variable that  counts  the  number of records 
in a block that  are  to be updated. Thus X can  assume only the 
values 0, 1, 2, 3, 4, 5 ,  and 6. It is reasonable  to  assume  that X 
has a binomial distribution with parameters n = 6 and P = 0.05. 
(A Bernoulli trial consists of checking a record to determine 
whether it must be updated,  that  is,  to  determine  whether it is 
listed in the  transaction  file.)  A given block must be updated if 
X 1 1, that is with probability P[X 1 11 = 1 - P[X = 03. Hence 
the probability that  any given block must  be  updated  is 

1 - b(0;  6, 0.05) = 1 - (0.95)6 = 1 - 0.735 = 0.265 

and the approximate  number of blocks  that  must be updated is 
20,000 X 0.265 = 5,300. 

law of The law of large  numbers was used in making the  previous  cal- 
large culation. The law of large numbers  states that  as  the number  of 

numbers times an experiment is repeated  increases (i.e., as n increases) 
the  proportion of the  outcomes in which a given event A occurs 
n A /  n approaches P[A] . In symbols the law of large numbers may 
be written as follows: 

lim - = P[A] nA 
n-- n 



In  the  above  example P [ A ]  is assumed  to be approximately 
nA t 20,000, where A is the  event [X 2 1 3 ,  so that 

nA = 20,000 X P[A] = 20,000 X 0.265 = 5300 

Another  approach is to let Y be the random variable that  counts 
the number of blocks that must be updated.  Then Y has  a binomial 
distribution with parameters n = 20,000 and P = 0.265.  Hence 
the  expected  number of blocks to be updated E [  Y ]  is nP = 20,000 
X 0.265 = 5300, with standard  deviation 

cr = d n Q P  = 62.414. 

1 Let 2 be the random variable that  counts  the  number of blocks 
' of the  master file that are read  before  the first block to be updated 

is found. Then Z has  a  geometric  distribution.  Therefore,  the 
probability that  the first block must be  updated is p ( 0 )  = P = 
0.265,  and  the  expected value of 2 is 

Q 0.735 
P - 0.265 
"" - 2.774 

Example 11.  In  a  teleprocessing  network with 20 communica- 
tion lines, it has been found that  the probability that  any given 
line is  in use is 0.6  and  that  the lines operate  independently. What 
is the probability that  ten or more lines are in operation? 

Let X be the  number of lines in operation, and assume  that X has 
a binomial distribution with parameters n = 20 and P = 0.6.  The 
required probability is then 

$ ( y )  (0.6)'; (0.4)20-'; = 0.872479 
k=10 

This is a  tedious calculation to  carry  out manually, but it can be 
accomplished by means of the following APL statement: 

+/(K!20)~(0.6*K)~(0.4*2O-Kt9+111) 

The required probability can also be approximated by using the 
normal distribution, as shown  later in this paper. 

Continuous random  variables 

Summarized in Table 2 are facts  about some of the  most common uniform 
theoretical  continuous  random variables that  are used in com- distribution 
puter  system design and  analysis. If X has a uniform  distribution 
its values are restricted to a finite interval,  and  the probability 
that  the value of X falls in any particular subinterval is the  ratio 
of the length of that  subinterval to  the length of the whole inter- 
val. Thus, if X is uniformly distributed on the interval. 10 to 20, 
then  the probability that X lies between 15 and  20 is 5 /  10 = 0.5. 
Also,byTable2,E[X]=15andVar[X]=102+12=8.33. 
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Table 2 Facts about continuous random  variables discussed in this paper 

Name  Parameters  Density  function  Mean  Variance  Distribution  function 
p = E [ X l  d =  E [ Y ]  -.,!?[X] F ( x )  = P [ X Z  x] 

Uniform over a and b real  if a < x < b __ I a + b  

interval a to b with a < b 2 

0 otherwise 

Exponential A > 0 Ae-At , If . t 2 0, - 
1 
x 0 otherwise 

Erlang-k k =  1 ,  2, 3 . ' .  
(hk) (hkt)""e-"t 

(k - l ) !  
h > O  i f t 2 0  - h 

1 

0 otherwise 

normal 
distribution 

The normal distribution is the  most widely used distribution in 
applied probability theory.  This is true  not only because many 
useful random variables are approximately normally distributed, 
but  also  because  the normal distribution can  sometimes be used 
to  approximate Poisson and binomial probabilities. 

The normal distribution with a mean of 0 and  a  standard  deviation 
of 1 is called the standard normal distribution. A random vari- 
able X ,  normally distributed with mean ~ l .  and  standard  devia- 
tion u is indicated by writing " X  is N ( p ,  o?) ." The standard  nor- 
mal distribution is the only normal distribution  that need be tabu- 
lated because of the  remarkable  fact  that if X is N ( p ,  d) then 
the  random variable 2 defined by the following expression: 

has  a  standard normal distribution,  that  is, 2 is N ( 0 ,  1 ) .  

Values of Z that  correspond  to values of X are called z-values. 
Figure 7 shows  the  density  function  for  the  standard normal dis- 
tribution. Values of the  standard normal distribution  function  can 
be  calculated from data given in Table 4 and by formula 26.2.17 
in Reference 1.  

Example 12. Suppose  that it has  been found that  the  response 
time of an on-line inquiry system  has  approximately a normal 
distribution with a mean of 1.5 seconds  and  standard  deviation 
of 250 milliseconds. What is the probability that  the  response 
time for an inquiry will not  exceed 1.8 seconds? 
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Figure 7 Density function for  the  standard  normal  distribution f(x) l / 6 e - g / z  

x 0.4 - 

O.? 

0.2 

0.1 

0.0 

The Z-value  corresponding to 1.8 seconds is ( 1.8 - 1.5 ) / 0 . 2 5  = 
1.2. The required probability is the probability that Z 5 1.2 has 
been calculated by Reference 1 or obtained from Table 4 as 
0.88493. 

The exponential  distribution is especially important  for queueing 
theory  because of its Markov or “memoryless”  property. (The 
exponential  distribution is illustrated in Example 8.) Suppose 
X is an exponentially distributed  random variable that  measures 
the time between successive  message  arrivals  to a message 
switching system,  and t time units  have passed since  the  last 
message arrived.  The Markov  property of X is as follows: The 
probability that more than h additional time units will pass  before 
the  next message arrives is exactly  the  same as  the probability 
that  more  than h time units will have passed before the  next 
message  arrives, given that  a message has just arrived. That is, 
the  system  “forgets”’that t time units  have  passed  since  the  last 
message arrived. Symbolically, the  Markov  property is expressed 
as follows: 

P[X > t + hlX > t ]  = P[X > h ]  

The Erlang-k  distribution is important  for queueing theory. The 
Erlang- 1 distribution  coincides with the  exponential  distribution. 
In  Figure 8 we show  the Erlang-k density  function  for k = I ,  2, 
10, and a. When k = a the  random variable is constant,  since 
(T = 0. The mean and  the  variance of an Erlang-k random variable 
are related by the  equation 

E [XI2 Var [ X ]  = - k 
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Figure 8 Density function for  Erlang  distributed  random  variables  with averagevalue 1 

0 5  

Example 13.  The time between  the  arrival of any  two  consecu- 
tive inquiries in an on-line system  has been found to  have  an  Er- 
lang distribution of order 5 with average value of 50 milliseconds. 
What is the probability that  the  time  interval  between  the  next 
two  arrivals  does  not  exceed 75 milliseconds? What is the  prob- 
ability that  the time interval  does not exceed 50 milliseconds? 

Let X be  the  random variable. Then E [ X ]  = 0.05 sec so that 
A = 1/0.05. Hence  the probability that X does  not  exceed  75 
milliseconds is given by F,(0.075) which by Table 2 has the 
value 

Similarly, the probability that  the value of X does  not  exceed 50 
milliseconds is 

4 5.i 
1 - e-5 x T= 0.5595 

j = o  J . 

These calculations  can also be  made by using the APL statement 

1 - ( * - Z ) X + / (   ( Z t L x K x X ) * U ) ~ ! U t l + t K  

and  executing it with the values ofA=L, k=K,  and x=X. 

342 ALLEN IBM SYST J 



Combining random  variables 

Suppose a random variable is the sum of n  independent  random 
variables,  that is, t = t ,  + t ,  +. . . + t,. Then by properties M3 and 
V3 previously listed,  the  expected  value  and  variance of t are 
given as follows: 

E[t] = E[tl]  + E[t,] +. * . + E[t,] 

and 

Var[t] = Var[t,] + Var[t,] +. + Var[t,]. 

Now  suppose  that ten different types of inquiries  arrive at  the 
computer,  each with a different length distribution. The method 
for calculating the mean and  the  standard  deviation of the  mes- 
sage length of all messages arriving at  the  computer is given by 
the  Combination  Theorem. 

Combination  Theorem. Suppose  the  random  variable Z assumes 
the  value of the  random variable X ,  or X ,  or . . . or X ,  with the 
respective probabilities P,, P,, P, . . . or P,. Then  the moments 
and  variance of 2 are calculated as follows: 

E [Zk] = PIEIXlk] + P,E[X,"] +. . . + P,E[Xnk] 

fork = 1, 2, 3; * ., 
and 

v a r [ ~ ]  = E[z'] - ( E [ z ]  ), 

Note  that  the  theorem  does  not  say  that 

Var[Z] = P,Var[X,] +- . * + P,Var[X,] 

This formula is not valid. 

Example 14. Ten different types of messages arrive at a central 
computer.  The fraction of each  type,  their  means  and  standard 
deviations of message length in bytes,  are  shown in Table 3. Find 
the mean and  the  standard  deviation of the message length of the 
mix  of all messages that  arrive at  the computer. 

The expected value E[Z] is calculated by the formula E [ Z ]  = 
Pi E[Xi] = 164.25 bytes. Also calculate  the E [X,"], fori = 1, 

2, .  10, by using the formula E[Xf] = Var[Xi] + (E[X,]),  to 
,, obtain the respective values 10,100;  14,544;  40,400;  5,650; 

90,625;  27,200;  130,896;  2,516;  3,609; and 17,000. Calculated 
next is 

E[Z2] = Pi E[X:] = 37,256.875 

Finally, 

crz = {E[Z2] - E2[Z]}+ = 101.38 bytes 

10 

i=l  
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Table 3 Fraction, mean  length,  and  standard  deviation of ten message types 

1 
2 
3 
4 
5 
6 
7 
8 
9 

I O  

Fraction 

Pi 

0.100 
0.050 
0.200 
0.050 
0.025 
0.075 
0.150 
0.050 
0.150 
0.150 

Mean 
length 

I00 
120 
200 

75 
3 00 
160 
3 60 
50 
60 

130 

Standard 
deviation 

10 
12 
20 

5 
25 
40 
36 
4 
3 

10 

These calculations can also be made by using A P L / ~ ~ O .  If Var [Z] 
were calculated using the  incorrect formula 

Var[Z] = P I  Var[X,] + P, Var[X2] +. . . + Pn Var[X,] 

a value of 445.625 would be obtained, although the  correct  value 
is 10,278.8 125. This yields 2 1.1 1 for vz, although the  true value 
is 101.38. 

three Three inequalities are now stated  that  have  both  theoretical  and 
inequalities practical value. 

Markov's  inequality. Let X be a  random variable that  assumes 
only nonnegative values. Then, for  any t > 0, 

P[X 2 t ]  5 E[X] / t  

Chebychev's inequality. Let X be a random  variable with ex- 
pected value p and  standard  deviation (T. Then  for every  number 
k > O  

P[IX - pLJ 1 kv] 5 - 
1 

k 2  

and 

One-sided  inequality. Let  X be a  random variable with mean 
E [ X ]  and  variance  Var [X].  Then 

P[X 2 t ]  5 

where 

Var [ X ]  
v a r [ ~ ]  + ( t  - E [ x ] ) '  

t 3 E[X] 



1 

and 

Var [ X ]  
~ a r [ ~ ]  + ( t  - E[x])' 

P [ X 5  t]  5 

where 

t 5 E[X] 

Example 15. Assume  that you have  constructed a mathematical 
model of a  proposed on-line system  and find that  the mean re- 
sponse time is 400 milliseconds with a  standard  deviation  of 1 16 
milliseconds. The design criterion given is that  90% of all re- 
sponse times must be less  than  750 milliseconds. Will the  pro- 
posed system satisfy this  requirement? 

The solution procedure is to apply in turn  each of the inequalities 
just given. Let X be the  random variable describing the  response 
time in milliseconds. By Markov's inequality 

P[X 1 7 5 0 1  f "-= 0.5333 400 
750 

so that 

P[X i 7501 2 1 - 0.5333 = 0.4667 

Markov's inequality leaves  doubt as  to  whether  the design cri- 
terion is met. 

Since 

P[X L 7501 = P[X - 400 2 3501 5 P[lX - 4001 2 3501 

5 (ST = 0.1098 

by Chebychev's  inequality,  there remains uncertainty that the 
design is good enough. 

By the one-sided inequality 

P[X 1 7501 5 1162 - 1 
- 

1162 + 3502 1 + (350/116)' 
= 0.09897 

From this, the design criterion is seen to be met,  because 

P[X 5 7501 2 1 - 0.09897 = 0.90103 

Note  that  each of the inequalities (Markov,  Chebychev, and one- 
sided) is sharp,  that  is, they cannot be improved without  strength- 
ening the  hypotheses.  However, if the  actual probability distri- 
bution is known, the probabilities involved may differ consider- 
ably from the limiting values given by the inequalities. For ex- 
ample, if X has a normal distribution 
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P[ IX - pi 5 20-1 = 0.9545 

although Chebychev’s inequality yields only that 

P[IX - /AI I 20-1 1.0.75 

There  are two  approximation  theorems  that are sometimes help- 
ful in calculating binomial probabilities. 

Poisson Let X be a binomial random variable with parameters n and P. 
approximation If P is small and n is large, P [ X  = k]  is approximately 

where 

k = 0, 1 ,  2 , * * . ,  n 

This  approximation is reasonably  accurate if n 2 100 and P 
5 0.05. 

Example 16. A computer installation has  a library of 100 sub- 
routines.  Each week - on  the  average  -unknown  errors (bugs) 
are discovered  and  corrected in two of the  subroutines. (It is 
widely believed that, no matter how many bugs are corrected in 
any large program, roughly the  same  number of new bugs appear 
in each fixed time  interval.) Assuming that  the  number of sub- 
routines  per week with newly discovered  and  corrected bugs has 
a binomial distribution,  use  the Poisson Approximation  Theorem 
to  calculate  the probability that  errors will be found in exactly 
0, 1 ,2 ,  or 3 subroutines  next  week. 

The Poisson  approximation yields the following P [ X  = k ]  values: 
0.13534, 0.27067,  0.27067, and 0.18045, The correct values can 
be calculated by the following APL statement: 

(K!100)~(0.02*~)~0.98*100-K 

Executed  for k = 0, I ,  2, 3,  the  correct values of P[X = k]  are 
0.13262,0.27065,0.27341, and 0.18228. 

normal Let X be a binomial random variable with parameters n and P. 
approximation Then, if a and b are integers, it is approximately  true  that 

theorem 
P [ a I X i b ] = @  a - n P - d  

where @ is the  distribution  function  for  the  standard normal dis- 
tribution,  and P + Q =, I .  

The normal approximation  theorem gives reasonably  accurate 
results  when  nPQ 1 10. 
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.oo 

0 . 1  0 . 5 3 9 8 3  
0.0 0 . 5 0 0 0 0  

0.2 0 . 5 7 9 2 6  
0.3 0 . 6 1 7 9 1  
0.4 0 . 6 5 5 4 2  
0.5 0 . 6 9 1 9 6  
0.6 0 . 7 7 5 7 5  
0.7 0 . 7 5 8 0 4  

0.9 0 . 8 1 5 9 4  
1.0 0 . 8 4 1 3 4  
1.1 0 . 8 6 4 3 3  
1.2 0 . 8 8 4 9 3  
1.3 0 . 9 0 3 2 0  
1.4 0 . 9 1 9 2 4  
1 . 5  0 . 9 3 3 1 9  
1 .6  0 . 9 4 5 2 0  
1.7 0 . 9 5 5 4 3  
1.8 0 . 9 6 4 0 7  
1.9 0 . 9 7 1 2 8  
2.0 0 . 9 7 7 2 5  
2.1 0 . 9 8 2 1 4  
2.2 0 . 9 8 6 1 0  
2.3 0 . 9 8 9 2 8  

1 
~ 0.8 0 . 7 8 8 1 4  

2.4 0 . 9 9 1 8 0  
2.5 0 . 9 9 3 7 9  
2,6 0 . 9 9 5 3 4  

2.8 0 . 9 9 7 4 4  
2.7 0 . 9 9 6 5 3  

2.9 0 . 9 9 8 1 3  
3.0 0 . 9 9 8 6 5  
3.1 0 . 9 9 9 0 3  
3.2 0 , 9 9 9 3 1  
3.3 0 . 9 9 9 5 2  
3.4 0 . 9 9 9 6 6  
3.5 0 . 9 9 9 7 7  
3.6 0 . 9 9 9 8 4  
3.7 0 . 9 9 9 8 9  
3.8 0 . 9 9 9 9 3  

.01 .02 
0 . 5 0 3 9 9  0 , 5 0 7 9 8  
0 . 5 4 3 8 0  0 . 5 4 7 7 6  
0 . 5 8 3 1 7  0 . 5 8 7 0 6  
0 . 6 2 1 7 2  0 , 6 2 5 5 2  
0 . 6 5 9 1 0  0 . 6 6 2 7 6  
0 . 6 9 4 9 7  0 , 6 9 8 4 7  
0 . 7 2 9 0 7  0 . 7 3 2 3 7  
0 . 7 6 1 1 5  0 . 7 6 4 2 4  
0 . 7 9 1 0 3  0 . 7 9 3 8 9  
0 . 8 1 8 5 9  0 . 8 2 1 2 1  
0 . 8 4 3 7 5  0 . 8 4 6 1 4  
0 . 8 6 6 5 0  0 . 8 6 8 6 4  
0 . 8 8 6 8 6  0 . 8 8 8 7 7  

0 . 9 2 0 7 3  0 . 9 2 2 2 0  
0 . 9 0 4 9 0  0 . 9 0 6 5 8  

0 . 9 3 4 4 8  0 . 9 3 5 7 4  
0 . 9 4 6 3 0  0 . 9 4 7 3 8  
0 . 9 5 6 3 7  0 . 9 5 7 2 8  
0 . 9 6 4 8 5  0 . 9 6 5 6 2  
0 . 9 7 1 9 3  0 . 9 7 2 5 7  
0 . 9 7 7 7 8  0 . 9 7 8 3 1  
0 . 9 8 2 5 7  0 . 9 8 3 0 0  
0 . 9 8 6 4 5  0 . 9 8 6 7 9  
0 . 9 8 9 5 6  0 . 9 8 9 8 3  
0 . 9 9 2 0 2  0 . 9 9 2 2 4  
0 . 9 9 3 9 6  0 . 9 9 4 1 3  
0 . 9 9 5 4 7  0 . 9 9 5 6 0  
0 . 9 9 6 6 4  0 . 9 9 6 7 4  
0 . 9 9 7 5 2  0 . 9 9 7 6 0  
0 . 9 9 8 1 9  0 . 9 9 8 2 5  
0 . 9 9 8 6 9  0 . 9 9 8 7 4  
0 . 9 9 9 0 6  0 . 9 9 9 1 0  
0 . 9 9 9 3 4  0 . 9 9 9 3 6  
0 . 9 9 9 5 3  0 . 9 9 9 5 5  
0 . 9 9 9 6 8  0 . 9 9 9 6 9  
0 . 9 9 9 7 8  0 . 9 9 9 7 8  
0 . 9 9 9 8 5  0 . 9 9 9 8 5  
0 . 9 9 9 9 0  0 . 9 9 9 9 0  
0 . 9 9 9 9 3  0 . 9 9 9 9 3  

.03 
0 . 5 1   1 9 7  
0 . 5 5 1 7 2  
0 . 5 9 0 9 5  
0 . 6 2 9 3 0  
0 . 6 6 6 4 0  
0 . 7 0 1 9 4  
0 . 7 3 5 6 5  
0 . 7 6 7 3 0  
0 . 7 9 6 7 3  
0 . 8 2 3 8 1  

0 . 8 7 0 7 6  
0 . 8 4 8 4 9  

0 . 8 9 0 6 5  
0 . 9 0 8 2 4  
0 . 9 2 3 6 4  
0 . 9 3 6 9 9  
0 . 9 4 8 4 5  
0 . 9 5 8 1 8  
0 . 9 6 6 3 8  
0 . 9 7 3 2 0  
0 . 9 7 8 8 2  
0 . 9 8 3 4 1  
0 . 9 8 7 1 3  
0 . 9 9 0 1 0  
0 . 9 9 2 4 5  
0 . 9 9 4 3 0  
0 . 9 9 5 7 3  
0 . 9 9 6 8 3  

0 . 9 9 8 3 1  

0 . 9 9 9 1 3  
0 . 9 9 8 7 8  

0 . 9 9 9 3 8  
0 . 9 9 9 5 7  
0 . 9 9 9 7 0  
0 . 9 9 9 7 9  
0 . 9 9 9 8 6  
0 . 9 9 9 9 0  
0 . 9 9 9 9 4  

0 . 9 9 7 6 7  

.04 

0 . 5 5 5 6 7  
0 . 5 1 5 9 5  

0 . 5 9 4 8 3  
0 . 6 3 3 0 7  
0 . 6 7 0 0 3  
0 . 7 0 5 4 0  
0 . 7 3 8 9 1  
0 . 7 7 0 3 5  
0 . 7 9 9 5 5  
0 . 8 2 6 3 9  
0 . 8 5 0 8 3  
0 . 8 7 7 8 6  
0 . 8 9 2 5 1  
0 , 9 0 9 8 8  
0 . 9 2 5 0 7  
0 . 9 3 8 2 2  

0 . 9 5 9 0 7  
0 . 9 4 9 5 0  

0 . 9 6 7 1 2  
0 . 9 7 3 8 1  
0 . 9 7 9 3 2  
0 . 9 8 3 8 2  
0 . 9 8 7 4 5  
0 . 9 9 0 3 6  
0 . 9 9 2 6 6  
0 . 9 9 4 4 6  
0 . 9 9 5 8 5  
0 . 9 9 6 9 3  
0 . 9 9 7 7 4  
0 . 9 9 8 3 6  
0 . 9 9 8 8 2  
0 . 9 9 9 1 6  
0 . 9 9 9 4 0  
0 . 9 9 9 5 8  
0 . 9 9 9 7 1  
0 . 9 9 9 8 0  
0 . 9 9 9 8 6  
0 . 9 9 9 9 1  
0 . 9 9 9 9 4  

-05 .06 
0 . 5 1 9 9 4  0 . 5 2 3 9 2  
0 . 5 5 9 6 2  0 . 5 6 3 5 6  

0 . 6 3 6 8 3  0 . 6 4 0 5 8  
0 . 6 7 3 6 4  0 . 6 7 7 2 4  
0 . 7 0 8 8 4  0 . 7 2 2 2 6  
0 . 7 4 2 1 5  0 . 7 4 5 3 7  
0 . 7 7 3 3 7  0 . 7 7 6 3 7  
0 . 8 0 2 3 4  0 . 8 0 5 1 1  
0 . 8 2 8 9 4  0 . 8 3 1 4 7  
0 . 8 5 3 1 4  0 . 8 5 5 4 3  

0 . 8 9 4 3 5  0 . 8 9 6 1 7  
0 . 8 7 4 9 3  0 . 8 7 6 9 8  

0 . 9 1 1 4 9  0 . 9 1 3 0 8  
0 . 9 2 6 4 7  0 . 9 2 7 8 5  
0 . 9 3 9 4 3  0 . 9 4 0 6 2  
0 . 9 5 0 5 3  0 . 9 5 1 5 4  
0 . 9 5 9 9 4  0 . 9 6 0 8 0  
0 . 9 6 7 8 4  0 . 9 6 8 5 6  
0 . 9 7 4 4 1  0 . 9 7 5 0 0  
0 . 9 7 9 8 2  0 . 9 8 0 3 0  
0 . 9 8 4 2 2  0 . 9 8 4 6 1  
0 . 9 8 7 7 8  0 . 9 8 8 0 9  
0 . 9 9 0 6 1  0 . 9 9 0 8 6  
0 . 9 9 2 8 6  0 . 9 9 3 0 5  

0 . 5 9 8 7 1   0 . 6 0 2 5 7  

0 .99461  0 .991177 
0 . 9 9 5 9 8  0 . 9 9 6 0 9  
0 . 9 9 7 0 2  0 . 9 9 7 1 1  
0 . 9 9 7 8 1  0 . 9 9 7 8 8  
0 . 9 9 8 4 1  0 . 9 9 8 4 6  
0 . 9 9 8 8 6  0 . 9 9 8 8 9  
0 . 9 9 9 1 8  0 . 9 9 9 2 1  
0 . 9 9 9 4 2  0 . 9 9 9 4 4  
0 . 9 9 9 6 0  0 . 9 9 9 6 1  
0 . 9 9 9 7 2  0 . 9 9 9 7 3  
0 , 9 9 9 8 1  0 . 9 9 9 8 1  
0 . 9 9 9 8 7  0 . 9 9 9 8 7  
0 . 9 9 9 9 1  0 . 9 9 9 9 2  
0 . 9 9 9 9 4  0 . 9 9 9 9 4  

-07 
0 .  5 2 7 9 0  
0 . 5 6 7 4 9  
0 . 6 0 6 4 2  
0 . 6 4 4 3 1  
0 . 6 8 0 8 2  
0 . 7 1 5 6 6  
0 . 7 4 8 5 7  
0 . 7 7 9 3 5  
0 . 8 0 7 8 5  
0 . 8 3 3 9 8  
0 . 8 5 7 6 9  
0 . 8 7 9 0 0  
0 . 8 9 7 9 6  
0 . 9 1 4 6 6  
0 . 9 2 9 2 2  
0 . 9 4 1 7 9  
0 . 9 5 2 5 4  
0 . 9 6 1 6 4  
0 . 9 6 9 2 6  
0 . 9 7 5 5 8  
0 . 9 8 0 7 7  
0 . 9 8 5 0 0  
0 . 9 8 8 4 0  
0 . 9 9 1 1 1  
0 . 9 9 3 2 4  
0 . 9 9 4 9 2  
0 . 9 9 6 2 1  
0 . 9 9 7 2 0  
0 . 9 9 7 9 5  
0 . 9 9 8 5 1  

0 . 9 9 9 2 4  
0 . 9 9 8 9 3  

0 . 9 9 9 4 6  
0 . 9 9 9 6 2  
0 . 9 9 9 7 4  
0 . 9 9 9 8 2  
0 . 9 9 9 8 8  
0 . 9 9 9 9 2  
0 . 9 9 9 9 5  

.08 .09 
0 . 5 3 1 8 8  0 . 5 3 5 8 6  
0 . 5 7 1 4 2  0 . 5 7 5 3 5  
0 . 6 1 0 2 6  0.611!09 
0 . 6 4 8 0 3  0 . 6 5 1 7 3  
0 . 6 8 4 3 9  0 . 6 8 7 9 3  
0 . 7 1 9 0 4  0 . 7 2 2 4 0  
0 . 7 5 1 7 5  0 . 7 5 4 9 0  
0 . 7 8 2 3 0  0 . 7 8 5 2 4  
0 . 8 1 0 5 7  0 . 8 1 3 2 7  
0 . 8 3 6 4 6  0 . 8 3 8 9 1  
0 . 8 5 9 9 3  0 . 8 6 2 1 4  

0 . 8 9 9 7 3  0 . 9 0 1 4 7  
0 . 8 8 1 0 0  0 . 8 8 2 9 8  

0 . 9 1   6 2 1  0 . 9 1 7 7 4  
0 . 9 3 0 5 6  0 . 9 3 1 0 9  
0 . 9 4 2 9 5  0 . 9 4 4 0 8  
0 . 9 5 3 5 2  0 . 9 5 4 4 9  
0 . 9 6 2 4 6  0 , 9 6 3 2 7  
0 . 9 6 9 9 5  0 , 9 7 0 6 2  
0 . 9 7 6 1 5  0 . 9 7 6 7 0  
0 . 9 8 1 2 4  0 . 9 8 1 6 9  
0 . 9 8 5 3 7  0 . 9 8 5 7 4  
0 . 9 8 8 7 0  0 . 9 8 8 9 9  
0 . 9 9 1 3 4  0 . 9 9 1 5 8  

0 . 9 9 5 0 6  0 . 9 9 5 2 0  
0 . 9 9 6 3 2  0 . 9 9 6 4 3  
0 . 9 9 7 2 8  0 , 9 9 7 3 6  
0 . 9 9 8 0 1  0 . 9 9 8 0 7  
0 . 9 9 8 5 6  0 . 9 9 8 6 1  
0 . 9 9 8 9 6  0 . 9 9 9 0 0  
0 . 9 9 9 2 6  0 . 9 9 9 2 9  
0 . 9 9 9 4 8  0 . 9 9 9 5 0  

0 . 9 9 9 7 5  0 . 9 9 9 7 6  
0 . 9 9 9 6 4  0 . 9 9 9 6 5  

0 . 9 9 9 8 3  0 . 9 9 9 8 3  
0 . 9 9 9 8 8  0 . 9 9 9 8 9  
0 . 9 9 9 9 2  0 , 9 9 9 9 2  
0 . 9 9 9 9 5  0 . 9 9 9 9 5  

0 . 9 9 3 4 3   0 . 9 9 3 6 1  

Example 17. Use the normal approximation  to make the  calcula- 
tion of Example 1 1. 

By the normal approximation  theorem,  the required probability is 

@(20 0.5 ) - .( 10 - <43 12 - 0.5) 

z C J ( 3 . 8 8 )  -@(-1.14) =0.99995- ( 1  -@(1.14)) 

= 0.99995 - ( 1 - 0.87286) = 0.8728 1 

The values of CJ ( 1.14) are obtained from the formula in Refer- 
ence 1 and  Table  4,  and  the identity @(-1 . 14) = 1 - @( 1.14) fol- 
lows from the  symmetry of the normal density  function. 
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Example 18. In Example 10, the average  number of blocks to  be 
updated is 5300. Also, the number of blocks to be updated  has a 
binomial distribution with parameters  n = 20,000 and P = 0.265. 
Use  the Normal  Approximation  Theorem  to  estimate  the prob- 
ability that  between 5200 and 5400 blocks  must  be  updated. 

Since a2 = nPQ = 20,000 X 0.265 X 0.735 = 3,895.5, the  approxi- 
mation should be accurate. If X is the  number of blocks  to be up- 
dated,  the  theorem yields 

P[5200 5 X 5 54001 

= @( 5400 - 5300 + 0.5 
d-3893T 

5200 - 5300 - 0.5 

= @ (  1.61) - Q("1.61) 

= @(  1.61) - (1 - @( 1.61)) 

= 2@( 1.61) - 1 

= 2 X 0.9463 - 1 

= 0.8926. 

The value of @( 1.61) was obtained from Table 4. It may also be 
calculated from Reference 1. The identity cD("l.6  1) = 1 - 
@( 1.6  1) follows from the  symmetry of the normal density  func- 
tion. 

Concluding remarks 

We have  selected  and  presented  aspects of probability theory 
and have  emphasized  their  applications  to  computer  system  de- 
sign and  analysis,  Some general references  for  further reading 
on probability theory are given in the brief bibliographic section 
that follows. 
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