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INTRODUCTION

It is surprising that workload study and fractal geometry
have not been paired before now. Frdctal geometry is well
suited to characterizing what is commonly called “noisy
data.” W orkload data is notoriously noisy, and is usually
subjected to extensive smoothing to make it manageable.
Figure 1 shows a typically noisy plot of workload activity
over time. Activity shown is based on transaction counts
for ordinary insurance industry business activit ies, l ike
requests for customer information or entry of policy data for
a new customer.

Obviously. it is not easy to pick out a pattern that describes
a workload f rom such noisy data.  Smoothing reduces
extraneous roughness, or noise, and reveals an underlying
pattern, but an important question arises: what if the noise
IS the pattern?

This question is important because it challenges the ideal
pursued by convent ional  methods.  Ideal ly ,  smoothing
techniques result in a straight line: a simple object with a
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Figure 1. XY plot of workload
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simple,  non-f ract ional  Eucl idean d imension of  one.  A
jagged, noisy line is more than one dimensional, but less
than two dimensional. It has something in between, which
Mande lb ro t  ( [  MAND77], p p .  14-15) c a l l s  a  f r a c t a l
d imension.  I f  the noise actual ly  is  the pat tern,  then
smoothing techniques iron important characteristics out of
the data.

It is this fractal dimension that leads to the idea that
workload study and fractal geometry are well suited. The
relatively new branch of mathematics which is designed to
deal with fractal dimensions is fractal geometry.

A FRACTAL TOOL

The fractal tool selected for this paper is called resealed
range (R/S) analysis. R/S analysis, developed by Hurst
[HURSSI] to study reservoir capacities, provides a means
of describing centrality and dispersion in a time series with
one statistic. Description of the R/S analysis process is the
main focus here, although attempts have been made at
explaining some of the significance of the statistic.

To ass is t  in  at taching meaning to  the R/S stat is t ic .
conventional workload characteristics have been provided.
These statistics provide a reference point for comparisons
between different approaches.

It should be noted at the outset that although interpretations
of R/S analysis are offered, lack of prior application of
fractal techniques to workload characterization limits the
scope of the interpretations. The conclusion of this paper
con ta i ns  obse rva t i ons  rega rd ing  a l t e rna t i ve  f r ac ta l
a p p r o a c h e s  a n d  R / S  r e l a t e d  r e s u l t s ,  i s s u e s ,  a n d
recommendations.

All discussion is based on the workload data pictured in
Figure I. This data represents daily totals of transactions
for regular weekdays over approximately five years.
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Figure 2. 3calcd worl\load

TRADITIONAL CHARACTERIZATION

Numerical representation of workload is based on processes
which smooth noise out of the data by which the workload
ix chnracteri/.ed. For the sake of simplicity. this paper deals
with a subset of the rich array of traditional characterization
tools. Selected characteristics include simple trending via
linear regression. arithmetic mean. and standard deviation
(for a useful overview of’ these technique\ see [ FRIEXXm]).

One other statistical technique figures heavily in this paper.
Comparison of dissimilar magnitudes is useful here. The
d e s c r i p t i o n  o f  m a g n i t u d e s  i s  n o t  b e i n g  q u e s t i o n e d :
dea-iption of variability is. The comparison tool. called
:-scaling, scales the data in relation to its own mean and

standard deviation. The result prcscrves the variability of
the original data. but removes the original magnitudes.
Figure 3 i\ a plot of the real worhload data from Figure I
after :-scaling.

can  be  compared  numer i ca l l y  wh i l e  r espec t i ng  t he
confidentiality of the specific volumes in the original data.
No matter what the original values are, the :-scaled data
have a standard deviation of I and a mean of zero. Only
people knowing the standard deviation and mean of the
original data can reconstruct it from the I-scaled version.

Traditional characteristics of the :-scaled data appear in
Figures 3 and 4. In Figure 3 the heavy. solid line shows the
distribution of the data around the mean (which lies along
the regression line in Figure 4). The shape of the plot i\
reasonably close to the classic “bell curve” of a normal
distribution, which is shown as a light. dotted line. This
suggests that the mean is fairly representative of the data.

Differences between the normal distribution and the data,
howeve r ,  l ead  t o  some  conce rns .  I n  a t r ue  no rma l
distribution over 99.73% of the values are within three
standard deviations of the mean. Figure 3 shows that the
data has a higher than normal percentage of values less than
three standard deviations below the mean. Lower than
expected values give cause to examine events at the affected
times to explain the exceptions.

In Figure 4 a regression line has been drawn for the l-scaled
d ;I t ;I T h e  l i n e  h a s  a s l o p e  o f  7ero. a n d  i s  j u s t
distinguishable along the mean at /em on the vertical axis.
The slope of lcro indicate5 that the real workload with
which we began in Figure I has not changed much in the
time illustrated.

Visual  examinat ion cause\ some skept ic ism about  the
p reced ing  wo rk load  charncteri/ation. I n  s p i t e  o f  t h e
extreme noise in the plot. Figure 3 simply does not look lihe
truly random. normally distributed data.

Figure 5 is ;I plot of the original data scrambled into random
order. This rearranged data does have the appearance
expected from random data. Data pointx appear randomI>.
but uniformI). disper\cd ;tcro\\ the entire time \erics.

Another important side benefit of r-scaling is that result5

rl I

Standard Deviations From Mean

Figure 3. L)islribution of :-~alcd worklond
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It is important to note that, even though Figures 4 and 5 are
visibly different from each other, they are still the same
data. They share the same distribution. mean. and other
vital characteristics. Evidently the preceding workload
characterization. based on such vital characteristics, is not
g iv ing a complete descr ipt ion of  th is  data.  I t  is  not
sufficient to describe the distribution of the data points. It is
also necessary to describe the sequence of those points.

R/S ANALYSIS

K/S analys is provides a means of  account ing for  the
sequence of data points. Understanding [hi\ capability in a
workload characterization context requires background in:
fundamentals of fractal geometry, on which R/S analysis is
built: origins of R/S analysis: and fitt ing R/S analysis to
workload characterization.

FRACTAL FUNDAMENTALS

Basic understanding of fractal\ is built on two key concepts:
fractal dimension and self similarity ([ FEDEXX]). Feder
adds that. “A neat and complete characterization of fractals
is still lacking.” (i/G/.. p. I I ). but these concepts suffice for
a study of workload characteriation.

FRACTAL DIMENSION

Difficulties in grasping fractal dimension usually arise from
c o n f l i c t  w i t h  w i d e l y  a c c e p t e d  a s p e c t s  o f  E u c l i d e a n
~~eometrv. As  i nd i ca ted  p rev i ous l y .  f r ac ta l  geome t r yc
accepts the existence of ob,jects with dimension\ that are not
uhole numbers. This is a major departure from Euclidean
geometry. where objects must consist of all the points
within the boundaries of the object. A one dimensional
ob.ject. a line. consists of ALL the points between the two
end points of the line. A two dimensional ob.ject. like ;I
t r iangle.  cons is t \  o f  ALL the po ints  wi th in  the three
boundary lines of the Figure. A triangle with \ome points
mis\ing i s  something It‘55 than two dirnen\ional. but still
more than one dimensional. It ha\ a fractal dimension.

Noise pat terns.  l ike those in  F igures I and 3. do not
comprise all the points in a two dimensional space. They
are. however. more than one dimensional. They have a
fructal dimension. Thi\ makes it pos\iblc to u\e fractal
geometry to ;l\\e\\ the degree of  fractal-nes\ direct ly,
in\tcad of tr) inp to rationalize it away.

SELF SIMILARITY

Self similarity looks like a term that is \elf evident. In
mathematical term\. it is not ([PEIT93]. p. I61 ). There are
e x c e l l e n t  t e c h n i c a l  e x p l a n a t i o n s  o f  s e l f  s i m i l a r i t y
([ MAND77]. pp. 350.3.5  I : (FEDEXX]. pp. I X4- I Xc)). In
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connect ion wi th work load characterization ;I simplified
definition suffices. An ob.ject exhibits self similarity when
parts  of  that  object  are stat is t ica l ly  or  geometr ica l ly
identical to the entire object.

Stat is t ica l  ident i ty  is  the type of  se l f  s imi lar i ty  which
perta ins to K/S modeling. S imp l y  stated. iden t i t y  i s
established when the results of statistic\ applied to parts ot
an okject under study equal results of statistics applied to
the entire object.

Selection of statistics to use in establishing statistical
i d e n t i t y  i s  a k e y  i s s u e .  T h e  p r e c e d i n g  s e c t i o n  o n
in te rp re t i ng  wo rk l oad  characterization q u e s t i o n s  t h e
suitability of common statistical measures based on normal
s t a n d a r d  d i s t r i b u t i o n s  a n d  i n d e p e n d e n t .  i d e n t i c a l l y
distributed data in a workload context. The problem of
accounting for the sequence of data points is not unique to
work load  characteri/.ation. Difficultie\ a l so  a r i se  i n
cha rac te r i z i ng  t ime  se r i es  i n  a reas  l i ke  hyd ro logy
([ HURSS I]) and economics ([ MAND771, pp. 334-330).
Effort\ to resolve these difficulties have resulted in a new
analytical proce\\ and a new statistic that extends the
usefulness of standard statistics: R/S analysis and the Hurst
exponent.

ORIGINS OF R/S ANALYSIS

T h e  h i s t o r y  o f  R/S ana l ys i s  ij nea t l y  \ummari/ed b y
Schroeder (ISCHROI I). I t  is  bui l t  around the work ot
Harold Edwin Hunt. Hur5t.s work characterizing the long
term behavior of the flow of the Nile. among other thing\.
has had considerable influence in the fields of chao\ theory.
dynamical  system\. and f racta l  geometry (1 MAND771.
(SCHRYI I. (PEITW]). The focus  of Hurst’s work is on the
cumulative effect of the variability in a system, rather than
the moment to moment relationship of the state of ;I system
to a central tendency. Another way of stating this i\ that

-- -’ ~,
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Randomly scrambled workload
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Hurst studied the sum of the variations of system states
from the mean. instead of considering each variation against
others.

The impact of this approach can be demonstrated
graphically using the real workload data. Figure 5 is a
simple XY plot of the scrambled, :-scaled  data over time.
Figure 6 shows this scrambled data also, but as a cumulative
series. The first data point is plotted at the mean. The
second data point is plotted at the algebraic sum of its own
z-scaled value plus the preceding plotted point. The third
data point is. likewise, plotted at the sum of its own value
plus the preceding (second) plotted point. Continuing the
plot in this manner emphasizes the variability of the data.
Figure 7 shows the real workload data in its original order
as a :-scaled  series.

There are two striking differences between Figure 6 and
Figure 7. The most obvious difference is overall range.
The vertical scale of Figure 7 is over six times that of
Figure 6. The other major difference is smoothness. The
line in Figure 7 has a less jagged appearance than that in
Figure 6.

These differences share a common cause. The changes in
Figure 7 tend to occur in the same direction more often than
they do in Figure 6. If one value in Figure 7 is positive and
increasing, the next value is likely to be positive and
increasing, at least more often than is the case in Figure 6.
Fewer changes of direction produce a smoother line.
Successive changes in the same direction add up to greater
range.

Cumulative variability in range is the basis for K/S analysis
([ FEDE881,  chap. 8). By comparing the cumulative
variability of the subsets of a time series to the distribution
of those subsets, R/S analysis provides a single statistic. the
Hurst exponent. which can describe the differences between
the scrambled and unscrambled workload data. The
comparison process and meaning of the Hurst exponent can

0 250 500 750 1000
Day

Figure 6. Cumulative plot of scrambled data

be explained using the workload data as an example and
fitting the model to that data.

FITTING THE MODEL

K/S analysis is a simple but very repetitious process. The
central activities are: accumulating the variations in a subset
of data; finding the range (R) between the highest and
lowest cumulative deviations calculated for the subset:
finding the standard distribution (S) for the subset: and
finding the resealed range (R/S). which is the ratio of the
range of the subset to the standard deviation ([ PETE91 1,
chap. 8). The central activities are carried out for subsets of
the original data ranging in size from greater than one data
point to less than or equal to half the size of the original set.
R/S values of sets with the same size are averaged, thus
yielding one R/S value for each subset size.

Apply ing  th i s  p rocess  to  the  work load  da ta  i s
straightforward. Taking an arbitrary subset size of five time
ordered elements, one R/S value is generated for
observations one through five; six through ten: eleven
through fifteen: and so on through all the data points. Table
I shows values which must be calculated for the first subset
of five values.

These calculations are carried out for approximately 300
groups of five observations each in the workload data. The
resulting R/S values are then averaged. producing a single
R/S value of 2.109 for subgroups containing five
observations.

The whole process is then repeated for larger and larger
subgroups. A single R/S value is produced for each distinct
subgroup size. At the final subgroup size. two, the R/S
value will be the average of about 750  subset R/S values.

Comparing the change in R/S as the number of elements in a
subset increases provides the Hurst exponent. Peters

E
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Figure 7. Cumulative plot of ordered data
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([PETE91  1. p. 70) demonstrates that the Hurst exponent is
related to the ratio of the log of R/S to the log of N. This
means the Hurst exponent can be estimated as the slope of a
regression line for the plot of log(R/S) versus log(N). The
.jagged lines in Figure 8 show a plot of this relationship.
Fitting the elements into a linear equation gives us:

log(R/S) = N + I{ log(N) (1)

where:

RIS = resealed range

N = number of observations

u = a constant

Number Observed
value

Deviation
from the

mean

Cumulative
deviation

I 0.13SY7 .ss lY.56 0.55  1056
2 -0.77x5 0.0373X6 O.SXY4-12
3 -0.02355 0.1Y23.16 O.XXIX7X
4 -1.32701 -1.01 I02 -0.12YlS
5 -0.IX6Xil O.I2Yl36 0.0

Mean -0.3 I SYY Maximum
Minimum

Range
Sample standard deviation

RIS
Observations in subgroup

o.xx I x7x
-0.I2Y I S
I.01 1021

0.37x
2.36220‘4

5

Table 1. R/S calcul:llion for wbgroups  of 5 obwrvution\
H = slope of the plotted “line”

Appropriate regression lines and respective estimated slopes
(Hurst exponents) also appear in Figure 8. The line labeled
“H = .X5” derives from ordered workload data. The line
labeled “H = .49” comes from randomly scrambled data.

The reason for referring to the slopes in equation ( I) as
exponents can be seen by recasting equation ( I ) into:

RIS = u * N” (2)

The value of this recasting is that the resulting Hurst
exponent provides a measure to characterize the differences
in range between Figures 6 and 7. The Hurst exponent can
also characterize the different in range within either Figure
6 or Figure 7 as the number of variations accumulated
grows. This can be demonstrated by deriving the Hurst
exponents for both sets of workload data and applying it to
the display of the cumulative series.

The Hurst exponents in Figure X can be visually validated
with the data in Figure 6. If this exponent characterizes the
expected proportionate change in range as more variation is
accumulated. then the Hurst exponent should determine the
appropriate value to display reduced ranges of data at full
scale. For example, to display half of the data points in
Figure 6 at full scale. the expected vertical range is:

R,, = R,, / X” (3)

where:

4, = expected vertical range

R,, = original vertical range

X = horic.ontal change factor

Using scales f rom Figure 6 and the respect ive Hurst
exponent from Figure 8 yields:

R,, = 32 / 2.49 = 22.8 (3)

This indicates that a vertical range of 22.X will handle 500
consecutive data points from Figure 6. Figure 9 shows this
to be true.

Following the same process for the data in Figure 7. using a
Hurst exponent of .8S, gives a range of I I I. which is
pictured in Figure IO.

A p p l i c a b i l i t y  o f  t h i s  s i n g l e  s t a t i s t i c  t o  a l l  si/es of
consecutive subsets within a time series is significant. It
establishes the statistical identity that classifies the time
series as self similar and fractal. In fact. [MAND771 and

2.5 ,

2 1 H=.85

0 J
0 0.5 1 1.5 2 2.5 3

log(#  of Time Elements in Subset)

Figure 8. R/S plot of ordered and random dataH = Hurst  exponent
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Peters ([ PETE’S1 1, [ PETE941) demonstrate clearly that, in
time series like these, the Hurst exponent is the inverse of
the fructal dimension of each series.

INTERPRETING R/S ANALYSIS IMPLICATIONS OF I,ON(; TERM DEPENDENCE

The hey to interpreting K/S analysis lies in the centrality of
cumulative data to the process. K/S analysis. unlike most
other statistical techniques, generates a statistic for a data
point which is based on all the data preceding that point.
Moving averages and exponential smoothing use some
preceding data points in their processes, but K/S analysis
uses all preceding data points. The unique R/S view of a
t ime  se r i es  enab les  i t  t o  cha rac te r i ze  t ime  o r i en ted
dependence in that series in ways which were not possible
with more traditional techniques.

MEANING OF H

Mandelbrot ([ MAND771, p. 3X6) summarizes the meaning
of the Hurst exponent. H. First, the Hurst exponent, which
is the resultant indicator from R/S analysis, can range
between 0 and I. Midway in that range is a special value,
5. which ind icates min imal  timewise interdependence._

among the data points. It is convenient to think of this
value as a traditionally random, or “SO/SO”. chance that one
data value will depend on another. As the Hurst exponent
approaches I interdependence increases. a characteristic
which is called “persistence.” A persistent time series is
one in which early values tend to have effects on later
value\. causing them to vary in the same direction more
often than ib the case with truly random data. Conversely.
d a t a  w i t h  a H u r s t  e x p o n e n t  b e l o w  .5 i s  c a l l e d
“ant ipers is tent .” Long term dependence between data
points causes them to vary in the opposite direction more
often than randomness would dictate.

The two important factors here are long term dependence

ix

!

a n d  l i k e l y  d i r e c t i o n  o f  c h a n g e .  T h e  f i r s t  f a c t o r  i s
particularly important. It quantifies the common sense idea
that causes of change do not. necessarily, immediately
precede the change.

Understanding the quantification of long term dependence
requ i res some in te rp re ta t i on o f  Mandelbrot’\
summarization. It has been noted that a Hurst exponent of
.S indicates a lack of long term dependence in a time series.
As long as the slope of the R/S regression line is not 3, a
series has long term dependence. Change in the slope of the
R/S regression line approaching 5. then. indicates that long
term dependence is dissipating.

This applies to the actual workload data from Figure 3.
Since the R/S plot for this data, in Figure 8. does not
approach .S within the time pictured. it can be assumed that
long term effects in the workload data last longer than this
time t’rame. On the other hand. the plot for the scrambled
data labeled “H = .49” in Figure 8 shows that timewise
interdependence was destroyed by the scrambling process.

This is interesting in the context of the original workload
data. One example of an inference which can be made i\
that ;I transaction to enter a policy can have an effect on
transact ions entered years (hundreds of  day\)  la ter .
Intuitively. this rings true. Once a policy is in force. there
are certain business activities which must be carried out in
support of that policy. Carrying this a little further. it seems
obvious that a burst of new policies entered in a short time
frame can produce ;I spike of support work that shows up
years later.

SHORT TERM EFFECTS OF PERSISTENCE

Likely direction of change ij the other main value provided
by R/S analysis. This factor also derives t’rom Mandelbrot’

81
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observations on the meaning of the Hurst statistic. The
relationship is very simple. The Hurst statistic provides ;1
rough indicator of the percentage chance that a given data
point will change in the \ame direction as its predecessor.
Here again. it almost \ounds like common sense when
applied to the workload context. If more policies and data
requests come in today than yesterday. it is reasonable to
expect even more tomorrow. Once the load starts to
decrease, it is reasonable to believe that there will be wm
“brea th ing  room,” and that  the load wi l l  cont inue to
decrease, for B while. The turning points are sti l l  pretty
unpredictable, but activity between turning points is not as
random as conventional methods indicate.

ALTERNATIVE
FRACTAL APPROACHES

R/S analysis is investigated in this paper but other equally
well conceived fractal models are available. The search for
these techniques hinges on the status of fractal geometry as
. . . . . the geometry of chaos,” ([PEIT92], p. 70). Searching
for related terms like capacity planning. fractals, chaos. and
dynamical systems, produces abundant evidence of the
p o p u l a r i t y  o f  t h i s  a r e a  i n  b u s i n e s s .  A r t i c l e s  c o v e r
everything from general philosophical considerations in
regard to the Russian economy ([ MELLY3]) to specific
comparisons of chaos and other approaches for financial
modeling ([ NlCH93]). Applications discussed range from
s t o c k  m a r k e t  p r e d i c t i o n s  t o  Organizational ana lys is
(IBAIL9.3). IWARN9.3)).

Interest ingly,  chaos techniques are a lmost  unused in
workload characterization. There are, in fact, only a small
handful of reference\ that are relevant. Some furnish either
too  l i t t l e  de ta i l  (] ERWI99], [PICKXX]) o r  t oo  much
([HUBEXX]) to be useful in direct application to general
workload characterization. The remaining articles tend to
focus on individual components in a workload, like network
queuing (] SMIT94)). disk access (]ERWlX9]),  or cache
performance ([ MCNU93 1).

S h o r t a g e  o f  p r i o r  w o r k  i n  h i g h  l e v e l  w o r k l o a d
characterization has not been a major problem. The wealth
o f  ma te r i a l  ava i l ab le  i n  o the r  d i sc ip l i nes  p rov ides
alternatives. A striking similarity between these works is
something Pickover (] PICK91 ], p. 1,;) calls an extension of
“lateral thinking” which he maintains “...indicates not only
act ion mot ivated by unexpected resul ts ,  but  a lso the
deliberate shift of thinking in new directions to discover
what can be learned.” In other words, it is almost expected
that the study of applying fractal to one field will be built on
app l i ca t i ons  f r om o the r  f i e l ds .  Eve ry  ma jo r  wo rk  on
fractals/chaos theory/dynamical systems draws substance
from many disciplines. Works on economics refer to works
on psychology ([ PETE9 I I), while works 0; psychology

refer to works on computer science ([ABRAYO]). These
authors certainly think laterally.

Lateral  th inking y ie lds several  a l ternat ive analyt ical
techniques. Some involve concepts like bifurcation and
strange attractors ([ROSSY I]. [GOODYO]. (MEDIC)‘.?]).
Explaining such concepts reduces the focus on clarifying
the link between the fractal technique and the workload. By
the same token, there i\ conjidernble appeal in approaches
w h i c h  e m p h a s i z e  m o r e  c o n v e n t i o n a l  t i m e  s e r i e s
characteristics. l ike range and deviation (]BROCY I ].
(PETEYI J. (FEDEXX], ]MAND77]).

The work by Brock, Hsieh, and LeBaron (] BROCY I ]) is
q u i t e  t h o r o u g h .  T h i s  t h o r o u g h n e s s .  u n f o r t u n a t e l y ,
diminishes the value of this work for a beginning approach.
The included proofs and discussions of subjects like the
generalized autoregressive conditional heteroskedasticity
model are well outside the limits of this paper.

R/S analysis has been studied in this paper for several
reasons. One key reason is the clarity with which ] PETEY I ]
presented this approach ;IS applied to an economic time
ser ies.  Another  reason is  the abundance of  re l iab le
references on the technique (] PETEY I ], ] FEDEXX],
[MAND77]. ]PEITY2]). Finally. the basic elements of the
approach, range and standard deviation. are elementary
concepts.  Using these concepts a l lows explanat ion ot
fractal analysis in more familiar terms.

RESULTS

Study of R/S analysis has produced poitive results. It
reveals fractal characteristic\ in the subject workload. It
a lso provides a usefu l  s ta t is t ic  that  adds to  cur rent ly
avai lable workload characterization. For example.  the
Hurst exponent is particularly interesting in the context of
Kevin Smith’s work (IYY4) on queuing of  sel f -s imi lar
network t raf f ic .  Smith anchored h is  work on a f racta l
dimension of I .66, which was drawn from a study on actual
E the rne t  t r a f f i c  ove r  seve ra l  yea rs  ( Le land .  Taqqu .
Wi l l inger ,  and Wi lson,  1993) .  Thiy f ractal  d imension
inverts to a Hurst dimension of about 0.6, falling in the
same 0.5 to I range as the daily workload data analyzed in
this paper. This commonality is important because Smith
demonstrated that values in this range result in significantly
higher queuing delays than would be indicated by more
traditional analysis.

Another example of possible utility for the Hurst statistic is
for simulation. As noted above, a true random number
generator would create B simulated workload like that in
Figure 5. I t  is  v isual ly  obv ious that  such a workload
contains a different combination of busy and slack periods
from the actual workload in Figure 4. Several authors
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(IPETEYI]. [FINLY3]. [PEITXX]) present methods for
generating an appropriate time series based on a principal
called fractional Brownian motion. The methods of all of
these authors depend on the Hurst exponent.

Study of K/S analysis has produced unexpected results too.
The empirical nature of the approach has offered many
c h a l l e n g e s .  H u r s t  f o r m u l a t e d  h i s  a n a l y s i s  t h r o u g h
experimentation on a time series which began in the year
622 A.D. (ISCHRY I]. p. I?Y). Experimentation still plays a
big part in R/S analysis. Fitting R/S analysis to workload
cha rac te r i za t i on enta i ls c o n s i d e r a b l e  a d d i t i o n a l
experimentation. Validation by analysis at different levels
of granularity is one example of this. Another example is
the coding of an analysis program to calculate the resealed
range. A third example is the continuous development
going on in this field. Peters has just published a new work
([ PETEY41)  on fractal analysis which suggest refinements in
determining what to model, and how to deal with factors
which should be resolved before R/S analysis. Putting it
briefly, the unexpected results relate to the amount of
experimentation still needed, in spite of abundant references
to R/S analysis.

ISSUES

The aim of this paper has been to demonstrate the value of
fractal geometry to workload characterization. To achieve
this aim is has been necessary to select ;1 fractal model from
among the many available in other disciplines: identify a
suitable workload component on which to use that model:
and evaluate the effectiveness of the model. While these
object ives have been met.  the resul ts are not  tota l ly
satisfactory.

R/S analysis is a widely accepted fractal process. Widely
accepted. however. does not mean completely accepted. It
is worth noting that [SPROYZ] (p. 3X) use non-R/S analysis
on some of the same data evaluated by Peters ([PETE91 I)
and assess the underlying structure to be simply random.
Considerable skepticism remains about how clear the link is
between chaotic. fractal models and econometric systems
(IROSSYI  I. p. 17-O: IBROCYI 1. p. 180).

Another source of dissatisfaction is application. It has been
noted that major reasons for characterizing workload are
understanding current resource utilization and predicting
future needs. R/S analysis has been shown here to be useful
for the first task: however. methods for prediction based on
R/S results have not yet been developed. This limits the
utility of R/S analysis as a characterization tool.

A  t h i r d  i s s u e  i s  i n t e r p r e t a t i o n .  S i n c e  u s e  o f  R / S  i s
unprecedented in workload characterization. the focus here
has been on the mechanics of generating the statistics with

real workload data, not on explaining those statistics. Some
poss ib l e  i n t e rp re ta t i ons  have  been  sugges ted ,  bu t
considerable work still needs to be done to attach concrete.
quantifiable meanings to the results of R/S analysis.

CONCLUSION

In trying to answer one question, this paper has raised
others. Three dominant questions are “What else might
work?‘. “What does this really mean?“. and “What about
prediction?”

The re  a re ,  as no ted  p rev ious ly .  severa l  approaches
available. There are also other aspects of workload which
might not work as well with R/S analysis as did transaction
counts. More work is needed to assess the relative merits of
adap t i ng  a l t e rna t i ve  f r ac ta l  app roaches  to  wo rk load
characterization.

W ork is also needed in explaining the results. General
observations about long term memory need to be extended
to specify how long. and how strong that memory is relative
to well understood process. There are similar needs for
specific interpretations of short term effects as well.

The f ina l  main area of  opportuni ty  in  R/S analys is is
f o recas t i ng .  I f  f r ac ta l  geome t r y  i s  on l y  good  f o r  i s
describing what exists, workload characterization will be
done  w i t h  o the r  t oo l s .  I t  i s  essen t i a l  t ha t  wo rk l oad
characterization contribute to a picture of the future. drawn
in inexpensive numbers. before critical decisions are needed
on creating that future with expensive human resources.
software, and hardware. Once forecasting is well integrated
in to  t he  f r ac ta l  t oo l k i t .  f r ac ta l  geome t r y  wsill a lmos t
c e r t a i n l y  p r o v i d e  m a j o r  e n h a n c e m e n t  t o  w o r k l o a d
characterization.
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