
XQuery exercises

1

A. Restaurants

Given the following DTD:

 <!ELEMENT restaurants (restaurant+)>
 <!ELEMENT restaurant (name, dish+)>
<!ELEMENT dish (name, ingredient+, price)>
<!ELEMENT ingredient (name, weight)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT weight (#PCDATA)>
<!ELEMENT price (#PCDATA)>

2

A. Restaurants

1. List all dishes served by restaurant “UnibgFood”?
2. For each restaurant, return the number of available dishes
3. How many restaurants serve dishes with mushrooms?
4. For each restaurant identify the most expensive dish(es)
5. For each restaurant identify the dishes that cost at least 90% of

the price of the most expensive dish (in desc. price order)
6. Which is the restaurant with the maximum number of dishes?
7. For each ingredient return the list of restaurants that use it
8. For each restaurant list the names of its dishes, sorting them by

number of contained ingredients

3

A. Restaurants
1. List all dishes served by restaurant “UnibgFood”?

4

for $d in doc(“rest.xml”)/restaurants/restaurant[name=“UnibgFood”]/dish
return <dish> {$d/name} </dish>

for $r in doc(“rest.xml”)/restaurants/restaurant
let $d := $r/dish
where $r/name=“UnibgFood”
return $d

for $r in doc(“rest.xml”)/restaurants/restaurant
where $r/name=“UnibgFood”
return $r/dish

doc(“rest.xml”)/restaurants/restaurant[name=“UnibgFood”]/dish/name

A. Restaurants
2. For each restaurant, return the number of available dishes

5

for $r in doc(“rest.xml”)/restaurants/restaurant
return <Restaurant>

{ $r/name }
<NumberOfDishes> { count($r/dish) } </NumberOfDishes>

</Restaurant>
for $r in doc(“rest.xml”)/restaurants/restaurant
let $nod := count($r/dish)
return <Restaurant name="{ $r/name/text() }">

<NumberOfDishes> { $nod } </NumberOfDishes>
</Restaurant>

<NumberOfDishesPerRestaurant> {
for $r in doc(“rest.xml”)/restaurants/restaurant
return <item> { $r/name , count($r/dish) } </item>

} <NumberOfDishesPerRestaurant>

A. Restaurants
3. How many restaurants serve dishes with mushrooms?

6

let $r := doc(“rest.xml”)/restaurants/restaurant[dish/ingredient/name=“mushroom”]
return <count>

{ count($r) }
</count>

let $r := (for $re in doc(“rest.xml”)/restaurants/restaurant
where $re/dish/ingredient/name=“mushroom”
return $re)

return <count>
{ count($r) }

</count>

<count> {
count(doc(“rest.xml”)/restaurants/restaurant[dish/ingredient/name=“mushroom”])
} </count>

A. Restaurants
4. For each restaurant identify the most expensive dish(es)

7

for $r in doc(“rest.xml”)/restaurants/restaurant
let $maxprice:= max($r/dish/price)
return <Restaurant_MostExpensiveDishes>

{
<RestName> { $r/name/text() } </RestName>,
<TopPrice> { $maxprice } </TopPrice>,
<WhatYouBuy>
{ for $x at $pos in $r/dish[price>=$maxprice]

return if ($pos = 1)
then ($x/name/text())
else (", " , $x/name/text())

}
</WhatYouBuy>

}
</Restaurant_MostExpensiveDishes>

A. Restaurants
5. For each restaurant identify the dishes that cost at least 90% of

the price of the most expensive dish (in desc. price order)

8

for $r in doc(“rest.xml”)/restaurants/restaurant
let $maxprice:= max($r/dish/price)
return <Restaurant_MostExpensiveDishes>

{
<RestName> { $r/name/text() } </RestName>
<ListOfMED>

{ for $d in $r/dish[price>= 0.9 * $maxprice]
order by $d/price descending
return <Dish> { $d/name/text(), $d/price/text() } </Dish>
}

</ListOfMED>
}
</Restaurant_MostExpensiveDishes>

A. Restaurants
6. Which is the restaurant with the maximum number of dishes?

9

let $maxnd:= max(for $r in doc(“rest.xml”)/restaurants/restaurant
 return count($r/dish))

return <restaurant>
{

doc(“rest.xml”)/restaurants/restaurant[count(dish)=$maxnd]/name
}
</restaurant>

doc(“rest.xml”)/restaurants/restaurant[
count(dish)
= max(for $r in doc(“rest.xml”)/restaurants/restaurant return count($r/dish)

)]/name

A. Restaurants
7. For each ingredient return the list of restaurants that use it

10

for $in in distinct-values(
 doc(“rest.xml”)/restaurants/restaurant/dish/ingredient/name
)

return <ingredient>
<name> { $in } </name>
<restaurants>
{

for $r in doc(“rest.xml”)/restaurants/restaurant
where $r/dish/ingredient/name=$in
return $r/name

}
</restaurants>

 </ingredient>

A. Restaurants
8. For each restaurant list the names of its dishes, sorting them by

number of contained ingredients

11

<result>
{

for $r in doc(“rest.xml”)/restaurants/restaurant
return <restaurant>

<name> { $r/name } </name>
<dishes> {

 for $d in $r/dish
 order by count($d/ingredient)
 return $d/name
}

</dishes>
</restaurant>
}
<result>

B. Santa Claus goes geek
The website of Good Old Santa allows children to submit letters with
their wishlist for Christmas via Web Service invocations, whose WSDL
exposes an interface with the following format for data encoding:

<!ELEMENT Letters (Letter*)>
<!ELEMENT Letter (ChildName, Address, Country, Toy+)>
<!ELEMENT NameChild (#PCDATA)>
<!ELEMENT Address (#PCDATA)>
<!ELEMENT Country (#PCDATA)>
<!ATTLIST Country TimeZone CDATA #Implied>
<!ELEMENT Toy (#PCDATA)>
<!ATTLIST Toy weight CDATA #Required>

12

B. Santa Claus goes geek

1. Find the names of all children who did not ask for a mobile phone
2. Find the name of the Italian child whose letter has the heaviest

toy list
3. For each country extract the average number of toys asked by

children

13

B. Santa Claus goes geek
1. Find the names of all children who did not ask for a mobile phone

14

doc(“...”)//Letter[not(Toy/text()=“Mobile phone”)]/ChildName

for $letter in doc(“...”)//Letter
where not($letter/Toy/text() = “Mobile phone”)
return $letter/ChildName

B. Santa Claus goes geek
2. Find the name of the Italian child whose letter has the heaviest

toy list

15

for $lel in doc(“...”)//Letter[Country=”Italy”]
where sum($lel/Toy/@weight) =

max(for $lil in doc(“...”)//Letter[Country=”Italy”]
return sum($lil/Toy/@weight))

return $lel/ChildName

let $lettersItaly := doc(“...”)//Letter[Country=”Italy”]
for $lel in $lettersItaly
where sum($lel/Toy/@weight) = max(for $lil in $lettersItaly

 return sum($lil/Toy/@weight))
return $lel/ChildName

B. Santa Claus goes geek
3. For each country extract the average number of toys asked by

children

16

for $n in distinct-values(doc(“santa.xml”)//Country)
let $letts_from_n := doc(“santa.xml”)//Letter[Country = $n]
return <CountryStats country=”{ $n }”>

<AvgToysNum>
{ count($letts_from_n//Toy) div count($letts_from_n) }

</AvgToysNum>
</CountryStats>

<AvgToysNum>
{ avg(for $x in $letts_from_n

return count($x/Toy)) }
</AvgToysNum>

C. I have a drink
<!ELEMENT Cocktails (Cocktail+, Ingredient+)>
<!ELEMENT Cocktail (Name, Component+, GlassType,
Garnish, Procedure)>
<!ELEMENT Component (IngredientName, Quantity)>
<!ELEMENT Ingredient (Name, CaloriesPerGram)>

This DTD describes a portion of the content of a Web-accessible
barman course. Unspecified elements only contain PCDATA. Quantity
is expressed in milliliters or grams (respectively for liquids and solids)
and refers to the amount required for a cocktail for one person. The
ingredient name identifies the ingredient.

17

C. I have a drink

1. For each ingredient, the list of the names of cocktails containing it
2. Build in XQuery a “summary” document that, for each cocktail,

presents:
- the total amount of calories in the cocktail (considering ALL the
ingredients);
- the list of the 4 ingredients used in the largest quantity (consider
milliliters and grams as equivalent); in the case of a tie, always
choose 4 ingredients based on the alphabetical order.

18

C. I have a drink
1. For each ingredient, the list of the names of cocktails containing it

19

<TOC> {
for $i in //Ingredient/Name
return <Ingredient name=“{ $i }”>

{ for $n in //Cocktail[Component/IngredientName = $i]/Name
return <Cocktail> { $n } </Cocktail> }

 </Ingredient>
} </TOC>

<TOC> {
for $i in //Ingredient/Name
return <Ingredient name=“{ $i }”>

{ //Cocktail[Component/IngredientName = $i]/Name }
 </Ingredient>

} </TOC>

C. I have a drink
2. Summary build

20

<Summary>{
for $c in //Cocktail

let $ordcomp := for $ingr in $c/Component
order by $ingr/Quantity, $ingr/IngredientName
return $ingr

let $cals := for $i in $ordcomp
 return $i/Quantity * //Ingredient[

Name = $i/IngredientName
]/CaloriesPerGram

return <Cocktail name=“{ $c/Name/text() }”>
<Calories> { sum($cals) } </Calories>
<Top4> { $ordcomp[position() <= 4]/IngredientName } </Top4>

 </Cocktail >
} </Summary>

D. Olympic games
<!ELEMENT Collection (Country*) >
<!ELEMENT Country (Gold?, Silver?, Bronze?) >
<!ATTLIST Country Name CDATA #REQUIRED >
<!ELEMENT Gold (Medal+)> N.B. One single edition
<!ELEMENT Silver (Medal+)>
<!ELEMENT Bronze (Medal+)>
<!ELEMENT Medal (Athlete+)>
<!ATTLIST Medal Discipline CDATA #REQUIRED

Date CDATA #REQUIRED >
<!ELEMENT Athlete (#PCDATA)>
Medals can be won by individuals or by teams, the names of athletes
winning more than one medal are repeated in the document 21

D. Olympic games

1. Find countries that never won a team medal (a team medal is a
medal won by more than one athlete)

2. Find the name of the athlete who won the highest number of
medals, considering all possible disciplines and all kinds of
medal.

22

D. Olympic games
1. Find countries that never won a team medal (a team medal is a

medal won by more than one athlete)

23

for $n in //Country
where every $m in $n/*/Medal satisfies count($m/Athlete) = 1
return <OnlySingle>

{ $n/@name }
 </OnlySingle>

//Country[count(./*/Medal[count(./Athlete)>1]) = 0]/@Name

D. Olympic games
2.a Find the name of the athlete who won the highest number of

medals, considering all possible disciplines and all kinds of
medal.

24

let $athletes := distinct-values(//Athlete/text())
let $max := max (for $at in $athletes

return count(//Medal[Athlete/text() = $at])
for $a in $athletes
let $med := count(//Medal[Athlete/text() = $a])
where $med = $max
return <MostMedals> { $a } </MostMedals >

D. Olympic games
2.b (same, but unfair in case of ties...)

25

let $list := for $at in distinct-values(//Athlete/text())
let $nu := count(//Medal[Athlete/text() = $at])
order by $nu
return <item>

<name> { $at } </name>
<num> { $nu) </num>

 </item>
return <champion> { $list[1] /name/text() } </champion>

D. Olympic games
2.c (in order to use the ranking in a fair way...)

26

let $list := for $at in distinct-values(//Athlete/text())
let $nu := count(//Medal[Athlete/text() = $at])
order by $nu
return <item>

<name> { $at } </name>
<num> { $nu) </num>

 </item>
for $a in $list
where $a / num = $list[1] / num
return <champion> { $a/name/text() } </champion>

E. Hierarchy of Components
A shop sells electronic components, described in document
catalog.xml. For each component the cost is represented and, for
complex components, the internal structure:

<!ELEMENT Catalog (Component+)>
<!ELEMENT Component (Description, Component*)>
<!ATTLIST Component Code ID #REQUIRED,

Cost CDATA #REQUIRED>

Where Description only contains PCDATA.

27

E. Hierarchy of Components

1. Extract the component that has the greatest number of
sub-components (direct and indirect)

2. Build in XQuery an XML document that shows, for each leaf
component c, the list of the codes of the components that contain
c, ordered from the “lower” one to the “higher” one in the
containment hierarchy

28

E. Hierarchy of Components
1. Extract the component that has the greatest number of

sub-components (direct and indirect)

29

let $max := max(for $c in doc("comps.xml")/Catalog/Component
return count($c//Component))

return doc("comps.xml")/Catalog/Component[count(.//Component) = $max]

E. Hierarchy of Components
2. Path problem

30

declare function local:reversepath($lc as element(), $root as element()) as element()*
{

for $c in $root/Component
where $lc/@code = $c//Component/@code
return (local:reversepath($lc, $c) , <parent code="{ $c/@code }"/>)

};
<Hierarchies> {

for $lc in doc("comps.xml")//Component
where count($lc/Component) = 0
return <LeafComponent code="{ $lc/@code }">

{ local:reversepath($lc, doc("comps.xml")/Catalog) }
 </LeafComponent>

}</Hierarchies>

E. Hierarchy of Components
2. (another approach v1...)

31

let $leaves := doc("comps.xml")//Component[count(./Component) = 0]
for $f in $leaves

let $fathers := (
for $p in doc("comps.xml")//Component[.//@code = $f/@code]
let $numsucomp := count($p//Component)
where $numsucomp > 0
order by $numsucomp
return <Container code="{ $p/@code }"/>)

return <LeafComponent code="{ $f/@code }">
{ $fathers }

 </LeafComponent>

E. Hierarchy of Components
2. (another approach v2...)

32

for $l in doc("comps.xml")//Component[count(./Component) = 0]
return <LeafComponent code="{ $l/@code }">

 {
reverse(for $c in doc("comps.xml")//Component[

.//@code = $l/@code and
count(./Component) > 0]

return data($c/@code)
)

 }
 </LeafComponent>

F. Sports Club
Consider the following DTD about the organization of a sports club.
Elements not further specified contain only PCDATA. The team
names and social security numbers (SSN) are unique.

<!ELEMENT Club (Coach+, Team+)>
<!ELEMENT Coach (SSN, Name, Lastname)>
<!ELEMENT Team (Name, CoachSSN, Player+)>
<!ELEMENT Player (SSN, Name, Lastname, Role)>

33

F. Sports Club

1. Write in XQuery the query that extracts the names of the coaches
who train three or more teams and who also appear as player in
some other team (i.e. not in a team coached by them)

2. Write in XQuery the query that for each coach retrieves the
coach's data and the complete list in alphabetical order of all the
players he coached (considering all the teams he trains)

34

F. Sports Club
1. Write in XQuery the query that extracts the names of the coaches

who train three or more teams and who also appear as player in
some other team (i.e. not in a team coached by them)

35

<BusyCoaches> {
for $c in //Coach
where 3 <= count(//Team[CoachSSN = $c/SSN])

and 0 < count(//Team[CoachSSN != $c/SSN]/Player[SSN = $c/SSN])
return $c/Lastname

} </BusyCoaches >

F. Sports Club
2. Write in XQuery the query that for each coach retrieves the

coach's data and the complete list in alphabetical order of all the
players he coached (considering all the teams he trains)

36

<CoachingLists> {
for $c in //Coach
return <Coach>

{ $c/*}
<CoachedPlayers> {

for $p in //Team[CoachSSN = $c/SSN]/Player
order by $p/Lastname, $p/Name
return $p

} </CoachedPlayers>
</Coach>

} </CoachingLists >

F. Sports Club
2. (what if the same players play in more than one team coached by

the same coach?)

37

<CoachingLists> {
for $c in //Coach
return <Coach> { $c/*}

<CoachedPlayers> {
let $HisPlayers := distinct-values(

//Team[CoachSSN = $c/SSN]/Player/SSN)
let $list := (for $ssn in $HisPlayers

let $plrs := //Player[SSN = $ssn]
for $p in $plrs[1]
order by $p/Lastname, $p/Name
return $p)

return $list
} </CoachedPlayers> </Coach>

} </CoachingLists >

