
Orders (11 / 02 / 2016)

ClientOrder (OrderId, ProductId, Qty, ClientId, TotalSubItems)
ProductionProcess (ProdProcId, ObtainedProdId, StartingProdId,

Qty, ProcessDuration, ProductionCost)
ProductionPlan (BatchId, ProdProcId, Qty, OrderId)
PurchaseOrder (PurchaseId, ProdId, Qty, OrderId)

The relational database above supports the production systems of a factory. Table
ProductionProcess describes how a product can be obtained by (possibly several) other
products, which can be themselves obtained from other products or bought from
outside.
Build a trigger system that reacts to the insertion of orders from clients and creates new
items in ProductionPlan or in PurchaseOrder, depending on the ordered product, so as
to manage the client’s order (for the generation of the identifiers, use a function
GenerateId()).
The triggers should also update the value of TotalSubItems (initially always set to 0) to
describe the number of sub-products (internally produced or outsourced) that are used
overall in the production plan deriving from the order.
Also briefly discuss the termination of the trigger system.

sqliteonline: https://goo.gl/Mw4rYB

ProdProc
Id

Obtained
ProdId

Starting
ProdId Qty

1000 1 2 4

1001 1 3 1

1002 2 4 2

1003 2 5 1

sqliteonline: https://goo.gl/QiOS01

We have to define at least the following triggers:

• T1 (NewOrder) reacts to the insertion on ClientOrder and:
• Adds a record in ProductionPlan if there is a process to build ProductId
• Adds a record in PurchaseOrder if there is no process to build ProductId

• T2 (UpdateSubItemsAfterPurchase) reacts to insertion on PurchaseOrder
• Sum the ordered Qty to the TotalSubItems of the order

• T3 (UpdateSubItemsAfterProduction) reacts to insertion on ProductionPlan
• Sums the produced Qty to the TotalSubItems of the order

• T4 (InsertSubProducts) reacts to insertion on ProductionPlan
• Adds a record in ProductionPlan if there is a process to build StartingProdId
• Adds a record in PurchaseOrder if there is no process to build StartingProdId

• T1 (NewOrder) reacts to the insertion on ClientOrder

CREATE TRIGGER NewOrder
AFTER INSERT ON ClientOrder
FOR EACH ROW
BEGIN

IF (EXISTS (SELECT * FROM ProductionProcess
WHERE ObtainedProdId = new.ProductId))

INSERT INTO ProductionPlan
SELECT GenerateId(), ProdProcId, Qty * new.Qty, new.OrderId
FROM ProductionProcess
WHERE ObtainedProdId = new.ProductId;

ELSE
INSERT INTO PurchaseOrder VALUES
(GenerateId(), new.ProductId, new.Qty, new.OrderId);

END;
END;

sqliteonline: https://goo.gl/9QGmtp

• T1 considerations:

• When new.ProductId is the ObtainedProdId of a ProductionProcess, we need to
insert the records in ProductionPlan to transform its starting products into the
obtained product;

• When new.ProductId isn’t an ObtainedProdId of any ProductionProcess, we
need to purchase the ProductId (we are actually re-selling);

• The production quantity of each Starting Product is new.Qty (the number of
new.ProductId items to produce for the order) * Qty (the number of Starting
Products needed to produce one Obtained Product).

• T2 (UpdateSubItemsAfterPurchase) reacts to insertion on PurchaseOrder

CREATE TRIGGER UpdateSubItemsAfterPurchase
AFTER INSERT ON PurchaseOrder
FOR EACH ROW
BEGIN

UPDATE ClientOrder
SET TotalSubItems = TotalSubItems + new.Qty
WHERE OrderId = new.OrderId;

END;

sqliteonline: https://goo.gl/JXiSXC

• T3 (UpdateSubItemsAfterProduction) reacts to insertion on ProductionPlan

CREATE TRIGGER UpdateSubItemsAfterProduction
AFTER INSERT ON ProductionPlan
FOR EACH ROW
BEGIN

UPDATE ClientOrder
SET TotalSubItems = TotalSubItems + new.Qty
WHERE OrderId = new.OrderId;

END;

sqliteonline: https://goo.gl/PKyDlJ

• T4 (InsertSubProducts) reacts to insertion on ProductionPlan

CREATE TRIGGER InsertSubProducts
AFTER INSERT ON ProductionPlan
FOR EACH ROW
BEGIN

DEFINE S;
SELECT StartingProdId INTO S
FROM ProductionProcess WHERE ProdProcId = new.ProdProcId;

IF (EXISTS (SELECT * FROM ProductionProcess
WHERE ObtainedProdId = S))

INSERT INTO ProductionPlan
SELECT GenerateId(), ProdProcId, new.Qty * Qty, new.OrderId
FROM ProductionProcess WHERE ObtainedProdId = S;

ELSE
INSERT INTO PurchaseOrder VALUES
(GenerateId(), S, new.Qty, new.OrderId);

END;
END; sqliteonline: https://goo.gl/ifrAJO

Termination of the trigger system

• T4 is the only trigger that could be non-terminating

• Nevertheless, if the product hierarchy is well-formed (no cycles), T4 will eventually
terminate reaching the leaves.

We can define other (optional and not required) triggers to improve the system:

• T5 (Validate Order)
• Validates TotalSubItems = 0
• Validates Qty > 0

• T6 (Delete Order)
• Delete all associated PurchaseOrders
• Delete all associated ProductionPlans

• T7 (Disable Order Updates)
• Permit updates on TotalSubItems
• Disable updates on other fields

sqliteonline: https://goo.gl/JwhKT2

• T5 (Validate Order)

CREATE TRIGGER NewOrder_validate
BEFORE INSERT ON ClientOrder
FOR EACH ROW
WHEN ((new.TotalSubItems <> 0) OR (new.Qty <= 0))
BEGIN

SELECT RAISE(ABORT, "Invalid Order");

END

sqliteonline: https://goo.gl/JwhKT2

• T6 (Delete Order)

CREATE TRIGGER DeleteOrder
AFTER DELETE ON ClientOrder
FOR EACH ROW
BEGIN

DELETE FROM ProductionPlan
WHERE OrderId = old.OrderId;

DELETE FROM PurchaseOrder
WHERE OrderId = old.OrderId;

END;

sqliteonline: https://goo.gl/JwhKT2

• T7 (Disable Order Updates)

CREATE TRIGGER DisableOrderUpdates
BEFORE UPDATE OF OrderId, ProductId, Qty, ClientId ON ClientOrder
FOR EACH ROW
BEGIN

SELECT RAISE(ABORT, "Updates on ClientOrder are disabled");

END;

sqliteonline: https://goo.gl/JwhKT2

