
XML Data Management 



XML Data Management 

XML 
 

 eXtensible Markup Language 
 

 Data representation format proposed 
by W3C (WWW Consortium) for Web 
documents, such as: 

 books, 
 product catalogs,  
 order forms, 
 messages 
 

2 



XML Data Management 

The Origin of XML 

 Original idea: a meta-language used to specify 
markup languages 

 As in HTML (or in WML, ...) 
 XML data are contained in documents 
 data properties are expressed with mark-ups 

 

 XML was designed to describe data and to focus 
on what data is 
 

 HTML was designed to display data and to focus 
on how data looks like 
 

3 



XML Data Management 

XML 

 1986: Standard Generalized Markup      
              Language (SGML) ISO 8879-1986 
 Nov. 1995: HTML 2.0 
 Gen. 1997: HTML 3.2 
 Aug. 1997: XML W3C Working Draft 
 Feb 10, 1998: XML 1.0 Recommendation 
 Dec. 13, 2001: XML 1.1 W3C Working Draft  
 Oct. 15, 2002 : XML 1.1 W3C Candidate Recommendation 
 Aug 16, 2006 Extensible Markup Language (XML) 1.0 

(Fourth Edition) W3C Recommendation 

4 



XML Data Management 

HTML vs XML 

<h1>The Idea  
    Methodology</h1><br> 
<ul> 
 <li>by S. Ceri,  
     P. Fraternali  </li>  
 <li> Addison-Wesley</li> 
 <li> US$ 49 </li> 
</ul> 

<bib> 
 <book>  
  <title>The Idea  
       Methodology </title> 
  <author> S. Ceri </author>  
  <author> P. Fraternali  
                  </author> 
  <pub>Addison-Wesley</pub> 
  <price> US$ 49 </price> 
 </book> 
</bib> 

5 



XML Data Management 

          Data model evolution 

NF2 data Model,  Nested Relations, 
Hierarchical Fields, Predefined simple 
Types 

XML data Model 
Self-defining data 
Standard DDL 

Extended/Object Relational data Model  
Objects & Functions 
Predefined complex Types 

Relational data Model,  Flat Relations 
Predefined, simple Types 

Web data 

6 



XML Data Management 

XML is used to exchange data 

 With XML, data can be exchanged between 
incompatible systems 

 In the real world, computer systems and databases 
contain data in incompatible formats. One of the most 
time-consuming challenges for developers has been to 
exchange data between such systems over the Internet. 

 Converting the data to XML can greatly reduce this 
complexity and create data that can be read by many 
different types of applications. 

 XML is the main language for exchanging financial 
information between businesses over the Internet. 

7 



XML Data Management 

XML is used to share data 

 With XML, plain text files can be used to share data 
 Since XML data is stored in plain text format, XML 

provides a software- and hardware-independent way of 
sharing data. 

 This makes it much easier to create data that different 
applications can work with. It also makes it easier to 
expand or upgrade a system to new operating systems, 
servers, applications, and new browsers.  

8 



XML Data Management 

XML separates data from representation 

 With XML, data is stored outside HTML 
 When HTML is used to display data, the data is stored 

inside the HTML document. With XML, data can be 
stored in separate XML files. This way you can 
concentrate on using HTML for data layout and display, 
and be sure that changes in the underlying data will not 
require any changes to your HTML. 

 XML data can also be stored inside HTML pages as 
"data Islands". You can still concentrate on using HTML 
only for formatting and displaying the data. 

9 



XML Data Management 

XML is used to store data 

 With XML, plain text files can be used to store data 
 XML data are also stored in files or in databases. 

Applications can be written to store and retrieve 
information from the store, and generic applications can 
be used to display the data. 

 Data management extensions include data models 
(DTD,XSD), query languages (XQuery, XSLT) 

 Data management occurs 
 Within native systems (eXists,Galax,ISI-XQ,BaseX,...) 
 Within relational systems (Oracle, DB2, SQLServer) 

10 



XML Data Management 

XML can make your data more useful 

 With XML, data is available to more users 
 Since XML is independent of hardware, software and 

applications, you can make your data available to other than 
only standard HTML browsers 

 Other clients and applications can access your XML files as 
data sources, like they are accessing databases. Your data can 
be made available to all kinds of "reading machines" (agents) 

 XML is the mother of new special-purpose languages.
 E.g. the Wireless Markup Language (WML), used to markup 

Internet applications for handheld devices like mobile 
phones, is written in XML 

11 



XML Data Management 

Syntax 

 The syntax rules of XML are very simple and very strict. 
The rules are very easy to learn, and very easy to use. 

 
 Because of this, creating software that can read and 

manipulate XML is very easy. 
 

 XML documents use a self-describing and simple syntax. 

12 



XML Data Management 

XML data model 

13 



XML Data Management 

First Example (1) 

 An example XML document:  
 

 <?xml version="1.0" encoding="ISO-8859-1"?>  
 <note>  
  <to>Tove</to>  
  <from>Jani</from>  
  <heading>Reminder</heading>  
  <body>Don't forget me this weekend!</body>  
 </note> 

14 



XML Data Management 

First Example (2) 

 The first line in the document - the XML declaration - 
defines the XML version and the character encoding used 
in the document. In this case the document conforms to 
the 1.0 specification of XML and uses the ISO-8859-1 
(Latin-1/West European) character set. 
 

 The next line describes the root element of the document 
(like it was saying: "this document is a note"):  
 

 <note> 

15 



XML Data Management 

First Example (3) 

 The next 4 lines describe 4 child elements of the root        
(to, from, heading, and body): 

  <to>Tove</to>  
  <from>Jani</from>  
  <heading>Reminder</heading>  
  <body>Don't forget me this weekend!</body> 
 And finally the last line defines the end of the root element: 
 </note> 
 It’s easy to detect that the XML document contains a Note to 

Tove from Jani. XML is indeed quite self-descriptive 

16 



XML Data Management 

XML Syntax (1) 
 All XML elements must have a closing tag 

 Note: You might have noticed from the previous example that 
the XML declaration did not have a closing tag. This is not an 
error. The declaration is not a part of the XML document itself. It 
is not an XML element, and it should not have a closing tag. 

 XML tags are case sensitive (unlike HTML) 
 The tag <Letter> is different from the tag <letter>. 
 Opening and closing tags must therefore be written with the 

same case: 
  <Message>This is incorrect</message>  
  <message>This is correct</message> 
 The syntax for comments in XML is the same as that of HTML 
 <!-- This is a comment -->  

 

17 



XML Data Management 

XML Syntax (2) 
 All XML elements must be properly nested 
 All XML documents must have a root element 
 All XML documents must contain a single root element 

 All other elements must be within this root element. 
 All elements can have sub elements (child elements). Sub 

elements must be correctly nested within their parent element: 
  <root> <child> <subchild>.....</subchild> </child> </root>  
 

18 



XML Data Management 

Elements 

 Elements can have different content types 
 

 An XML element is everything from (including) the 
element's start tag to (including) the element's end tag. 
 

 An element can have element content, mixed content,
simple content, or empty content. An element can also 
have attributes. 

19 



XML Data Management 

Second Example (1) 
<book>  
 <title>My First XML</title>  
 <prod id="33-657" media="paper"></prod> 
 <chapter>Introduction to XML  
  <para>What is HTML</para>  
  <para>What is XML</para>  
 </chapter>  
 <chapter numberOfPages=“23”>XML Syntax  
  <para>Elements must have a closing tag</para>  
  <para>Elements must be properly nested</para>  
 </chapter>  
</book> 

20 



XML Data Management 

Second Example (2) 

 Book is the root element. Title, prod, and chapter are child 
elements of book. Book is the parent element of title, prod, 
and chapter. Title, prod, and chapter are siblings because they 
have the same parent. 

 Book has element content, because it contains other elements. 
Chapter has mixed content because it contains both text and 
other elements. Para has simple content (or text content) 
because it contains only text. Prod has empty content, because 
it carries no information. 

 Only the prod element has attributes. The attribute named id 
has the value "33-657". The attribute named media has the 
value "paper".  

21 



XML Data Management 

Element naming 

 XML elements must follow these naming rules: 
 Names can contain letters, numbers, and other 

characters  
 Names must not start with a number or punctuation 

character  
 Names must not start with the xml (or XML or Xml ...)  
 Names cannot contain spaces  

22 



XML Data Management 

 Take care when "inventing" element names and follow these 
simple rules: 
 Any name can be used, no words are reserved, but the idea is 

to make names descriptive. Names with an underscore 
separator are nice. 

 Examples: <first_name>, <last_name>. 
 Avoid "-" and "." in names. For example, if you name 

something "first-name“, it could be a mess if your software 
tries to subtract name from first.  

 Element names can be as long as you like, but don't 
exaggerate. Names should be short and simple, like this: 
<book_title> not like this: <the_title_of_the_book>.  

23 

Element naming 



XML Data Management 

 Take care when "inventing" element names and follow these simple 
rules: 
 XML documents often have a corresponding database, in which 

fields exist corresponding to elements in the XML document. A good 
practice is to use the naming rules of your database for the 
elements in the XML documents. 

 Non-English letters like éòá are perfectly legal in XML element 
names, but watch out for problems if your software vendor doesn't 
support them. 

 The ":" should not be used in element names because it is reserved 
to be used for something called namespaces (more later). 

24 

Element naming 



XML Data Management 

Attributes 

 XML elements can have attributes. 
 From HTML you will remember this: <IMG SRC="computer.gif">. 

The SRC attribute provides additional information about the IMG 
element. 

 In HTML (and in XML) attributes provide additional information 
about elements: 

  <img src="computer.gif"> <a href="demo.asp"> 
 Attributes often provide information that is not a part of the data. 

In the example below, the file type is irrelevant to the data, but 
important to the software that wants to manipulate the element: 

  <file type="gif">computer.gif</file> 
 

25 



XML Data Management 

Attributes 

 Attribute values must always be quoted (it is illegal to omit 
quotation marks around attribute values) 

  <incorrectNote date=12/11/2002>  
  <note date="12/11/2002"> 

 Quote Styles, "female" or 'female'? 
 Attribute values must always be enclosed in quotes, either single 

or double. For a person's sex, the person tag can be:  
  <person sex="female">   or  <person sex='female'> 

 Note: If the attribute value itself contains double quotes, it is 
necessary to use single quotes, like in this example:  

  <gangster name='George "Shotgun" Ziegler'> 
 If instead the attribute value itself contains single quotes, it is 

necessary to use double quotes, like in this example:  
  <gangster name="George 'Shotgun' Ziegler"> 

26 



XML Data Management 

Elements vs Attributes 

 Try to use elements to describe data.  
 Use attributes only to provide information that is not relevant to 

the data or for metadata. 
 Example: ID references can be used to access XML elements 
 Example: creation user and date of a document, date of last 

document’s update  
 Should you avoid using attributes?  
 Some of the problems with using attributes are:  

 attributes cannot contain multiple values (child elements can)  
 attributes are not easily expandable (for future changes)  
 attributes cannot describe structures (child elements can)  
 attributes are more difficult to manipulate by program code  
 attribute values are not easy to test against a Document Type 

Definition (DTD) - which is used to define the legal elements of 
an XML document  
 

27 



XML Data Management 

Name conflicts 

 Since element names in XML are not predefined, a name 
conflict will occur when two different documents use the same 
element names. 
 This XML document carries information in a table: 

 <table> <tr> <td>Apples</td> <td>Bananas</td> </tr> </table> 
 This XML document carries information about a table (a 

piece of furniture): 
 <table> <name>African Coffee Table</name> 

<width>80</width> <length>120</length> </table> 
 If these two XML documents were added together, there would 

be an element name conflict because both documents contain 
a <table> element with different content and definition. 

28 



XML Data Management 

Namespaces 

 Name conflicts are solved by using a prefix 
 This XML document carries information in a table: 

 <h:table> <h:tr> <h:td>Apples</h:td> <h:td>Bananas</h:td> </h:tr> 
</h:table> 

 This XML document carries information about a piece of furniture: 
 <f:table> <f:name>African Coffee Table</f:name> <f:width>80</f:width> 

<f:length>120</f:length> </f:table> 
 Now there will be no name conflict because the two documents use a 

different name for their <table> element (<h:table> and <f:table>). 
 The prefix helped us create two different types of <table> elements 

29 



XML Data Management 

The XML Namespace (xmlns) Attribute 

 A Uniform Resource Identifier (URI) is a string of 
characters which identifies an Internet Resource. The most 
common URI is the Uniform Resource Locator (URL) which 
identifies an Internet domain address. Another, not so 
common type of URI is the Universal Resource Name 
(URN). Usually URLs are used. 

 The XML namespace attribute is placed in the start tag        
of an element and has the following syntax: 

  xmlns:namespace-prefix="namespaceURI“ 
 When a namespace is defined in the start tag of an element, 

all child elements with the same prefix are associated with 
the same namespace. 

 Note that the address used to identify the namespace is not 
used by the parser to look up information. The only purpose 
is to give the namespace a unique name. However, very 
often companies use the namespace as a pointer to a real 
Web page containing information about the namespace. 
 

30 



XML Data Management 

Namespace References 

  This XML document carries information in a table: 
 <h:table xmlns:h="http://www.w3.org/TR/html4/"> <h:tr> 

<h:td>Apples</h:td> <h:td>Bananas</h:td> </h:tr> 
</h:table> 

 This XML document carries information about a piece of 
furniture: 
 <f:table xmlns:f="http://www.w3schools.com/furniture"> 

<f:name>African Coffee Table</f:name> 
<f:width>80</f:width> <f:length>120</f:length> </f:table> 
 

 

31 



XML Data Management 

XML 

 A "Well Formed" XML document has correct XML syntax 
 A "Well Formed" XML document is a document that 

conforms to the XML syntax rules that were described 
 

 A "Valid" XML document also conforms to a DTD 
 A "Valid" XML document is a "Well Formed" XML document, 

which also conforms to the rules of a Document Type 
Definition (DTD) 

32 



XML Data Management 

DTD 

 The purpose of a Document Type Definition is to define 
the legal building blocks of an XML document. It defines 
the document structure with a list of legal elements. 

 A DTD can be declared inline in the XML document, or 
as an external reference. 

 If the DTD is included in the XML source file, it should 
be wrapped in a DOCTYPE definition with the following 
syntax: 

<!DOCTYPE root-element [element-declarations]> 

33 



XML Data Management 

Why use a DTD? 

 With DTD, each of your XML files can carry a 
description of its own format with it.  

 With a DTD, independent groups of people can agree to 
use a common DTD for interchanging data.  

 Your application can use a standard DTD to verify that 
the data you receive from the outside world is valid.  

 You can also use a DTD to verify your own data. 
 

34 



XML Data Management 

Internal DTD 
 <?xml version="1.0"?>  
 <!DOCTYPE note  
  [ <!ELEMENT note (to,from,heading,body)>  
    <!ELEMENT to (#PCdata)>  
    <!ELEMENT from (#PCdata)>  
    <!ELEMENT heading (#PCdata)>  
    <!ELEMENT body (#PCdata)> ]>  
 <note>  
  <to>Tove</to>  
  <from>Jani</from>  
  <heading>Reminder</heading>  
  <body>Don't forget me this weekend</body>  
 </note> 

 

35 



XML Data Management 

DTD 

 The DTD above is interpreted like this: 
 !DOCTYPE note (in line 2) defines that this is a document 

of the type note. 
 !ELEMENT note (in line 3) defines the note element as 

having four elements: "to,from,heading,body". 
 !ELEMENT to (in line 4) defines the to element to be of 

the type "#PCdata". 
 !ELEMENT from (in line 5) defines the from element to 

be of the type "#PCdata“. 
 and so on.....  

36 



XML Data Management 

External DTD 
 If the DTD is external to the XML file, it should be wrapped in a 

DOCTYPE definition with the following syntax: 
 <!DOCTYPE root-element SYSTEM "filename"> 
 <?xml version="1.0"?>  
 <!DOCTYPE note SYSTEM "note.dtd">  
 <note> <to>Tove</to> <from>Jani</from> <heading>Reminder</heading>  
 <body>Don't forget me this weekend!</body> </note>  

 This is a copy of the file "note.dtd" containing the DTD: 
 <!ELEMENT note (to,from,heading,body)>  
 <!ELEMENT to (#PCdata)>  
 <!ELEMENT from (#PCdata)>  
 <!ELEMENT heading (#PCdata)>  
 <!ELEMENT body (#PCdata)> 

37 



XML Data Management 

Declaring an element  

 In the DTD, XML elements are declared with an 
element declaration. An element declaration has the 
following syntax: 
 

 <!ELEMENT element-name category>  
 or  
 <!ELEMENT element-name (element-content)> 

 

38 



XML Data Management 

Declaring elements 
Empty elements 
 Empty elements are declared with the category keyword 

EMPTY: 
 <!ELEMENT element-name EMPTY>  
 example: <!ELEMENT br EMPTY> 
Elements with only character data 
 Elements with only character data are declared with #PCdata 

inside parentheses: 
 <!ELEMENT element-name (#PCdata)> 
Elements with any contents 
 Elements declared with the category keyword ANY, can 

contain any combination of parsable data: 
 <!ELEMENT element-name ANY> 

39 



XML Data Management 

Elements with children 
 
 Elements with one or more children are defined with the name 

of the children elements inside parentheses: 
 <!ELEMENT element-name (child-element-name)> 
 <!ELEMENT element-name (child-element-name,child-element-

name,.....)> 
 example: <!ELEMENT note (to,from,heading,body)> 
 When children are declared in a sequence separated by 

commas, the children must appear in the same sequence in 
the document. In a full declaration, the children must also be 
declared, and the children can also have children.  

40 



XML Data Management 

One, min one 

 Declaring only one occurrence of the same element  
<!ELEMENT element-name (child-name)> 
<!ELEMENT note (message)> 

 The example declaration above declares that the child element 
message must occur once, and only once inside the "note" element. 
 

 Declaring minimum one occurrence of the same element
<!ELEMENT element-name (child-name+)> 
<!ELEMENT note (message+)> 

 The + sign in the example above declares that the child element 
message must occur one or more times inside the "note" element. 

41 



XML Data Management 

Zero or more, zero or one 

 Declaring zero or more occurrences of the same element  
<!ELEMENT element-name (child-name*)> 
<!ELEMENT note (message*)> 

 The * sign in the example above declares that the child element 
message can occur zero or more times inside the "note" element. 
 

 Declaring zero or one occurrences of the same element  
<!ELEMENT element-name (child-name?)> 
<!ELEMENT note (message?)> 

 The ? sign in the example above declares that the child element 
message can occur zero or one times inside the "note" element.

42 



XML Data Management 

Alternative and mixed content 

 Declaring either/or content
example:<!ELEMENT note (to,from,header,(message|body))> 

 The example above declares that the "note" element must contain 
a "to" element, a "from" element, a "header" element, and either a 
"message" or a "body" element. 
 

 Declaring mixed content 
example:<!ELEMENT note (#PCdata|to|from|header|message)*> 

 The example above declares that the "note" element can contain 
zero or more occurrences of parsed character, "to", "from", 
"header", or "message" elements. 

43 



XML Data Management 

Declaring attributes 

 An attribute declaration has the following syntax: 
<!ATTLIST element-name attribute-name attribute-type default-value> 

 
 Example: 
 <!ATTLIST payment type Cdata "check">  
 Corresponding XML 
 <payment type="check" /> 

44 



XML Data Management 

Attribute type 
The attribute-type can have the following values: 

 

 Cdata  The value is character data 
 (en1|en2|..)  The value must be one from an enumerated list 
 ID   The value is a unique id  
 IDREF  The value is the id of another element 
 IDREFS  The value is a list of other ids 

 

 NMTOKEN  The value is a valid XML name 
 NMTOKENS  The value is a list of valid XML names 
 ENTITY  The value is an entity  
 ENTITIES  The value is a list of entities 
 NOTATION  The value is a name of a notation 
 xml:   The value is a predefined xml value 

45 



XML Data Management 

Default values 

The default-value can have the following values: 
 
 Value  The default value of the attribute 
 #REQUIRED The attribute value must be included 
    in the element 
 #IMPLIED   The attribute does not have to be 
    included 
 #FIXED value The attribute value is fixed  

46 



XML Data Management 

<!ELEMENT PRODUCT ( ………… ) 

 
<!ATTLIST PRODUCT 
 code  ID  #REQUIRED 

label         CDATA   #IMPLIED 
status     (available|unavailable)  ‘available’  

 sconto                CDATA             FIXED  ’15%’  > 
 

Example of attribute declarations 

47 



XML Data Management 

<!DOCTYPE NEWSPAPER [  
 <!ELEMENT NEWSPAPER (ARTICLE+)>  
 <!ELEMENT ARTICLE (HEADLINE,BYLINE,LEAD,BODY,NOTES)> 
 <!ELEMENT HEADLINE (#PCDATA)>  
 <!ELEMENT BYLINE (#PCDATA)>  
 <!ELEMENT LEAD (#PCDATA)>  
 <!ELEMENT BODY (#PCDATA)>  
 <!ELEMENT NOTES (#PCDATA)>  
 <!ATTLIST ARTICLE AUTHOR CDATA #REQUIRED 
    EDITOR CDATA #IMPLIED 
    DATE CDATA #IMPLIED 
    EDITION CDATA #IMPLIED > 
 ]> 

A simple DTD 

48 



XML Data Management 

XML Schema 

 XML Schema is a richer, XML based alternative to DTD 
 

 An XML schema describes the structure of an XML 
document 
 

 The XML Schema language is also referred to as XML 
Schema Definition (XSD) 

49 



XML Data Management 

Why XML Schemas? 

 The purpose of an XML Schema is to define the legal building 
blocks of an XML document, just like a DTD. 

 An XML Schema: 
 defines elements that can appear in a document  
 defines attributes that can appear in a document  
 defines which elements are child elements  
 defines the order of child elements  
 defines the number of child elements  
 defines whether an element is empty or can include text  
 defines data types for elements and attributes  
 defines default and fixed values for elements and attributes  

 

50 



XML Data Management 

An example of XSD 
 <?xml version="1.0"?>  
 <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" …> 
 <xs:element name="note">  

 <xs:complexType>  
  <xs:sequence>  
   <xs:element name="to" type="xs:string"/>  
   <xs:element name="from" type="xs:string"/>  
   <xs:element name="heading" type="xs:string"/> 
   <xs:element name="body" type="xs:string"/>  
  </xs:sequence>  
 </xs:complexType>  

 </xs:element> 
 </xs:schema> 

51 



XML Data Management 

Simple and complex types 

 The note element is said to be of a complex type 
because it contains other elements 
 

 The other elements (to, from, heading, body) are said 
to be simple types because they do not contain other 
elements 
 

52 



XML Data Management 

Simple elements 

 A simple element is an XML element that can contain only 
text. It cannot contain any other elements or attributes. 

 However, the "only text" restriction is quite misleading. The 
text can be of many different types. It can be one of the 
types that are included in the XML Schema definition 
(boolean, string, date, etc.), or it can be a custom type that 
you can define yourself. 

 You can also add restrictions (facets) to a data type in order 
to limit its content, and you can require the data to match a 
defined pattern. 

53 



XML Data Management 

Simple elements 

 The syntax for defining a simple element is:  
  <xs:element name="xxx" type="yyy"/> 
 where xxx is the name of the element and yyy is the data 

type of the element. Here are some XML elements: 
 <lastname>Refsnes</lastname>  
 <age>34</age>  
 <dateborn>1968-03-27</dateborn> 

 and here are the corresponding simple element definitions: 
<xs:element name="lastname" type="xs:string"/>

 <xs:element name="age" type="xs:integer"/>  
 <xs:element name="dateborn" type="xs:date"/>  

54 



XML Data Management 

XML Schema data types 

 
 XML Schema has a lot of built-in data types. Here is a 

list of the most common of them: 
 xs:string  
 xs:decimal  
 xs:integer  
 xs:boolean  
 xs:date  
 xs:time  

 
 
 

55 



XML Data Management 

       Default and Fixed values for simple elements 

 Simple elements can have a default value OR a fixed value set. 
 

 A default value is automatically assigned to the element when 
no other value is specified. In the following example the default 
value is "red": 

  <xs:element name="color" type="xs:string" default="red"/> 
 

 A fixed value is also automatically assigned to the element. You 
cannot specify another value. In the following example the fixed 
value is "red": 

  <xs:element name="color" type="xs:string" fixed="red"/> 

56 



XML Data Management 

Attribute definition 

 The syntax for defining an attribute is:  
  <xs:attribute name="xxx" type="yyy"/> 

 
 where xxx is the name of the attribute and yyy is the 

data type of the attribute.  
 
 Here is an XML element with an attribute: 
  <lastname lang="EN">Smith</lastname> 
 and the corresponding simple attribute definition: 
  <xs:attribute name="lang" type="xs:string"/>  

 

57 



XML Data Management 

Value restrictions 

 This example defines an element called "age" with a 
restriction. The value of age cannot be lower than 0 or 
greater than 100: 

 <xs:element name="age"> 
  <xs:simpleType>  
   <xs:restriction base="xs:integer">  
    <xs:minInclusive value="0"/> 
    <xs:maxInclusive value="100"/> 
   </xs:restriction>  
  </xs:simpleType> 
 </xs:element>  

58 



XML Data Management 

Enumeration constraint 
 To limit the content of an XML element to a set of acceptable values, 

we would use the enumeration constraint. 
 This example defines an element called "car": 
 <xs:element name="car"> 
  <xs:simpleType>  
   <xs:restriction base="xs:string">  
    <xs:enumeration value="Audi"/>  
    <xs:enumeration value="Golf"/> 
    <xs:enumeration value="BMW"/> 
   </xs:restriction>  
  </xs:simpleType> 
 </xs:element>  
 The "car" element is a simple type with a restriction. The acceptable 

values are: Audi, Golf, BMW. 

59 



XML Data Management 

Separate type definition 

 The previous example could also have been written like this: 
 <xs:element name="car" type="carType"/> 
 <xs:simpleType name="carType">  
  <xs:restriction base="xs:string">  
   <xs:enumeration value="Audi"/>  
   <xs:enumeration value="Golf"/>  
   <xs:enumeration value="BMW"/>  
  </xs:restriction>  
 </xs:simpleType> 
 
 In this case the type "carType" can be used by other 

elements because it is not a part of the "car" element. 
 

60 



XML Data Management 

Pattern constraints 
 To limit the content of an XML element to define a series of 

numbers or letters, we would use the pattern constraint. 
 This example defines an element called "letter": 
 <xs:element name="letter"> 
  <xs:simpleType>  
   <xs:restriction base="xs:string">  
    <xs:pattern value="[a-z]"/>  
   </xs:restriction>  
  </xs:simpleType> 
 </xs:element>  
 The "letter" element is a simple type with a restriction. The  

acceptable value is one of the lowercase letters from a to z.
 

61 



XML Data Management 

Complex elements 

 A complex element is an XML element that contains other 
elements and/or attributes. 

 There are four kinds of complex elements: 
 empty elements  
 elements that contain only other elements  
 elements that contain only text  
 elements that contain both other elements and text  

 
 Note: Each of these elements may contain attributes as well! 

 

62 



XML Data Management 

Example of complex element 

 The "employee" element can be declared directly by 
naming the element, like this: 

 <xs:element name="employee">  
  <xs:complexType>  
          <xs:sequence>  
   <xs:element name="firstname" type="xs:string"/> 
   <xs:element name="lastname" type="xs:string"/> 
           </xs:sequence>  
  </xs:complexType>  
 </xs:element> 

63 



XML Data Management 

Use of externally defined complex types 

 The "employee" element can have a type attribute that 
refers to the name of the complex type to use: 
<xs:element name="employee" type="personinfo"/> 
<xs:element name="student" type="personinfo"/> 
<xs:complexType name="personinfo">  
  <xs:sequence>  
   <xs:element name="firstname" type="xs:string"/> 
   <xs:element name="lastname" type="xs:string"/> 
  </xs:sequence>  
 </xs:complexType> 

64 



XML Data Management 

     Example: Complex type for empty element 

 <xs:element name="product">  
      <xs:complexType>  
  <xs:attribute name="prodid" type="xs:positiveInteger"/>  
      </xs:complexType>  
 </xs:element> 

65 



XML Data Management 

Sequence vs Mixed 

 <xs:element name="person">  
     <xs:complexType>  
  <xs:sequence>  
   <xs:element name="firstname" type="xs:string"/> 
   <xs:element name="lastname" type="xs:string"/>  
  </xs:sequence>  
     </xs:complexType>  
 </xs:element> 
 <xs:element name="letter"> 
     <xs:complexType mixed="true">  
  <xs:sequence>  
        <xs:element name="name" type="xs:string"/> 
        <xs:element name="orderid" type="xs:positiveInteger"/>  
           <xs:element name="shipdate" type="xs:date"/>  
  </xs:sequence>  
     </xs:complexType>  
 </xs:element> 

 

 

66 

Legal XML document: 
<letter> Dear Mr.<name>John Smith</name>. Your order 
<orderid>1032</orderid> will be shipped on 
<shipdate>2001-07-13</shipdate>. </letter> 



XML Data Management 

All 

 The <all> indicator specifies by default that the child 
elements can appear in any order and that each child 
element must occur once and only once:  

 <xs:element name="person">  
     <xs:complexType>  
  <xs:all>  
      <xs:element name="firstname" type="xs:string"/>  
      <xs:element name="lastname" type="xs:string"/>  
  </xs:all>  
     </xs:complexType>  
 </xs:element> 

67 



XML Data Management 

Choice 

 The <choice> indicator specifies that either one child 
element or another can occur: 

 <xs:element name="person">  
     <xs:complexType>  
  <xs:choice>  
      <xs:element name="employee" type="employee"/>  
      <xs:element name="member" type="member"/>  
  </xs:choice>  
     </xs:complexType>  
 </xs:element> 

68 



XML Data Management 

MaxOccurs and minOccurs 
 The <maxOccurs> indicator specifies the maximum number of times 

an element can occur. The <minOccurs> indicator specifies the 
minimum number of times an element can occur: 

 <xs:element name="person">   <xs:complexType> <xs:sequence>  
      <xs:element name="full_name" type="xs:string"/>  
      <xs:element name="child" type="xs:string"  
            maxOccurs="10" minOccurs="0"/>  
 </xs:sequence>  </xs:complexType> </xs:element> 
 The example indicates that the "child" element can miss or can occur a 

maximum of ten times in a "person" element. 
 The default value for minOccurs and maxOccurs is 1 
 To allow an element to appear an unlimited number of times, use the 

maxOccurs="unbounded" statement. 

69 



XML Data Management 

Any 

 The <any> element enables us to extend the XML document 
with elements not specified by the schema. 

 The following example is a fragment from an XML schema 
called "family.xsd". It shows a declaration for the "person" 
element. By using the <any> element we can extend (after 
<lastname>) the content of "person" with any element: 

 <xs:element name="person">   <xs:complexType> <xs:sequence> 
  <xs:element name="firstname" type="xs:string"/>  
  <xs:any minOccurs="0"/>  
  </xs:sequence>  </xs:complexType> </xs:element> 

70 



XML Data Management 

AnyAttribute 

 The <anyAttribute> element enables us to extend the 
XML document with attributes not specified by the 
schema. 

 <xs:element name="person">   <xs:complexType>  
      <xs:sequence> 
  <xs:element name="firstname" type="xs:string"/>  
  <xs:any minOccurs="0"/>  
       </xs:sequence>   
       <xs:anyAttribute/> 

</xs:complexType> </xs:element>

71 



XML Data Management 

Query Languages  
for XML 

 
 

(XPath, XQuery) 

72 



XML Data Management 

Query languages for XML 

 XML can be considered as a semi-structured data model  
 A set of XML documents (or a single one, e.g. Divina 

Commedia) can be considered as a large data collection 
 Query languages are needed for extracting relevant 

information from such documents 
 The languages are: 

 XPath a simple document selection language 
 XQuery a rich query language 
 XSLT expecially used for document transformations (e.g. 

Producing HTML from XML) – not discussed in this course 
 

73 



XML Data Management 

XPath 

 XPath uses path expressions to select nodes in an XML 
document. The node is selected by following a path or steps. 
The most useful path expressions are listed below: 

 Expression  Description 
 Nodename  Selects all child nodes of the node 
 /   Selects from the root node 
 //   Selects nodes in the document from the 
    current node that match the selection no 
    matter where they are  
 .   Selects the current node 
 ..   Selects the parent of the current node 
 @   Selects attributes 

 



XML Data Management 

Path expressions 

 A path expression starts from the root of the document, 
e.g. doc(“books.xml”) returns the root element and all 
its content. 
  

 Starting from the root it is possible to express path 
expressions in order to extract the desired content 

  doc(“books.xml”)/bookstore/book 
 Return the sequence of all book elements in the 

document 

75 



XML Data Management 

doc("books.xml")/bookstore/book 

       <book available='Y'> 
                <title>Il Signore degli Anelli</title> 
                <author>J.R.R. Tolkien</author> 
                <date>2002</date> 
                <ISBN>88-452-9005-0</ISBN> 
                <publisher>Bompiani</publisher> 
        </book> 
       <book available='N'> 
                <title>Il nome della rosa</title> 
                <author>Umberto Eco</author> 
                <date>1987</date> 
                <ISBN>55-344-2345-1</ISBN> 
                <publisher>Bompiani</publisher> 
        </book> 
        <book available='Y'> 
                <title>Il sospetto</title> 
                <author>F. Dürrenmatt</author> 
                <date>1990</date> 
                <ISBN>88-07-81133-2</ISBN> 
                <publisher>Feltrinelli</publisher> 
        </book> 

<?xml version="1.0"?> 
<bookstore> 
        <book available='Y'> 
                <title>Il Signore degli Anelli</title> 
                <author>J.R.R. Tolkien</author> 
                <date>2002</date> 
                <ISBN>88-452-9005-0</ISBN> 
                <publisher>Bompiani</publisher> 
        </book> 
       <book available='N'> 
                <title>Il nome della rosa</title> 
                <author>Umberto Eco</author> 
                <date>1987</date> 
                <ISBN>55-344-2345-1</ISBN> 
                <publisher>Bompiani</publisher> 

</book>
        <book available='Y'> 
                <title>Il sospetto</title> 
                <author>F. Dürrenmatt</author> 
                <date>1990</date> 
                <ISBN>88-07-81133-2</ISBN> 
                <publisher>Feltrinelli</publisher> 
        </book> 
</bookstore> 

Path expressions 

76 



XML Data Management 

Conditions 

 doc (“books.xml”)/bookstore/book[publisher=‘Bompiani’]/title 

 Return the sequence of all titles of books edited by Bompiani 

<title>Il Signore degli Anelli</title> 
<title>Il nome della rosa</title> 

77 



XML Data Management 

Subelements 
 doc(“books.xml”)//author 

 Return the sequence of all authors in the document, 
independently of their nesting level 

<author>J.R.R. Tolkien</author> 
<author>Umberto Eco</author> 
<author>F. Dürrenmatt</author> 

78 



XML Data Management 

Subelements 
 
 
 
 

 
 

doc(“books.xml”)//a 

<a> 
 bnnnn 
     <b>mmm <a>primo</a> </b>  bnnnn 
     <c><b>mmm <a>secondo</a>   </b></c> 
</a> 

79 

<a> 
 bnnnn 
     <b>mmm <a>primo</a> </b>  bnnnn 
     <c><b>mmm <a>secondo</a>   </b></c> 
</a> 
<a>primo</a> 
<a>secondo</a> 



XML Data Management 

Ordered elements 

 doc (“books.xml”)/bookstore/book[2] 
 Return the second book 

<book> 
  <title>Il nome della rosa</title> 
  <author>Umberto Eco</author> 
  <date>1987</date> 
  <ISBN>55-344-2345-1</ISBN> 
  <publisher>Bompiani</publisher> 
</book> 

80 



XML Data Management 

Ordered elements 

 doc (“books.xml”)/bookstore/book[2]/* 
 Return all the elements (* = with any tagname) 

contained into the second book

<title>Il nome della rosa</title> 
<author>Umberto Eco</author> 
<date>1987</date> 
<ISBN>55-344-2345-1</ISBN> 
<publisher>Bompiani</publisher> 

81 



XML Data Management 

Path expressions 

 Second order expression 
 expr1 / expr2 
 Semantics: 

1. Evaluate expr1 => sequence of nodes 
2. Bind . to each node in this sequence 
3. Evaluate expr2 with this binding => sequence of 

nodes 
4. Concatenate the partial sequences 
5. Eliminate duplicates 
6. Sort by document order 

 A standalone step is an expression 
1. step = (axis, nodeTest) where 
2. nodeTest = (node kind, node name, node type) 



XML Data Management 

XPath Axes 
 An axis defines a node-set relative to the current node. 

 ancestor: selects all ancestors (parent, grandparent, etc.) of the 
current node 

 ancestor-or-self: selects all ancestors (parent, grandparent, etc.) of 
the current node and the current node itself 

 attribute: selects all attributes of the current node 
 child: selects all children of the current node 
 descendant: selects all descendants (children, grandchildren, etc.) of 

the current node 
 descendant-or-self: selects all descendants (children, grandchildren, 

etc.) of the current node and the current node itself 
 following: selects everything in the document after the closing tag of 

the current node 
 following-sibling: selects all siblings after the current node 
 parent: selects the parent of the current node 
 preceding: selects everything in the document that is before the start 

tag of the current node 
 preceding-sibling: selects all siblings before the current node 
 self: selects the current node 

 



XML Data Management 

Abbreviated syntax 

 Axis can be missing 
 By default the child axis 

 $x/child::person -> $x/person 
 Short-hands for common axes 

 Descendent-or-self 
 $x/descendant-or-self::*/child::name-> $x//name 

 Parent 
 $x/parent::* -> $x/.. 

 Attribute 
 $x/attribute::year -> $x/@year 

 Self 
 $x/self::* -> $x/. 



XML Data Management 

XPATH EXAMPLES 
 /bookstore  Selects the root element bookstore  
    (If the path starts with a slash ( / ) it always 

   represents an absolute path to an element! 
 bookstore/book Selects all book elements that are 
    children of bookstore 
 //book  Selects all book elements no matter 
    where they are in the document 
 bookstore//book Selects all book elements that are 
    descendant of the bookstore element, no 
    matter where they are under the 
    bookstore element 
 //@lang  Selects all attributes that are named lang 

 

85 



XML Data Management 

Predicates are used to find a specific node or a node that contains a 
specific value. Predicates are always embedded in square brackets 

 
/bookstore/book[1]   Selects the first book element that is the 
     child of the bookstore element 
/bookstore/book[=1]   Selects the … 
/bookstore/book[last()]  Selects the last book element that is the 
     child of the bookstore element 
/bookstore/book[last()-1] Selects the last but one book element that 
     is the child of the bookstore element 
/bookstore/book[position()<3] Selects the first two book elements that 
     are children of the bookstore element  
/bookstore/book[<3]  Selects the … 

XPATH PREDICATES 

86 



XML Data Management 

Predicates are used to find a specific node or a node that contains a 
specific value. Predicates are always embedded in square brackets 

 
//title[@lang]   Selects all the title elements that have an 
     attribute named lang 
//title[@lang='eng']  Selects all the title elements that have an 

attribute named lang with a value of 'eng'
/bookstore/book[price>35.00] Selects all the book elements of the 
     bookstore element having a price element  
     with a value greater than 35.00 
/bookstore/book[price]  Selects all the book elements of the 
     bookstore element having a price element  
      
 

XPATH PREDICATES 

87 



XML Data Management 

XPath filter predicates 
 [ ] is an overloaded operator 
 Filtering by position (if numeric value) : 

 /book[3] 
 /book[3]/author[1] 
 /book[3]/author[2 to 4] 

 Filtering by predicate : 
 //book[author/firstname = “ronald”] 
 //book[@price <25] 
 //book[count(author[@gender=“female”] )>0] 

 Existential filtering: 
 //book[author] 

88 



XML Data Management 

Wildcards 

XPath wildcards can be used to select unknown XML elements 
 

 Wildcard  Description 
 *   Matches any element node 
 @*   Matches any attribute node 
 node()  Matches any node of any kind 

 
 Path   ExpressionResult 
 /bookstore/* Selects all the child nodes of the bookstore  
    element 
 //*   Selects all elements in the document 
 //title[@*]  Selects all title elements which have any attribute 

89 



XML Data Management 

Alternative paths 

 The | operator in an XPath expression indicates several 
alternative paths that can be used to select results  
 

 //book/title | //book/price 
 Selects all the title and the price elements of all books 

 

 //title | //price 
 Selects all the title and the price elements in the document 

 

 /bookstore/book/title | //price 
 Selects all the title elements of the book element of the 

bookstore element AND all the price elements in the document 
 

90 


