Exercise session 4

Data bases 2
XQuery Solutions

marco.abbadini@unibg.it

XQuery - Real Estate 盉 (1/5)

```
<!ELEMENT Catalogue ( Ad*, VisitRequest* )>
<!ELEMENT Ad ( Apartment, PublishedPrice, Owners,
MinimumAcceptablePrice?, MortgageLoan?, ... )>
<!ATTLIST Ad code ID #REQUIRED PublicationDate CDATA
#REQUIRED >
<!ELEMENT Owners ( Person+ )>
<!ELEMENT Person ( FirstName, LastName, Email, Telephone )>
<!ELEMENT VisitRequest ( Person, DateOfRequest,
ScheduledDateForTheVisit?, OfferedPriceAfterVisit?, ... )>
<!ATTLIST VisitRequest AdRef IDREF #REQUIRED >
```


Real Estate 社 $(2 / 5)$

1. the Apartments that received offers by at least 5 different potential buyers (Email is an identifier for people).

for \$a in //Ad

where 4 < count(distinct-values(//VisitRequest[@AdRef=\$a/@code and ./OfferedPriceAfterVisit]/Person/Email))
return \$a/Apartment

Real Estate 䇥 (3/5)

2. the Apartment that received its first visit request after the longest wait after publication.
let \$ranking: (for \$a in //Ad let \$firstdate := min(//VisitRequest[@AdRef = \$a/@code]/DateOfRequest)
let \$delta := \$firstdate - \$a/@PublicationDate
where count (\$firstdate) > 0
order by \$delta descending
return \{ \$delta \} \{ \$a/Apartment \})
for $\$ \mathrm{r}$ in \$ranking
where $\$$ r/item/delay = \$ranking[1]/item/delay
return \$r/item/apt/*

Real Estate 登 (4/5)

2. the Apartment that received its first visit request after the longest wait after publication. (Alternative solution) let \$maxdelay: max(for \$a in //Ad
```
let $firstdate := min(//VisitRequest[ @AdRef = $a/@code ]/DateOfRequest )
where count( $firstdate ) > 0
return $firstdate - $a/@PublicationDate )
```

for $\$ \mathrm{a}$ in //Ad
let \$firstdate := min(//VisitRequest[@AdRef = \$a/@code]/DateOfRequest)
where count $(\$$ firstdate $)>0$ and $\$$ firstdate $-\$ a / @ P u b l i c a t i o n D a t e=\$ m a x d e l a y$
return \$a/Apartment

Real Estate 社 (5/5)

3. the potential buyers who always and only offered prices below the minimum threshold fixed by the owners.
for \$p in //VisitRequest/Person
where 0 = count(for $\$ v r$ in //VisitRequest
where \$vr/OfferedPriceAfterVisit >= //Ad[@code=\$vr/@ARef]/MinimumAcceptablePrice and \$vr/Person/Email = \$p/Email
return <PlusOne/>) (<PPusOnes> is a placeholde f for each offer above the treshold)
return $\$ p$

Medical Center (1/4)

In the following DTD, unspecified elements contain only PCDATA

```
<!ELEMENT MedicalCenter (Patient+, Exam+)>
<!ELEMENT Patient (Name, Age, Email, HighRisk)>
<!ATTLIST PatientId ID # REQUIRED>
<!ELEMENT Exam (Date, Time, Cost, Outcome +, Doctor)>
<!ATTLIST Exam PatientId IDREF # REQUIRED>
<!ELEMENT Outcome (Parameter, Value, MinVal, MaxVal)>
```


Medical Center 澲 (2/4)

1. Extract in XQuery the parameter that is regular (between the reference values) with the highest frequency (for the query, consider for each parameter the percentage of "normal" outcomes)
let \$rank := (for \$par in distinct-values(//Parameter)
let \$OutForThatPar := //Outcome[Parameter = \$par]
let \$percOK := count(\$OutForThatPar [Value >= MinVal and Value <= MaxVal]) div count(\$OutForThatPar) * 100
order by \$percOK
return <par> <name> \{ \$par \} </name> <PercOk> \{ \$percOK \} </PercOk> </par>
let \$max := \$rank[1]/PercOk
return \$rank[PercOk = \$max]/name

Medical Center (3/4)

2. Extract in XQuery the doctors who have only prescribed exams to patients who came out as perfectly healthy
for $\$ \mathrm{~d}$ in distinct-values(//Doctor)
where $0=$ count(for \$o in //Exam[Doctor = \$d]/Outcome[Value < MinVal or Value > MaxVal])
return <LuckyDoctor> \{ \$d \} </LuckyDoctor>

Medical Center (4/4)

3. Extract in XQuery the patient with the largest number of values outside of the healthy range in a single exam.
let \$max := max(for \$ex in //Exam
return count(\$ex/Outcome[Value > MinVal or Value < MaxVal]
))
for \$e in //Exam
where count(\$e/Outcome[Value > MinVal or Value < MaxVal]) = \$max
return \$e/../Name
