
Exercise session 4
Data bases 2

XQuery Solutions

marco.abbadini@unibg.it

XQuery - Real Estate 🏘 (1/5)
<!ELEMENT Catalogue (Ad*, VisitRequest*)>

<!ELEMENT Ad (Apartment, PublishedPrice, Owners,
MinimumAcceptablePrice?, MortgageLoan?, …)>

<!ATTLIST Ad code ID #REQUIRED PublicationDate CDATA
#REQUIRED >

<!ELEMENT Owners (Person+)>

<!ELEMENT Person (FirstName, LastName, Email, Telephone)>

<!ELEMENT VisitRequest (Person, DateOfRequest,
ScheduledDateForTheVisit?, OfferedPriceAfterVisit?, …)>

<!ATTLIST VisitRequest AdRef IDREF #REQUIRED >

Real Estate 🏘 (2/5)

1. the Apartments that received offers by at least 5 different potential buyers
(Email is an identifier for people).

for $a in //Ad

where 4 < count(distinct-values(//VisitRequest[@AdRef=$a/@code and
./OfferedPriceAfterVisit]/Person/Email))

return $a/Apartment

Real Estate 🏘 (3/5)

2. the Apartment that received its first visit request after the longest wait after publication.

let $ranking: (for $a in //Ad let $firstdate := min(//VisitRequest[@AdRef = $a/@code]/DateOfRequest)

let $delta := $firstdate – $a/@PublicationDate

where count($firstdate) > 0

order by $delta descending

return { $delta } { $a/Apartment })

for $r in $ranking

where $r/item/delay = $ranking[1]/item/delay

return $r/item/apt/*

Real Estate 🏘 (4/5)

2. the Apartment that received its first visit request after the longest wait after publication. (Alternative solution)

let $maxdelay: max(for $a in //Ad

let $firstdate := min(//VisitRequest[@AdRef = $a/@code]/DateOfRequest)

where count($firstdate) > 0

return $firstdate – $a/@PublicationDate)

for $a in //Ad

let $firstdate := min(//VisitRequest[@AdRef = $a/@code]/DateOfRequest)

where count($firstdate) > 0 and $firstdate – $a/@PublicationDate = $maxdelay

return $a/Apartment

Real Estate 🏘 (5/5)

3. the potential buyers who always and only offered prices below the minimum
threshold fixed by the owners.

for $p in //VisitRequest/Person

 where 0 = count(for $vr in //VisitRequest

where $vr/OfferedPriceAfterVisit >= //Ad[@code=$vr/@ARef
]/MinimumAcceptablePrice and $vr/Person/Email = $p/Email

 return <PlusOne/>) (<PlusOne/> is a placeholder for each offer above the treshold)

return $p

Medical Center 🏥 (1/4)
In the following DTD, unspecified elements contain only PCDATA

<!ELEMENT MedicalCenter (Patient+, Exam+)>

<!ELEMENT Patient (Name, Age, Email, HighRisk)>

<!ATTLIST PatientId ID # REQUIRED>

<!ELEMENT Exam (Date, Time, Cost, Outcome +, Doctor)>

<!ATTLIST Exam PatientId IDREF # REQUIRED>

<!ELEMENT Outcome (Parameter, Value, MinVal, MaxVal)>

Medical Center 🏥 (2/4)

1. Extract in XQuery the parameter that is regular (between the reference values) with the highest
frequency (for the query, consider for each parameter the percentage of "normal" outcomes)

let $rank := (for $par in distinct-values(//Parameter)

let $OutForThatPar := //Outcome[Parameter = $par]

let $percOK := count($OutForThatPar [Value >= MinVal and Value <= MaxVal]) div
count($OutForThatPar) * 100

order by $percOK

return <par> <name> { $par } </name> <PercOk> { $percOK } </PercOk> </par>

let $max := $rank[1]/PercOk

return $rank[PercOk = $max]/name

Medical Center 🏥 (3/4)

2. Extract in XQuery the doctors who have only prescribed exams to patients
who came out as perfectly healthy

for $d in distinct-values(//Doctor)

where 0 = count(for $o in //Exam[Doctor = $d]/Outcome[Value < MinVal or
Value > MaxVal])

return <LuckyDoctor> { $d } </LuckyDoctor>

Medical Center 🏥 (4/4)

3. Extract in XQuery the patient with the largest number of values outside of the
healthy range in a single exam.

let $max := max(for $ex in //Exam

return count($ex/Outcome[Value > MinVal or Value < MaxVal]
))

for $e in //Exam

where count($e/Outcome[Value > MinVal or Value < MaxVal]) = $max

return $e/../Name

