
Discrete Log based Cryptosystems

Gerardo Pelosi

Dipartimento di Elettronica, Informazione e Bioingegneria (DEIB)
Politecnico di Milano

gerardo.pelosi - at - polimi.it

G. Pelosi (DEIB) Discrete Log based Cryptosystems 1 / 33

Overview

Lesson contents

Discrete Logarithm Problem

Diffie-Hellmann Protocol

ElGamal Cryptosystem

ElGamal Signature scheme

Digital Signature Standard Algorithm (DSS-DSA)

G. Pelosi (DEIB) Discrete Log based Cryptosystems 2 / 33

Discrete Logarithm Problem (1)

Generalized Discrete Logarithm Problem (GDLP)

Let (G , ·) be a cyclic group (written multiplicatively) with order n = |G |,
where g ∈ G is one of its generators: G = 〈g〉. The GDLP for the group
G is stated as follows:

Given a ∈ 〈g〉, find the smallest positive integer x ∈ Zn such that g x = a

Such an integer is the discrete logarithm of a to the base g , and we shall
use the notation

x = logDg a or x = indg a

Note that, the familiar formulas for ordinary logarithms remains valid:

Given a, b ∈ G , then

logDg (a · b) = logDg (a) + logDg (b) mod n

Given a ∈ G , If g1 is another generator of G , then:

logDg (a) · logDg1(g) = logDg1(a) mod n

G. Pelosi (DEIB) Discrete Log based Cryptosystems 3 / 33

Discrete Logarithm Problem (2)

In cryptography it is crucial to select a cyclic group G where the GDLP is
a “computationally hard” problem.
For instance, consider the group (Z19,+) with n = |G | = 19.

Let’s assume G = 〈g〉, with g = 2. (Obs.: every element except 0 is a
generator because n = 19 is prime!)

Given a generic element a ∈ G , say a = 15, the computation of the discrete
logarithm of a to the base g means that we have to find the smallest integer
s.t. x · g = a which means that:

x · 2 = 15 mod 19

The unknown x can be easily found (in polynomial time) through the
Euclid’s gcd Algorithm:

x = logD
g a = 2−1 · 15 mod 19 = 10 · 15 mod 19 = 17 mod 19

Therefore, the cyclic subgroups of (Z,+) are not good candidates to build
a cryptosystem!

G. Pelosi (DEIB) Discrete Log based Cryptosystems 4 / 33

Discrete Logarithm Problem (3)

The cyclic groups where there is no polynomial time algorithm to extract
the discrete logarithm of an element to any generator are:

Multiplicative subgroups of a generic Finite Field (F∗pm , ·), where
m ≥ 1, p a prime number, pm ≥ 21024, and the order of the subgroup
is also a prime, with n ≥ 2160

if n is a composite integer, the DLP in such a group can be reduced to
the DLPs in each of its (smaller) prime subgroups through applying the
so-called “Pohlig-Hellman Algorithm” (. . . we’ll see the details in the
next lecture)

Additive subgroups (G ,+) of elliptic curve points defined over a finite
field, with prime order n ≥ 2160: G = E(Fpm)[n] (with a proper
definition of the group law. . .)

G. Pelosi (DEIB) Discrete Log based Cryptosystems 5 / 33

Discrete Logarithm Problem (4)

Currently, the best known algorithms to solve the DLP in the
multiplicative subgroups of Finite fields or in the additive subgroups of
points of an elliptic curve are adapted from the best methods designed to
factor a composite integer.

The computational complexity of the GNFS adapted to find a discrete
log in a prime multiplicative subgroup G included in a finite field is
sub-exponential: O(L|G |(α, β)), 0 < α < 1.

The computational complexity of the GNFS adapted to find a discrete
log in a prime subgroup G of a properly chosen elliptic curve is
exponential: O(L|G |(1, β)).

This will lead to the fact that Elliptic curve cryptosystems (ECC) can
employ public/private key pairs shorter than other dicrete log systems
without reducing the security margin!

G. Pelosi (DEIB) Discrete Log based Cryptosystems 6 / 33

Example (1)

Given G = (Z∗11, ·), with |G |=ϕ(11)=10, to formulate a correct GDLP we need:

to find a generator g of the group G , assuming to know the factorization of
the order n = |G | =

∏s
i p

ei
i , ei ≥ 1, s ≥ 1

to find a proper prime subgroup H, with p2 = |H|

We know the factorization of the order |G | = 10 = 5 · 2 thus, we can find a

generator of G through the usual basic procedure (p1 = 5, p2 = 2)

Input: |G | = pe11 · · · · · p
es
s , ∀ei ≥ 1

Output: g , generator of G
1 begin
2 while true do

3 g
random← {1, . . . , |G | − 1}

4 if g |G |/p1 6= 1 and . . . and g |G |/ps 6= 1 then
5 return g

g10/5 ≡11 22 ≡11 4 6= 1, g10/2 ≡11 25 ≡11 2 6= 1 thus, g = 2 is a generator.

The prime subgroup H=〈h〉, is generated by h = g |G |/p1≡114

G. Pelosi (DEIB) Discrete Log based Cryptosystems 7 / 33

Example (2)

Given G = (F∗25 , ·), with generating polynomial f (x) = x5 + x2 + 1∈F2[x],
find a generator g ∈ G

We note that n = |G | = 31 is a prime number, thus every element (except
for the neutral element) is a generator.

In particular, representing the field F25 as a simple algebraic extension:

F25
∼= F2(α) = {b4α4+b3α

3+b2α
2+b1α+b0|bi ∈ F2, f (α) = 0, α ∈ F25\F2}

for the sake of simplicity, we can pick as generator the element (6= 0, 1)
with the least number of coefficients:

g = (00010) = 0α4 + 0α3 + 0α2 + 1α + 0α0 = α

G. Pelosi (DEIB) Discrete Log based Cryptosystems 8 / 33

Discrete Log Cryptosystems (1)

Given a cyclic finite group (G , ·) with generator g ∈ G and order n = |G |,
the common Discrete Log Cryptosystems are classified according to three
computational problems:

The (already defined) Discrete Log Problem (DLP)

Given a ∈ G , find x ∈ Zn s.t. a = g x

The Diffie-Hellman Problem (DHP)

Given a = g x , b = g y ∈ G , for some x , y ∈ Zn, find c ∈ G s.t. c = g x y

The Decisional Diffie-Hellman Problem (DDHP)

Given a = g x , b = g y , c = g z ∈ G , for some x , y , z ∈ Zn, establish
whether z ≡ x y mod n, or not

G. Pelosi (DEIB) Discrete Log based Cryptosystems 9 / 33

Discrete Log Cryptosystems (2)

DHP: Given a=g x , b=g y∈G , for some x , y∈Zn, find c∈G s.t. c=g x y

Clearly, if we could find x from g x , we could solve DHP through a single
exponentiation (c = bx = (g y)x), so

Lemma 1

The DHP problem is no harder than the DLP problem.

Fact

It is not known if the opposite direction is true in general (i.e., in every
possible finite cyclic group). Nevertheless, in some particular groups (a.k.a.
Gap-groups), the equivalence between the DLP and DHP has been proven.

G. Pelosi (DEIB) Discrete Log based Cryptosystems 10 / 33

Discrete Log Cryptosystems (3)

The DHP problem has a peculiar property, namely if I give you a group
element and I claim it solves a DHP instance, it’s not clear whether you
can verify that the solution is correct, unless you can solve DLP yourself.

You would need to solve the DDHP:

Given a = g x , b = g y , c = g z ∈ G , for some x , y , z ∈ Zn, establish
whether z ≡ x y mod n, or not (i.e. c is a random element in G).

Fact

Solving DHP is a sufficient requirement to solve DDHP
(although it is NOT clear that this would be necessary, in general).

G. Pelosi (DEIB) Discrete Log based Cryptosystems 11 / 33

Discrete Log Cryptosystems (4)

Lemma 2

The DDH Problem is no harder than the DH Problem.

Fact

There are no types of groups known (other than trivial cases) for
which we can show that DDHP is equivalent to DHP.

In fact, there are cases where DDHP is known to be easy, but DHP is
conjectured to be hard!

In general, the facts known for certain for every possible group are:
DDHP “is no harder than” DHP “is no harder than” DLP

No results are known in general for any other possible relation among
these problems!

G. Pelosi (DEIB) Discrete Log based Cryptosystems 12 / 33

Diffie-Hellman Key Exchange

Diffie and Hellman (1976): New directions in cryptography.

This protocol allows two parties that have no prior knowledge of each
other to jointly establish a shared secret key over an insecure
communications channel

The shared secret key can then be used to encrypt subsequent
communications using a symmetric key cipher

G. Pelosi (DEIB) Discrete Log based Cryptosystems 13 / 33

Diffie-Hellman Key Exchange

Public parameters publicly known are a cyclic group (G = 〈g〉, ·) and its
order n = |G |.

A
Private ephemeral key:

kpriv,A
Random← Zn\{0, 1}

Public ephemeral key:
kpub,A ← gkpriv,A

Send kpub,A to B

Compute the shared session key:

kA,B = k
kpriv,A
pub,B = gkpriv,A kpriv,B

B
Private ephemeral key:

kpriv,B
Random← Zn\{0, 1}

Public ephemeral key:
kpub,B ← gkpriv,B

Send kpub,B to A

Compute the shared session key:

kA,B = k
kpriv,B
pub,A = gkpriv,A kpriv,B

G. Pelosi (DEIB) Discrete Log based Cryptosystems 14 / 33

Diffie-Hellman Key Exchange

Security against passive adversaries (that can only eavesdrop msgs
over the communication channel) is based on the DHP which is no
harder than the DLP

Active adversaries who can put themselves in the middle of the
communication channel, can easily masquerade to one party as its
rightful counterpart without being noticed (Man-in-the-middle attack
(MiTM))

This problem arises because the DH protocol performs a
non-authenticated key exchange
the transmission of each DH public ephemeral key should be managed
employing a public key cryptosystem so to digitally sign the msgs

Why we should use the Diffie-Hellman protocol instead of exchanging a
“shared secret”(or password) via public-key encryption?

G. Pelosi (DEIB) Discrete Log based Cryptosystems 15 / 33

Key Exchange

Forward Secrecy

A system is said to have forward secrecy, if the compromise of a
long-term private key (at some point in the future) does not compromise
the security of communications made using that key in the past.

Symmetric-key transmission via public key encryption does not have
forward secrecy.

Suppose you bulk encrypt a video stream and then encrypt the
session key under the recipient’s RSA public key.

Then suppose that some time in the future, the recipient’s RSA
private key is compromised.

At that point your video stream is also compromised, assuming the
attacker recorded this at the time it was transmitted!

G. Pelosi (DEIB) Discrete Log based Cryptosystems 16 / 33

Key Exchange

In addition, the use of a symmetric-key system implies that the
recipient trusts the sender to generate the session key

Sometimes the recipient may wish to contribute some randomness of
his own to the session key

This can only be done if both parties are online at the same moment in
time

The transmission of the symmetric-key from sender to receiver, via
PKC, is more suited to the case of a key-exchange where only the
sender is online. F.i., in an e-mail application.

The DH protocol is more suited to the case of a key-exchange
between on-line parties and it also provides forward secrecy!

In case, you want to use the DH protocol offline: one of the parties
employs a long-term public key of the form g a, while the other party
uses a public ephemeral key

G. Pelosi (DEIB) Discrete Log based Cryptosystems 17 / 33

Diffie-Hellman Protocol

Many practical implementations of the DH protocol employ a cyclic subgroup G
of (Z∗p, ·) where the prime integer p is generated in such a way that the order of
p1 = |G | is also a sufficiently large prime.

Usually, two prime numbers p1, p2 are generated in such a way that
p1 ≥ 2160, and p = 2 p1 p2 + 1 is also prime, with p ≥ 21024

given a generator α ∈ Z∗p, a generator of the subgroup G is computed as

g = α
p−1
p1

Example

p1 = 5, p2 = 3, p = 2 p1 p2 + 1 = 31 is a prime number!
(Z∗p , ·); |Z∗p | = p − 1 = 30 = 2 p1 p2, it is easy to prove that α = 3 is a generator.
Therefore, if we want to find a generator of the subgroup G with order p1 = 5,
g = 330/5 ≡31 16.
Hence, assuming a pair of DH ephemeral keys as:
kpriv ,A=a=2 and kpub,A = g a = 162 mod 31 ≡31 8
kpriv ,B=b=4 and kpub,B = gb = 164 mod 31 ≡31 2
the shared secret key is: kBA = 22 mod 31 = kAB = 84 mod 31 = 4 mod 31

G. Pelosi (DEIB) Discrete Log based Cryptosystems 18 / 33

ElGamal Cryptosystem

ElGamal (1985): A public key cryptosystem and a signature scheme based
on discrete logarithms

the assumption is that there is a publicly known cyclic group (G , ·)
with order n = |G | (preferably prime) and a generator g ∈ G , where
the DDHP, DHP, DLP are recognized to be computationally hard.

it did not achieve the same diffusion of RSA, because:

the ctx provided as a result of an ElGamal encryption transformation
has twice the size of the original ptx
the computational performances are slightly worse than the RSA ones
(×2) when G = (Fpm , ·)

G. Pelosi (DEIB) Discrete Log based Cryptosystems 19 / 33

ElGamal Cryptosystem

Given the cyclic group (G , ·) with order n = |G | (preferably prime)
and a generator g ∈ G

Public key: kpub ← 〈 n, g , g s 〉 Private key: kpriv ← 〈 s ∈ Zn 〉

Encryption Transformation

m ∈ G
l
Random← Z∗n
γ ← (g)l

δ ← m · (g s)l

c ← Enckpub(m) = 〈γ, δ〉

Decryption Transformation

c = 〈γ, δ〉
m← Deckpriv(c) = γn−s · δ

Correctness verification:
Deckpriv(Enckpub(m)) = m ∀m ∈ G

γn−s · δ = (g l)−s ·m · (g s)l = m · g0 mod n = m

G. Pelosi (DEIB) Discrete Log based Cryptosystems 20 / 33

Example

Given G = F∗31, with generator g = 3 and n = |G | = 30 a party A wishes to send
the message m = 12 ∈ G to B, knowing that kpriv,B ← 〈s ∈ Zn〉 = 〈5〉
kpub,B ← 〈n, g , g s〉 = 〈30, 3, 26〉

A

l
Random← Z∗30, l = 3

γ ← (g)l = 33 mod 31 ≡31 27
δ ← m · (g s)l = 12 · (26)3 mod 31 ≡31 19
c ← Enckpub(m) = 〈γ, δ〉 = 〈27, 19〉

B

m← Deckpriv(c) = γn−s · δ = 2725 · 19 mod 31 ≡31 27(11001)2 · 19 ≡31

≡31 (((272 27)2)2)2 27 19 ≡31 . . . ≡31 12

G. Pelosi (DEIB) Discrete Log based Cryptosystems 21 / 33

Security of the ElGamal Cryptosystem

Lemma

Assuming the Diffie–Hellman problem (DHP) is hard then ElGamal is
secure under a chosen plaintext attack (CPA), where security means it is
hard for the adversary, given the ciphertext, to recover the whole of the
plaintext

Lemma

If DDH is hard in the group G then ElGamal encryption is polynomially
secure against a passive adversary

G. Pelosi (DEIB) Discrete Log based Cryptosystems 22 / 33

Security of the ElGamal Cryptosystem

Lemma

ElGamal is not Adaptively CCA secure (CCA2 secure)

Proof.

Suppose the message an eavesdropper wants to break is

c = (γ, δ) = (g l ,m(g s)l)

she creates the related msg:

c ′ = (γ, 2δ)

and asks her decryption oracle to decrypt c ′ to give m′. Then she

computes m′

2 = 2δγ−s

2 = 2mg slg−sl

2 = m

In practice a “modified version” of the ElGamal Cryptosystem is actually
implemented in any practical scenario where this is scheme is adopted.

G. Pelosi (DEIB) Discrete Log based Cryptosystems 23 / 33

Security of the ElGamal Cryptosystem

Fujisaki and Okamoto in 1999 showed how to turn a scheme generic PKC
into an encryption scheme which is semantically secure against adaptive
adversaries in the random oracle model (. . . it works by showing that the
resulting scheme is “plaintext aware”)

[ref.: E. Fujisaki and T. Okamoto How to Enhance the Security of
Public-Key Encryption at Minimum Cost, LNCS 1999, Vol.1560. Springer]

We do not go into the details of the proof, but simply give the
transformation

G. Pelosi (DEIB) Discrete Log based Cryptosystems 24 / 33

Security of the ElGamal Cryptosystem

To make ElGamal cryptoscheme CCA2 secure we proceed as follows:

The encryption function ElGamal-Enc(m, l) = 〈 g l ,m · (g s)l 〉 is altered by
setting

Enc(m, l) = ElGamal-Enc (m||l ,H(m||l)) =

= 〈 gH(m||l), (m||l) · (g s)H(m||l) 〉

where H is a hash function, and m||l is composed in such a way that it
belong to the selected algebraic group

The decryption algorithm is also altered in that we first compute

m′ = Dec(c), and then we check that c = Enc(m′,H(m′))

If this last equation holds we recover m from m′ = m||l , otherwise we reject
the received communication

This scheme is only marginally less efficient than raw ElGamal scheme

G. Pelosi (DEIB) Discrete Log based Cryptosystems 25 / 33

ElGamal Signature Scheme

Given the cyclic group (G , ·) with order n = |G | (preferably prime)
a generator g ∈ G , and a hash function h : {0, 1}∗ 7→ Zn

Public key: kpub ← 〈 n, g , g s 〉 Private key: kpriv ← 〈 s ∈ Zn 〉

Signature Transformation

m ∈ G
l
Random← Z∗n
γ ← (g)l

δ ← l−1 ·
(
h(m)− s · h(γ)

)
mod n

S ← Signkpriv
(m) = 〈γ, δ〉

Send 〈m,S〉

Validation Check

Receive 〈m,S〉
Compute h(m), h(γ)
Accept the signature only when
Verify kpub

(〈m,S〉) = true ⇔

(g s)h(γ) · γδ ?
= gh(m)

Correctness verification:
Verify kpub(Signkpriv

(m)) = m, ∀m ∈ G

(g s)h(γ) · γδ = g s·h(γ) · g l·l−1·
(
h(m)−s·h(γ)

)
mod n = gh(m)

G. Pelosi (DEIB) Discrete Log based Cryptosystems 26 / 33

1st Example

Given G = (F∗25 , ·), f (x) = x5 + x2 + 1 ∈ F2[x]; n = |G | = 31
F25
∼= F2(α) = {b4α4 + b3α

3 + b2α
2 + b1α + b0|bi ∈ F2, f (α) = 0, α ∈ F25\F2}

with generator g = (00010) = 0α4 + 0α3 + 0α2 + 1α + 0α0 = α

Assume to employ an hash function (h : {0, 1}∗ 7→ Zn) that maps the binary
sequence in the corresponding decimal value modulo n, and consider the key pair:

kpriv = 〈19 mod 31〉, kpub = 〈31, α, α19 = α2 + α = (00110)〉

Simulate an ElGamal Signature Protocol, knowing that h(m)=16 ∈ Z∗31, and

l
Rand← Z∗31, l = 24:

Signature Transformation

γ ← α24 = . . . = (11110)
l−1 mod n=24−1 mod 31≡31. . .≡3122
h(γ) = h({(11110)}) = 30 mod 31
δ ← l−1·

(
h(m)−s·h(γ)

)
mod n ≡31 26

s ← Signkpriv(m) = 〈γ, δ〉 = 〈γ, δ〉
Send 〈m, s〉 = 〈m, (11110), 26〉

Validation Check

〈m, s〉=〈{10000}, γ=(11110), δ=26〉
h(m) = 16, h(γ) = 30

(α19)h(γ) · γδ ?
= αh(m)

(α3 +α2 +α) ·(α4 +α3 +α2 +α)26 =
= (α3 +α2 +α) ·α4 = . . . = (11011)

αh(m) = α16 = . . . = (11011)

G. Pelosi (DEIB) Discrete Log based Cryptosystems 27 / 33

2nd Example

Consider the group G = (F∗11, ·) with generator g = 2, n = |G | = 10, and
a message binary string m = {1001}.
Assume to employ an hash function (h : {0, 1}∗ 7→ Zn) that maps the
binary sequence in the corresponding decimal value modulo n, and
consider the key pair:

kpriv = 〈4 mod 10〉, kpub = 〈n = 10, g = 2, g4 = 5〉

Simulate an ElGamal Signature Protocol, assuming l
Rand← Z∗11, l = 3.

G. Pelosi (DEIB) Discrete Log based Cryptosystems 28 / 33

Recommended Key Lengths

NIST recommended key lengths, considering the foreseen technological and

theoretical cryptanalysis advancements [updated 2011]

Date Security Symmetric Group Key
margin cipher size [bit] size [bit]

2010 80 2TDEA∗ 1024 160
2011 – 2030 112 3TDEA 2048 224
> 2030 128 AES-128 3072 256
>> 2030 192 AES-192 7680 384
>>> 2030 256 AES-256 15360 512

Security margin: Minimum computational effort expressed as the log2 of
the number of DES computations

Symmetric cipher: Suggested cipher to achieve the minimum adequate
level of security (Note: nTDEA = Triple DES Algorithm with n keys)

(*) The assessment of at least 80 bits of security for 2TDES is based on the

assumption that an attacker has no more than 240 matched ptx/ctx blocks

G. Pelosi (DEIB) Discrete Log based Cryptosystems 29 / 33

Performance Discrete Log Cryptosystems

Overlook

The Diffie-Hellman key exchange has a computational cost greater than
the RSA decryption function roughly by a factor ×4 on a commodity
machine

Table : OpenSSL-Performances on Intel Core2-duoTM Processor-L9400,1.86Ghz (one core
used)

Security Margin Prime size Group Diffie-Hellmann
[bit] size [bit] [ms]

80 1024 160 1.607
112 2048 224 11.178
128 3072 256 36.063
192 7680 384 542.012
256 15360 512 4,549

G. Pelosi (DEIB) Discrete Log based Cryptosystems 30 / 33

Digital Signature Standard Algorithm (DSS-DSA)

The “Digital Signature Algorithm” (DSA) is a US standard for digital
signatures

It was proposed by the NIST for use in their Digital Signature
Standard (DSS), and specified in FIPS 186-3 (2009)

It is a variant of the ElGamal signature scheme

Basic Assumptions

The reference group category is (Z∗p, ·), p prime s.t. q | (p − 1), with q
also a prime. The employed algebraic structure is then the multiplicative
cyclic subgroup G = 〈 g 〉 with publicly known generator g and order q

Public Key: kpub=(p, q, g , g s)

Private Key: kpriv=s ∈ Z∗q
Denote with L = log2(p) and N = log2(q) the bit lengths of the prime
numbers p and q, respectively

G. Pelosi (DEIB) Discrete Log based Cryptosystems 31 / 33

Digital Signature Standard Algorithm (DSS-DSA)

Parameter Generation

FIPS 186-3 specifies the (L = log2(p), N = log2(q)) length pairs of
(1024,160), (2048,224), (2048,256), and (3072,256)

Choose a cryptographic hash function H among the SHA-2 functions
recommended in FIPS 180-3 (SHA-224, SHA-256, SHA-384, SHA-512),
depending on the size selected for the key pair

p, and q | (p − 1) primes, g ∈ Z∗p with order q. Usually g=h
p−1
q , with

h=2∈Z∗p, if g results to be 1, then pick another value h

G. Pelosi (DEIB) Discrete Log based Cryptosystems 32 / 33

Digital Signature Standard Algorithm (DSS-DSA)

Public Key: kpub=(p, q, g , g s)

Private Key: kpriv=s ∈ Z∗q

Signature Transformation

H(m)∈{2, . . . , q − 1}, lRandom← Z∗q

γ ←
(
(g)l mod p

)
mod q

If γ = 0, repeat with another random l

δ ← l−1 ·
(
H(m)− s · γ

)
mod q

If δ = 0, repeat with another random l

S ← Signkpriv
(m) = 〈γ, δ〉

Send 〈m,S〉

Validation Check

Receive 〈m,S〉

if r , s /∈ {1, . . . , q − 1},
reject the signature

Compute H(m)

Accept signature iif
Verify kpub

(〈m,S〉) = true ⇔

u1 ← H(m) · s−1 mod q

u2 ← γ · s−1 mod q

(gu1 (g s)u2) mod p mod q
?
= γ

G. Pelosi (DEIB) Discrete Log based Cryptosystems 33 / 33

	Introduction

