
1

Virtual Memory

Chapter 8

Hardware and Control
Structures

� Memory references are dynamically translated
into physical addresses at run time
� A process may be swapped in and out of main

memory such that it occupies different regions

� A process may be broken up into pieces that
do not need to be located contiguously in
main memory
� All pieces of a process do not need to be loaded in

main memory during execution

Execution of a Program

� Operating system brings into main memory a
few pieces of the program

� Resident set - portion of process that is in
main memory

� An interrupt is generated when an address is
needed that is not in main memory

� Operating system places the process in a
blocking state

Execution of a Program

� Piece of process that contains the logical
address is brought into main memory
� Operating system issues a disk I/O Read request
� Another process is dispatched to run while the

disk I/O takes place
� An interrupt is issued when disk I/O complete

which causes the operating system to place the
affected process in the Ready state

Advantages of
Breaking up a Process

� More processes may be maintained in
main memory
� Only load in some of the pieces of each

process
� With so many processes in main memory,

it is very likely a process will be in the
Ready state at any particular time

� A process may be larger than all of
main memory

Types of Memory

� Real memory
� Main memory

� Virtual memory
� Memory on disk
� Allows for effective multiprogramming and

relieves the user of tight constraints of
main memory

2

Thrashing

� Swapping out a piece of a process just
before that piece is needed

� The processor spends most of its time
swapping pieces rather than executing
user instructions

Principle of Locality

� Program and data references within a process
tend to cluster

� Only a few pieces of a process will be needed
over a short period of time

� Possible to make intelligent guesses about
which pieces will be needed in the future

� This suggests that virtual memory may work
efficiently

Support Needed for
Virtual Memory

� Hardware must support paging and
segmentation

� Operating system must be able to
manage the movement of pages and/or
segments between secondary memory
and main memory

Paging

� Each process has its own page table
� Each page table entry contains the

frame number of the corresponding
page in main memory

� A bit is needed to indicate whether the
page is in main memory or not

Modify Bit in
Page Table

� Another modify bit is needed to indicate
if the page has been altered since it
was last loaded into main memory

� If no change has been made, the page
does not have to be written to the disk
when it needs to be swapped out

Page Table Entries

3

Two-Level Scheme for
32-bit Address

Page Tables

� The entire page table may take up too
much main memory

� Page tables are also stored in virtual
memory

� When a process is running, part of its
page table is in main memory

Translation Lookaside Buffer

� Each virtual memory reference can
cause two physical memory accesses
� one to fetch the page table
� one to fetch the data

� To overcome this problem a high-speed
cache is set up for page table entries
� called the TLB - Translation Lookaside

Buffer

Translation Lookaside Buffer

� Contains page table entries that have
been most recently used

� Functions same way as a memory
cache

Translation Lookaside Buffer

� Given a virtual address, processor
examines the TLB

� If page table entry is present (a hit),
the frame number is retrieved and the
real address is formed

� If page table entry is not found in the
TLB (a miss), the page number is used
to index the process page table

4

Translation Lookaside Buffer

� First checks if page is already in main
memory
� if not in main memory a page fault is

issued

� The TLB is updated to include the new
page entry

Page Size

� Smaller page size, less amount of internal
fragmentation

� Smaller page size, more pages required per
process

� More pages per process means larger page
tables

� Larger page tables means large portion of
page tables in virtual memory

� Secondary memory is designed to efficiently
transfer large blocks of data so a large page
size is better

Page Size

� Small page size, large number of pages will
be found in main memory

� As time goes on during execution, the pages
in memory will all contain portions of the
process near recent references. Page faults
low.

� Increased page size causes pages to contain
locations further from any recent reference.
Page faults rise.

5

Page Size

� Multiple page sizes provide the
flexibility needed to effectively use a
TLB

� Large pages can be used for program
instructions

� Small pages can be used for threads
� Most operating systems support only

one page size

Example Page Sizes

Segmentation

� May be unequal, dynamic size
� Simplifies handling of growing data

structures
� Allows programs to be altered and

recompiled independently
� Lends itself to sharing data among

processes
� Lends itself to protection

Segment Tables

� Corresponding segment in main memory
� Each entry contains the length of the

segment
� A bit is needed to determine if segment is

already in main memory
� Another bit is needed to determine if the

segment has been modified since it was
loaded in main memory

Segment Table Entries
Combined Paging and
Segmentation

� Paging is transparent to the programmer
� Paging eliminates external fragmentation
� Segmentation is visible to the programmer
� Segmentation allows for growing data

structures, modularity, and support for
sharing and protection

� Each segment is broken into fixed-size pages

6

Combined Segmentation and
Paging

Fetch Policy

� Fetch Policy
� Determines when a page should be brought into

memory
� Demand paging only brings pages into main

memory when a reference is made to a location
on the page

� Many page faults when process first started

� Prepaging brings in more pages than needed
� More efficient to bring in pages that reside contiguously

on the disk

Replacement Policy

� Placement Policy
� Which page is replaced?
� Page removed should be the page least

likely to be referenced in the near future
� Most policies predict the future behavior on

the basis of past behavior

Replacement Policy

� Frame Locking
� If frame is locked, it may not be replaced
� Kernel of the operating system
� Control structures
� I/O buffers
� Associate a lock bit with each frame

Basic Replacement Algorithms

� Optimal policy
� Selects for replacement that page for

which the time to the next reference is the
longest

� Impossible to have perfect knowledge of
future events

7

Basic Replacement Algorithms

� Least Recently Used (LRU)
� Replaces the page that has not been

referenced for the longest time
� By the principle of locality, this should be

the page least likely to be referenced in the
near future

� Each page could be tagged with the time
of last reference. This would require a
great deal of overhead.

Basic Replacement Algorithms

� First-in, first-out (FIFO)
� Treats page frames allocated to a process

as a circular buffer
� Pages are removed in round-robin style
� Simplest replacement policy to implement
� Page that has been in memory the longest

is replaced
� These pages may be needed again very

soon

Basic Replacement Algorithms

� Clock Policy
� Additional bit called a use bit
� When a page is first loaded in memory, the use bit

is set to 0
� When the page is referenced, the use bit is set to

1
� When it is time to replace a page, the first frame

encountered with the use bit set to 0 is replaced.
� During the search for replacement, each use bit

set to 1 is changed to 0

Basic Replacement Algorithms

� Page Buffering
� Replaced page is added to one of two lists

� free page list if page has not been modified
� modified page list

8

Resident Set Size

� Fixed-allocation
� gives a process a fixed number of pages

within which to execute
� when a page fault occurs, one of the pages

of that process must be replaced

� Variable-allocation
� number of pages allocated to a process

varies over the lifetime of the process

Variable Allocation,
Global Scope

� Easiest to implement
� Adopted by many operating systems
� Operating system keeps list of free

frames
� Free frame is added to resident set of

processes when a page fault occurs
� If no free frame, replaces one from

another process

Variable Allocation,
Local Scope

� When new process added, allocate
number of page frames based on
application type, program request, or
other criteria

� When page fault occurs, select page
from among the resident set of the
process that suffers the fault

� Reevaluate allocation from time to time

Cleaning Policy

� Demand cleaning
� a page is written out only when it has been

selected for replacement

� Precleaning
� pages are written out in batches

Cleaning Policy

� Best approach uses page buffering
� Replaced pages are placed in two lists

� Modified and unmodified

� Pages in the modified list are periodically
written out in batches

� Pages in the unmodified list are either
reclaimed if referenced again or lost when
its frame is assigned to another page

Load Control

� Determines the number of processes
that will be resident in main memory

� Too few processes, many occasions
when all processes will be blocked and
much time will be spent in swapping

� Too many processes will lead to
thrashing

9

Process Suspension

� Lowest priority process
� Faulting process

� this process does not have its working set
in main memory so it will be blocked
anyway

� Last process activated
� this process is least likely to have its

working set resident

Process Suspension

� Process with smallest resident set
� this process requires the least future effort

to reload

� Largest process
� obtains the most free frames

� Process with the largest remaining
execution window

UNIX and Solaris Memory
Management

� Paging System
� Page table
� Disk block descriptor
� Page frame data table
� Swap-use table

Data Structures

Data Structures
UNIX and Solaris Memory
Management

� Page Replacement
� refinement of the clock policy

� Kernel Memory Allocator
� most blocks are smaller than a typical page

size

10

Linux Memory Management

� Page directory
� Page middle directory
� Page table

Windows 2000
Memory Management

� W2K Paging
� Available
� Reserved
� Committed

