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• Electronic circuits for arithmetic, logic, and 

control
• Computer science subfields
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Where are the addresses stored? We have seen that, as data, they can be 
stored inside the memory itself. But how are they used as addresses?



How memories are addressed
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This is our mental model of a computer memory: 
each word is tagged with a numerical address, which 
we use to access a specific word. In this example, we 
want to address word 2.

In reality, what happens is as follows.
No word is tagged with a number, but each 
word is physically connected to the Control 
Unit. In the early days of computers, such 
connection was a cable; nowadays it is an 
eletronic circuit trace.
When we want to access word 2, we send 2 
as an input to the CU, which activates the 
relevant connection, thus grantic access to 
the word. Our choice (input 2) is translated 
into a physical activation.   



To understand how human choice maps 
onto parts of an electronic circuit, we must 
take a dive into the basic electronic 
components that constitute a computer 
hardware.

This technology dates back to the 1950s, 
when american scientists Bardeen, Brattain 
and Shockley invented the transistor, a 
small device based on a special property of 
semiconductive materials.

Semiconductive materials are particular: at 
rest, they do not allow electricity to flow, but 
if electrically stimulated they become 
conductive. 

Hence, transistors are a special kind of 
switches: very small and electronic, that is, 
not mechanical but controlled by means of 
electricity.
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a transistor from the 1950s how it works



A more abstract description of a transistor

“high” tension (in current computers 5V or 3V)

Ground: no tension here. Electricity flows from points of high 
tension to points of low tension.

The transistor acts like a switch controlled by vin.
If vin is low, electricity does not flow through the transistor 
and vout is like va, that is, high.
If vin is high, electricy flows through the transistor 
and vout becomes like vt, that is, low.



The fundamental encoding inside a computer

We interpret the high tension 
inside a computer like a “1”, and 

the low tension like a “0”.
This is an encoding: it maps two 
entities in the real world onto a 

set of natural numbers (0 and 1).

With such encoding in mind, a 
single transistor acts like a 

system which replies with “1” 
when we give it “0”, and 

viceversa.
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We will use this graphical 
organization of multiple cases.
Case 1 is when we give the 
system “0” in input and obtain “1” 
in output.
Case 2 is when we give “1” in 
input and obtain “0” in output.

What to do with a 
system with this 

behavior?



Let’s introduce another encoding 
on top of the fundamental one.

false

true

If we use ‘0’ to encode the 
concept of “false”, and ‘1’ to 
encode “true”, we are moving 
from arithmetic with numbers 
to logic with truth values.

Logic is the discipline that 
formalizes reasoning, that is, 
aims at making reasoning 
(e.g. “all men are mortal; 
Socrates is a man; hence, 
Socrates is mortal”) rigorous 
by transforming sentences in 
sequences of symbols (called 
formulas) that are 
manipulated by means of 
rules.

“False” and “true” are “truth 
values” that we assign to 
formulas. Logic does not help 
us establish the truth values 
of hypotheses from the real 
world (e.g. “does God exist?”) 
but it supports us in checking 
whether a certain way of 
reasoning is correct or not.
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Let’s take a look at the 
system again, with the logic-
oriented encoding in mind.

When we give it “false”, it replies with “true”. 
When we give it “true”, it replies with “false”.

The system acts like a “not”. 
Indeed, “not false” is the same as 
“true”, and “not true” is the same 

as “false”.



false

false

true

true

A transistor can then be seen as 
the electronic embodiment of the 

“negation” operator in logic.

This is how a system that negates, 
also known as “NOT gate” (”gate” 
because the electric signal goes 
through it), is represented in the 
graphical standard for circuit 
design. 



input1

input2

output

Let’s build more complex systems, 
by using more than one transistor. 
This system has two inputs and 
one output.

The transistors are said to be in a 
“serial” configuration, because they 
are one after the other (i.e. in a 
series) between the high tension 
and the ground.

The tension in the output point is 
high only when the point is directly 
connected to the high tension 
above. This means that both 
transistors must be conductive, 
which means that both inputs must 
be high.

In numerical terms, since we have 
2 inputs, we have 4 cases (4 = 22), 
and the output is 1 only in one case 
(input1 = 1 and input2 = 1)

input1 input2 output
0 0 0
0 1 0
1 0 0
1 1 1



input1

input2

output

In logical terms, the output is “true” 
only when both inputs are “false”. In 
other words, just one false input is 
enough to make the output false.

input1 input2 output
false false false
false true false
true false false
true true true

The two inputs are put together in 
the same way we use the “AND” 
conjunction: “the Sun is cold AND 
one plus one is two” is false, 
whereas “water is a liquid AND 
seven is an odd number” is true.
This circuit may be seen as the 
electronic version of the AND 
logical operator.

This is how an “AND gate” is 
represented in the graphical 
standard for circuit design. 



In this other system, the two 
transistors are said to be in a 
“parallel” configuration, because 
they are one next to the other (i.e. 
on parallel lines) between the high 
tension and the ground.

The tension in the output point is 
high in more cases here, because 
for the output point to be connected 
to the high tension we just need 
one transistor to be condictive. This 
means that only when both 
transistors are off the output is low 
tension.

In numerical terms, the output is 0 
only in one case (input1 = 0 and 
input2 = 0)

input1 input2 output
0 0 0
0 1 1
1 0 1
1 1 1

input1 input2

output



In logical terms, the output is “false” 
only when both inputs are “false” 
and “true” in all other cases. We 
need one true input to make the 
output true as well.

input1 input2 output
false false false
false true true
true false true
true true true

The two inputs are put together in 
the same way we use the “OR” 
conjunction (also known as 
“disjunction”): “the Sun is cold OR 
one plus one is three” is false, 
whereas “water is a liquid OR the 
Earth if flat” is true.
This circuit may be seen as the 
electronic version of the OR logical 
operator.

This is how an “OR gate” is 
represented in the graphical 
standard for circuit design. 

input1 input2

output
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Let’s now see how these gates 
can be combined to operate the 

selection of a specific path.

Let’s focus on a simpler case than 
the one depicted in the figure, 

where the CU chooses among 4 
different paths.

In what follows, we see how to 
build a circuit to choose between 2 

paths.



i is the input signal, which can be 
sent on either of two paths.

o0 is the output on one possible 
path to which i can be sent.

o1 is the output on the other path to 
which i can be sent.

s is the selection signal: its value 
determines where i is sent.



i can be any value

o0 is the same as i because the 
other input of the AND gate is 1. 
Notice that i AND 1 is the same as i 
(whether i is 0 or 1 does not make 
a difference).

whatever the value of i, o1 is 0 
because one of its inputs (s) is 0. 
Notice that any input value that 
goes through an AND gate with 0 
as the other input yields 0 as 
output.

if s is 0…

0

0

0

0

1

1

i

i

i

…then o0 = i. 
In other words, i is sent to the first path.



i can be any value

o0 is 0 no matter the value of i,
because the other input of the AND
gate is 0.

o1 = i because the inputs of the 
AND gate that produces o1 are i 
and 1, and (i AND 1) = 1, whatever 
the value of i.

if s is 1…

1

1

1

i

0

0

i

i

0

…then o1 = i. 
In other words, i is sent to the second path.



i can be any value

This 
means…

i 

i

…that it is as if s selects where i goes.

!01



This is the circuit design style for 
representing such a system, which 
is called “demultiplexer” (also 
known as “DEMUX”).
Since the choice is between 2 
paths, this one is called a 1:2 
DEMUX. In a 1:2 DEMUX, the 
selection signal is just 1 bit.

CU

In our original example, the choice 
is between 4 paths, so we actually 
need a 1:4 DEMUX, with 2 bits for 
the selection signal (s0 and s1, 
enabling the selection among 4 
paths: o00, o01, o10, and o11). The 
electronics is a bit more 
complicated, but the principles are 
the same as the ones guiding the 
design of the 1:2 DEMUX.



The story so far
• With all these considerations around logic, and the 

construction of electronic circuits that embody 
logical operators like NOT, AND, and OR, we have 
focused on the L in ALU

• Moreover, we have combined NOT and AND gates 
to create a DEMUX device, to enable the selection 
of a path among many, by which the CU can send 
signals where they are needed

• But what about the A in ALU?
• Aren’t computer built to compute, that is, do 

arithmetics after all?



Back to basics of arithmetic
• Numbers work as input for arithmetic 

operations no matter the numerical system 
they are expressed in

• We can do 3 + 4 and obtain 7 (base 10)
• In the same way, we can do 011 + 100 and 

obtain 111 (base 2)



Simple arithmetics in binary
• Given two bits in input, the rules for adding 

them are very simple:
0 + 0 = 0
0 + 1 = 1
1 + 0 = 1
1 + 1 = 10, that is 0 with carry 1

• Since + applies to 2 bits and yields 1 bit in 
output (possibly with a carry) just like AND 
and OR, we can imagine to build a system 
with logical gates that manipulate bits in a 
way that coincides with what + does 



Addition in electronics
• Let’s ignore the carry in the last case for 

now, and focus on what happens with the 
bits:
0 + 0 = 0
0 + 1 = 1
1 + 0 = 1
1 + 1 = 0

input1 input2 output
0 0 0
0 1 1
1 0 1
1 1 1

} }The output of + is 
almost ideantical 
to the output of OR

Except for the last 
case, where both 
input bits are 1 and 
the output is 0 
instead of 1.

So, given two bits in input, b1 and b2, 
b1 + b2 is like b1 OR b2 but not if they 
are both 1.



Given two bits in input, b1 and b2, 
b1 + b2 is like b1 OR b2 but not if 
they are both 1.

To design a system that electronically realizes 
this behavior, we can combine the outputs of: 
b1 OR b2 
AND
NOT (b1 AND b2), 
as shown in the system in the figure (taken 
from ”Che cos’è un computer” by Mario 
Verdicchio, published by Carocci, 2023). 

Let’s see who this system works in 
the following slide.



b1 b2 A B C b0

0 0 0 0 1 0
0 1 1 0 1 1
1 0 1 0 1 1
1 1 1 1 0 0

A

B
C 

The system uses the inputs b1 and b2 to compute (b1 OR b2) (which we called A) on the one side, and the negation of (b1 
AND b2) on the other. The negation of (b1 AND b2) is computed by means of an AND gate (obtaining B) and then a NOT gate 
(obtaining C).
The final computation, which gives the output, combines A and C with an AND, which corresponds to setting the final 
result to 1 in all cases when (b1 OR b2) is 1, except for when (b1 AND b2) is 1: in that case C is 0 and, through the last AND 
gate, sets the final result to 0.



0 + 0 = 0
0 + 1 = 1
1 + 0 = 1
1 + 1 = 0
b1 b2 A B C b0

0 0 0 0 1 0
0 1 1 0 1 1
1 0 1 0 1 1
1 1 1 1 0 0

That electronic circuit, comprised of one OR gate, one NOT gate, and two AND gates combined as previously shown, yields
the same output as the addition applied to two single-bit inputs. Thus, it can work as an ADDER.
From a physical perspective, it is just a circuit that manipulates electric tensions, but with the fundamental encoding in
mind, we can see its (electric) operation as an (arithmetic) operation of addition.



0 + 0 = 0
0 + 1 = 1
1 + 0 = 1
1 + 1 = 10

0 + 0 = 00
0 + 1 = 01
1 + 0 = 01
1 + 1 = 10

We must not
forget about the
carry.

The carry is
another bit that
is part of the
final result. It is
0 in the first 3
cases, and 1 in
the last. The
output bits are
exactly like the
output of (b1
AND b2).

So to build the circuit
that computes the carry,
we just need to put the
two inputs through an
AND gate.

The bit in output from
the first system (in black,
printed) is saved in a 1-
bit memory space that
represents how many
units (20) are in the final
result.
The bit in output from
the second system (in
red, handwritten) is
saved in another
memory unit, indicating
how many twos (21) are
in the final result.



Since we have built an arithmetic system by combining a logical system of AND, OR, and NOT, does this mean that 
arithmetic is based on logic?

Absolutely not. In the real world, arithmetic and logic have a very distinct origin. Actually, since counting with fingers 
came before formalizing reasoning, if anything, arithmetic should be considered the basis of a way of thinking that 
lead humanity to conceive logic at a later stage, but these are questions for historians and philosophers of science.

It is just that, in the material world of electronic circuits built my means of transistors, logical operators are much 
simpler to implement than arithmetic operations. You can see it by noticing that we need only one transistor to build a 
NOT gate, whereas an ADDER has a much more complex structure.

Computer Science gives us extremely useful devices, but those devices are the result of discoveries in science (e.g. 
semiconductors) and socio-political agreements (e.g. encodings like RGB, standards like JPG). They should not be 
taken as an indication of somem fundamental principles regarding how the universe works or how our thinking and 
reasoning work.

And yet, there are some subfields of this discipline whose experts forget about this. You must not.

Let’s take a look at the most important subfields of Computer Science.



COMPUTER SCIENCE
is not the best name for the 
discipline. It makes it sound like 
the science of computers.
However, computers are only one 
part of computer science. 
Computers are hardware, but there 
is a lot about software in this 
discipline.



Indeed, the subfields that deal with 
hardware and the ones that are the 
farthest from Computer Science, 
because they may even be 
considered entirely different fields.

We have ELECTRONICS that deals 
with the design and construction 
of the circuits computers are made 
of, and let’s not forget PHYSICS 
that allowed us to discover 
semiconductors.



PHYSICS is involved also in the 
construction of the systems that 
connect computers to one another 
by means of cables, antennas, 
satellites, etc.
When physical systems are used 
for transmission of data over long 
distances, the discipline is called 
TELECOMMUNICATIONS (TLC).
A lot of the theory behind 
encodings comes from the early 
studies in telecommunications 
(think of the Morse code).



It is great to build computers, but 
they exist to be used.
SOFTWARE ENGINEERING (SE) is 
the subfield of computer science 
that is aimed at the creation of 
software, in terms of programs 
and programming languages 
(artificial languages used to write 
programs).



Programs make the computer world go around, 
but we know that programs are based on 
algorithms, and that algorithms are much more 
abstract concepts that can be described in 
mathematical terms or even natural languages 
like English, Italian or Japanese. THEORETICAL 
COMPUTER SCIENCE is the subfield that deals 
with algorithms: to understand what kind of real 
life problems can be tackled by means of 
algorithms and computation, and to understand 
what kind of resources (in terms of time and 
memory space) they would need to be brought to 
completion.



The connectivity ensured by 
telecommunications and the 
Internet has notably increased the 
quantity of data that computers 
have to deal with. DATABASE 
MANAGEMENT (DBMS) is a 
traditional subfield that is aimed at 
the organization and analysis of 
the data inside a computer. 
Typically, data are organized in the 
form of tables (also known as 
relational databases), but the more 
and more dynamic nature of data 
coming from the Internet is 
pushing for more flexibility, and in 
many systems a graph-like 
structured is preferred over tables 
(non-relational) for databases. 
Searches (like when you google 
stuff you don’t know) and big data 
(massive amounts of data that are 
collected not only through the 
Internet but also by means of 
digital devices like smartphones, 
smartwatches, credit cards) are 
strongly emerging as key topics in 
this context, up to the point hat 
they might become independent 
subfields themselves.

Table in a database

Graph-based database



Whatever is happening inside a computer, for us 
human users it is fundamental that its outside or, 
more precisely, that part of a computer’s outside 
with which we interact works well. The point (or 
rather surface) of contact between a computer 
and its user is called “interface”, and an 
appealing, captivating, easy-to-use interface 
needs to be designed to ensure a successful IT 
product. There are many disciplines that 
gravitate in this area (User Experience, 
Interaction Design, Graphic Design, etc.), which 
is genrally known as HUMAN-COMPUTER 
INTERACTION (HCI).



Finally, the hottest subfield of the moment: 
ARTIFICIAL INTELLIGENCE (AI). In its traditional 
form (it was born in the 1950s), AI was about 
“automated reasoning”, that is, trying to capture 
in computational form the rules of logic that 
sustain human reasoning, to make computers do 
the reasoning. After decades of minor successes 
and major failures, another form of AI emerged, 
called “machine learning” (ML), which has a 
radically different approach: no more formal 
logical reasoning, but statistical analysis of great 
quantities of data, in search for correlations and 
recurrent patterns. ML is considered a major 
success because it just works, mainly thanks to 
the abundant quantities of data available on the 
Internet, which ML-programmed computers can 
analyse. The most successful applications are 
image analysis and classification (e.g. in the 
medical field to detect cancer from x-ray images), 
or text generation (e.g. ChatGPT) and image 
generation (e.g. Midjourney , DALL-E).

This background image itself is the output of DALL-E, to which this input 
was given: “image in neat minimal graphical style with pastel colors
depicting a person working in front of a desktop computer with a big screen
showing the interface of a very complex word processing software, while
the computer is connected to a cable that goes outside the room, connected
to a parabolic antenna.”



Where do DIGITAL HUMANITIES (DH) stand in all this? Are DH a subfield of
Computer Science? They are not: they are rather an interdisciplinary effort,
where problems in the humanities are analysed to understand whether they
can be solved by means of a computer, and where enhancements offered by
digital technology are explored to see whether they can impact traditional
methodologies and operations in the humanities. It is a two-way street that
is not confined within the realm of Computer Science, but it crosses it and
takes us around in still unexplored and not entirely meaningful lands.


