
Extending Mandatory Access Control
Policies in Android

Stefano Paraboschi, Enrico Bacis, and Simone Mutti

Università degli Studi di Bergamo, Italy
Department of Management, Information and Production Engineering

{parabosc,enrico.bacis,simone.mutti}@unibg.it

Abstract. Solutions like SELinux have recently regenerated interest to-
ward Mandatory Access Control (MAC) models. The role of MAC mod-
els can be expected to increase in modern systems, which are exposed to
significant threats and manage high-value resources, due to the stronger
protection they are able to offer. Android is a significant representative
of these novel systems and the integration of MAC models is an im-
portant recent development in its security architecture. Opportunities
indeed exist to further enrich the support offered by MAC models, in-
creasing their flexibility and integrating them with other components of
the system. We discuss a number of proposals that have recently been
made in this domain.
First, we illustrate the integration of SELinux and SQLite, named SeSQLite,
which permits to apply MAC permissions at a fine granularity into re-
lational databases, offering both a schema-level and row-level support.
Then, AppPolicyModules are presented, which let app developers spec-
ify extensions to the system-level policy that protect the resources of
each specific app. Finally, an integration between SELinux and the in-
terprocess communication services is proposed, to further regulate the
cooperation among separate apps and services. All these enhancements
lead to a stronger and more detailed support of the complex security
requirements that characterize modern environments.

1 Introduction

A clear long-term trend in computer security is the increasing complexity of
the systems that have to be controlled, with a significant increase in terms of
the attack surface, resource value, and complexity of user needs. In terms of
the attack surface, larger software stacks and the presence of pervasive network
connections increase the exposure of a system and the number of components
whose failure may lead to a compromise of a system. The growth in resource
value derives from the adoption of computer systems to support most activities.
The wider impact of IT solutions also leads to the need to offer access to a
larger number of users, each with the need to operate over a specific fraction of
the system resources. In many domains the use of computers would indeed be
even stronger in the absence of security worries. It can be argued that security
management is a bottleneck to the development of modern information systems.

2 Stefano Paraboschi, Enrico Bacis, and Simone Mutti

The construction of systems able to offer adequate protection has to consider
a large variety of aspects [11, 1, 5]. At a high-level, it is necessary that components
of IT systems are built using a security-by-design approach, giving to security
the role of critical requirement considered in the first phases of the project. Each
of the elements, at every level of the architecture, has then to provide robust
behavior. An element that is perceived to increase in importance is the use
of modern access control models and policy languages. These classical security
tools require to be extended in order to meet the stringent requirements of novel
applications.

The Android operating system is a representative example of modern com-
puter systems, with novel challenges and the need to extend current security
techniques and models. Android has become the most widely deployed operat-
ing system, with an impact on a variety of application domains (smartphones,
embedded devices, domotics, automotive, etc.). In this paper we mostly refer to
the use of Android in the smartphone domain, but the other domains can also
benefit from the enhancements that we propose.

Android has to face an extensive collection of security challenges. One of the
most visible threats in Android is represented by the installation of potentially
malicious apps. Much of the utility of a smartphone derives form its ability to
execute apps that suit specific user needs. Apps can be retrieved from monitored
markets, like Google’s Play Store, or from user-chosen repositories, which may
host malicious apps. The risk associated with user-chosen repositories is far
greater, but the design of Android has to assume that users will be able and will
install potentially malicious apps. The goal is then to reduce the damage that a
malicious app can do to the system. The problem can be considered a variant of
classical multi-user operating systems, where users are assumed to potentially
misbehave and access control aims at restricting the damage potential. Indeed,
in Android each app is associated in the Linux kernel with a specific uid and
gid, adapting to apps the Discretionary Access Control (DAC) services of Linux
that were originally designed to support multiple users. At the file system level,
each app is then able to label its files with acls that will be consistent with the
protection needs of each app.

The DAC model alone is insufficient to deal with the security challenges An-
droid has to face. An important recent evolution in Android is the development
of SEAndroid, which integrates SELinux into the design of the operating sys-
tem [15]. SELinux implements a type-based Mandatory Access Control (MAC)
model in Linux. The advantages of MAC models are particularly beneficial to
Android. The presence of SELinux offers a strictly enforced central policy, able
to limit the power (and abuses) of privileges. The availability of SELinux permits
Android to better support the security principle of “isolation”, containing the
installed apps within a restricted space and limiting their ability to compromise
system resources.

SEAndroid already provides significant benefits, but we see additional op-
portunities to extend its use in Android. The paper summarizes a few recent
advances in this domain that could lead to an increase in the security of the

Extending Mandatory Access Control Policies in Android 3

system. A first aspect is the inability of the SQLite database to support fine
granularity in the access to resources. An effort has been directed to the integra-
tion in SQLite of the support for MAC labels, allowing a table-level and row-level
enforcement of access restrictions on the content of the database. Another re-
search line considers the introduction of the ability of apps to be protected by
SELinux. The current architecture mainly uses SELinux to protect system re-
sources from the vulnerabilities and misbehaviors of system components and
apps. Apps that are not considered part of the core system are all contained
together in a single untrusted app domain. An app interested in getting pro-
tection cannot receive support from the MAC system. Developers of apps that
process sensitive data may instead be interested in getting this protection. To
allow app developers to specify ad-hoc policies for their apps requires to satisfy
several critical requirements, with a need for the correct management of policy
modules that goes beyond what current systems provide. The proposal of App-
PolicyModules wants to provide a mechanism that lets apps to be enriched with
an ad-hoc MAC policy for their resources, with guarantees about the fact that
this addition to the policy is not going to weaken the system MAC policy. The
availability of this technology also opens the door to the realization of a more
robust support of Android permissions.

2 Overall Android architecture

The Android architecture is composed by three layers (see Figure 1): (a) a Linux
kernel (b) a middleware framework and (c) an application layer. The first layer
(i.e., the Linux kernel) provides low-level services and device drivers to other
layers and differs from a traditional Linux kernel. The Android team has taken
the Linux kernel code and modified it to run in an embedded environment, thus
it does not have all the features of a traditional Linux distribution.The second
layer is composed by native Android libraries, runtime modules (e.g., Dalvik
Virtual Machine) and an application framework.

The third layer is composed by applications. They can be divided into two
categories (i) core applications (e.g., browser, dialer phone) installed by default
and (ii) common applications, written in Java, installed by the user. Each appli-
cation is composed by different app components. There are four different types
of app components: (a) Activities, typically each screen shown to a user is rep-
resented by a single Activity component (b) Services, provide the background
functionalities (c) Content Providers used to share data among applications and
(d) Broadcast Receivers used to receive event notifications both from the system
and from other applications.

2.1 Android Security Architecture

Android provides a permission mechanism that enforces restrictions on the spe-
cific operations that a particular process can perform. Basically, by default, an
application has no permissions to perform any operation (e.g., reading or writing

4 Stefano Paraboschi, Enrico Bacis, and Simone Mutti

Applications
Home, Phone, Contacts, Browser, ...

Application Framework
Activities, Location, Notifications, Packages,

Resources, Content Providers, ...

Libraries
Webkit, SQLite, SSL,

OpenGL, ...

Runtime
Android Runtime (ART) or

Dalvik VM, Core libs

Linux Kernel
USB, Wifi, Display, Camera, IPC, Audio, ...

Fig. 1. Android Architecture overview.

the user’s private data, keep the device awake, performing network access). Fur-
thermore, Android isolates applications from each other, with a sandbox. The
sandbox mechanism relies on the use of certificates. All Android applications
must be signed with a certificate whose private key is held by their developer
and is a prerequisite for inclusion into the official Android Market. The purpose
of certificates in Android is twofold: (a) to distinguish application authors; and
(b) to grant or deny access to signature-level permissions.

Android assigns a unique user id (UID) and a group id (GID) to each app.
Each installed application has a set of data structures and files that are associated
with its UID and GID. Only the application itself and the superuser (i.e., root)
have the permissions to access these structures and files.

2.2 SELinux

SELinux originally started as the Flux Advanced Security Kernel (FLASK) [7]
developed by the Utah University Flux team and the US Department of Defense.
The development was enhanced by the NSA and released as open source software.
SELinux policies are expressed at the level of security context (also known as
security label or just label). SELinux requires a security context to be associated
with every process (or subject) and resource (or object), which is used to decide
whether access is allowed or not as defined by the policy. Every request that a
process generates to access a resource will be accepted only if it is authorized by
both the classical DAC access control service and by the SELinux policy. The
advantages of SELinux compared to the DAC model are its flexibility (the design
of Linux assumes a root user that has full access to DAC-protected resources)
and the fact that process and resource labels can be assigned and updated in

Extending Mandatory Access Control Policies in Android 5

a way that is specified at system level by the SELinux policy (in the DAC
model, owners are able to fully control the resources). SELinux uses a closed
world assumption, so the policy has to explicitly define rules to allow a source
(the process) to perform a set of actions on a target (the resource). The rule
also specifies the class of target on which the rule has to be applied (e.g., file,
directory). An SELinux rule has the following syntax:

a l low s o u r c e t t a r g e t t : c l a s s { a c t i o n s } ;

3 SeSQLite

Android provides several ways to store apps data. For example, apps can store
text files both in their own files directory and in the phone SD card. Sometimes,
however, an app needs to be able to carry out complex operations on persistent
data, or the volume of data requires a more efficient method of management
than a flat text file. To this end Android provides a built-in SQLite database1.

SQLite is the most widely deployed in-process library that implements a SQL
database engine. It offers high storage efficiency and small memory footprint.
A SQLite database is represented by a single disk file and anyone who has
direct access to the file can read the whole database content. Usually, due to
the fact that SQLite has no separate server, the entire database engine library
is integrated into the application that needs to access a database. Furthermore,
SQLite does not provide any kind of access control mechanism, it only provides
a few proprietary extensions (e.g., database encryption).

Modern DBMSs provide their own authorization mechanisms[6, 4], with a
corresponding set of SQL constructs, which permit access control at the level of
tables, columns or views. DBMSs use a permission model that is similar to, but
separate from, the underlying operating system permissions. Current information
systems often make a limited use of these database access control facilities and
tend to embed access control directly in the application program used to access
the database. This choice derives from the perceived difficulty in keeping the
database users aligned with the user population in the application, and from the
flexibility obtained in the construction of the application thanks to the absence
of access control restrictions to the database. (Our expectation is that this is
going to change, but it will take a long time.)

The integration of the MAC model, defined at the level of the operating
system, and the access control services, internal to the DBMS, promises to reduce
the above obstacles and lead to an increase in the security of the system. Such
integration would also provide system-wide consistency, because all the access
control decisions would be guaranteed to be compliant with the system-level
MAC policy. To realize such integration in Android it is necessary to extend
SQLite with the support for SELinux controls.

1 https://www.sqlite.org/

6 Stefano Paraboschi, Enrico Bacis, and Simone Mutti

3.1 SQLite and Content Provider

In the Android platform, SQLite is used to store several types of information,
like contacts, SMS messages, and web browser bookmarks. In order to let an
app consume these types of information, Android provides specific components,
called Content Providers. The Content Providers are daemons that provide an
interface to the SQLite library, for sharing information with other applications.

Due to the fact that SQLite does not provide any security mechanism, ac-
cess control is embedded directly into the Content Provider used to access the
database. The Content Provider code that handles a query can explicitly call
the system’s permission validation mechanism, using the Android Permission
Framework, to require certain permissions.

Besides the Content Provider, at the Linux kernel level Android provides
both DAC and MAC access control [15]. Both DAC and MAC are designed
to provide protection against an attempt to directly access the database by a
process that is not the Content Provider.

3.2 SeSQLite Architecture

The file-level granularity provided by DAC is not sufficient if we want to provide
a fine grained access control over SQLite databases. To this end, we introduced
Security-Enhanced SQLite [10] (SeSQLite), which extends SQLite and integrates
it with SELinux in order to provide fine-grained mandatory access control. In
this way we can ensure that access control policies are consistently applied to
every user and every application.

The requirements leading the implementation of SeSQLite are the following:

R.1 - Backward Compatibility SeSQLite is designed to maintain backward-
compatibility with common SQLite databases (i.e., no modification to the
SQL syntax);

R.2 - Flexibility SeSQLite is designed to provide everything needed to suc-
cessfully implement a Mandatory Access Control module, while imposing
the fewest possible changes to SQLite. Moreover, it is designed to be easily
adapted to different implementation of MAC (e.g., SELinux or SMACK[14]);

R.3 - Performance SeSQLite must keep negligible the overhead on computa-
tional time and database size.

3.3 Access Control Granularity

In a SQLite database there are different types of SQL object, which can be
grouped in two granularity levels: the Schema Level and the Tuple Level. To
supply per-SQL object protection, SELinux requires that SQLite provides sup-
port for security labeling. However, a distinction among the approaches used to

Extending Mandatory Access Control Policies in Android 7

Contact

ID Name

1 Alice

2 Bob

3 Carol

Address

Contact_ID Type Country City

1 WORK US Mountain View Landings Drive

2 HOME US San Francisco Lombard Street

2 WORK US Mountain View Landings Drive

Street

Email

Contact_ID Type Email_address

1 HOME alice@home.com

1 WORK alice@work.org

2 HOME bob@example.com

Protected Tuple

Protected Column

Contact_ID Type Number

1 WORK 555-0101

2 HOME 555-0102

3 WORK 555-0103

Phone

Protected Table

Legend

Fig. 2. Example of an access policy defined on a database of contacts leveraging both
SeSQlite schema checks and tuple checks. An application that wants to issue a SELECT
query over the shadowed parts needs an additional privilege.

manage schema and tuple object is needed, since schema and tuple objects ad-
dress different needs and belong to different logical models, as it will be presented
in the following.

Schema Level All SQL statements must be compiled before their execution.
In SQLite, the compilation process follows the sequence of steps below:

1. Syntax check;
2. Semantic check;
3. Expansion;
4. Code generation.

The output of the compilation process is a piece of program containing the
information about all the tables and attributes that have to be accessed.

Example 1. Consider the Address table in Figure 2 and the following query:

SELECT Country, City, Street FROM Address WHERE Contact_ID=1;

The statement accesses four columns within the Address table. The Country,
City and Street attributes appear in the target list directly as a part of the query.
The Contact ID is used in the WHERE clause.

Using this information, SeSQLite introduces a schema check to control if the
query complies with the SELinux policy, i.e., the user can access all the tables
and columns specified in the query. An error is immediately raised if the user
does not have all the privileges needed to perform the query.

8 Stefano Paraboschi, Enrico Bacis, and Simone Mutti

According to the example policy in Figure 2, the check will raise an error if
the issuer is not granted the access privilege, since the user does not have the
privileges to select the attribute Street. The same approach can be applied to
INSERT, DELETE and UPDATE statements.

Row Level At tuple level, the query is made to be always compliant with the
policy. In fact, tuple level access control operates as a filter that automatically
excludes any unaccessible tuple from the loop that scans the tables. This allows
SeSQLite to process only the tuples that can be accessed by the user, according
to the action requested.

Query rewriting is the most common mechanism used to provide fine-grained
access control at tuple level because the modifications are internal to the database
and do not require any adaptation at application level. Essentially this can be
compared to automatically appending conditions to a SQL query’s WHERE
clause as it executes, and dynamically changing the result returned by the query.

Example 2. Consider the table Email address in Figure 2 and the query:

SELECT Type, Email_address FROM Email WHERE Contact_ID=1;

Type Email address

HOME alice@example.com
WORK alice@example.org

Table 1. Result of the query in Example 2 without check tuple().

The output of the query is shown in Table 1. However, if we consider the
same query and we want to enforce that a user can select only non protected
tuples, with query rewriting the query becomes:

SELECT Type, Email_address FROM Email

WHERE Contact_ID=1 AND check_tuple();

The check tuple() function appends to the WHERE clause the predicate
responsible to perform the access control filter. The query output is presented
in Table 2.

Type Email address

WORK alice@example.org

Table 2. Result of the query in Example 2 with check tuple().

SeSQLite uses a modified version of traditional query-rewriting, with the
following traits:

Extending Mandatory Access Control Policies in Android 9

time overhead

SQLite 5.846s −
SeSQLite (2 contexts) 6.132s +4.8%
SeSQLite (100 contexts) 6.741s +15.3%
SeSQLite (1000 contexts) 6.749s +15.4%

Table 3. Total CPU time and overhead for a suite of common operation in SeSQLite.

1. Due to the fact that SQLite does not provide a multi-user database, the
decision to allow or deny the access to a SQL object depends on the policy
provided by the SELinux Security Server. This design provides a character-
istic feature called system-wide consistency in access control, which means
that SELinux provides all the access control decisions based on a single
declarative policy.

2. In order to maintain a negligible overhead, SeSQLite uses two different query
rewriting approaches, based on the number of SELinux contexts used in the
database (the experimental results can be found in Table 2):
– The first approach is based on a custom SQL function, which checks for

each row if its security context can be seen by the issuer of the query.
This approach is selected when a substantial number of different SELinux
contexts is used in the database.

– The second approach is used when a limited number of SELinux contexts
is present in the database (the most common case). Before starting the
table scan, the visibility of all the contexts present in the database is
computed based on the issuer of the query. The ones that can be accessed
are enclosed in a SQL IN operator, so that only those tuples are accessed.

4 AppPolicyModules

SeSQLite assumes that different Android application use different SELinux con-
texts, so that it is possible to use this information in the access control checks.

Unfortunately, at the moment all the apps share a single SELinux context2:
untrusted app. We recently proposed the concept of AppPolicyModules (APMs)
[2], which aim at providing the full benefits given by the use of Mandatory Access
Control to third-party apps.

4.1 Providing Mandatory Access Control to Apps

APMs follow the principles of the Android security model, which aims at strength-
ening the boundaries among apps, introducing an additional mechanism to guar-
antee that apps are isolated and cannot manipulate the behavior of other apps.
The additional mechanism is obtained with an adaptation of the services of the
MAC model introduced by SELinux.

2 There is also the context google app used only for the apps signed by Google.

10 Stefano Paraboschi, Enrico Bacis, and Simone Mutti

The introduction of APMs improves the definition and enforcement of the
security requirements associated with each app. However, apps become known
to the system only when the user asks for their installation. For this reason, the
MAC policy has to be dynamic, with the ability to adapt to the installation and
deletion of apps. This requires modularity and the capability to incrementally
update the security policy, letting an app be able to specify the policy module
it is associated with. In this way app developers, who know the service provided
by the app and its source code, can benefit from the presence of a MAC model,
letting them define security policies that increase the protection the app can get
against attacks coming from other apps, which may try to manipulate the app
and exploit its vulnerabilities.

It is to note that many app developers will either be unfamiliar with the
SELinux syntax and semantics, or will not want to introduce strict security
boundaries to the app beyond those associated with untrusted app. However, we
observe that the app developers that can be expected to be most interested in
using the services of the MAC model are expert developers responsible for the
construction of critical apps (e.g., apps for secure encrypted communication, or
for key management, or for access to financial and banking services).

We consider here how it is possible to use APMs to enforce a stricter model
on the management of Android permissions, relying on the automatic generation
of APMs. If we consider the structure of the AndroidManifest.xml file provided
by each app, it already contains the definition of security requirements through
the use of the tag <use-permission>. For example, if an app developer wants
to write on the SD card, she has to explicitly request the associated Android
permissions (e.g., android.permission.WRITE EXTERNAL STORAGE), which
corresponds both to a set of concrete actions at the OS level and to a set of
SELinux rules.

The system already offers both a high-level and a low-level representation of
permissions, but they are not integrated. Furthermore, in the absence of policy
modularity, the apps are associated only with the untrusted app domain, which
is allowed to use the actions that correspond to the access to all the resources
that are invokable by apps, essentially using for protection only the functions of
Android permissions. The integration of security policies at different levels offers
a more robust enforcement of the app policy. This can be realized introducing a
mechanism that bridges the gap between different levels, through the analysis of
the high-level policy (i.e., the permissions asked by the app within the Android
Permission Framework) and the automatic generation of an APM that maps
those Android permissions to a corresponding collection of SELinux rules.

In general, with the availability of appPolicyModules, the system could evolve
from a scenario where each app is given at installation time access to the whole
untrusted app domain at the SELinux layer, to a scenario where each app is
associated with the portion of untrusted app domain that is really needed for
its execution, with a better support of the classical ”least-privilege” security
principle. It is to note that Android M provides the feature to drop Android
permissions at runtime. This confirms that APMs and more generally domain

Extending Mandatory Access Control Policies in Android 11

specialization identify a concrete need and that Android is evolving in this di-
rection.

Example 3. Most mobile browsers (e.g., Chrome, Firefox) store confidential in-
formation such as usernames and passwords in a SQLite database. Following
Google’s best practices for developing secure apps, the password database is
saved in the app data folder, which should be accessible only to the app itself.
However, this is not enough to protect the password database by other apps with
root privileges.

The use of MAC support offers protection even against threats coming from
the system itself, like a malicious app that abuses root privileges. The app can
protect its resources from other apps, specifying its own types and defining in
a flexible way which system components may or may not access the domains
introduced by the APM.

Figure 3 shows an example where the untrusted app domain does not hold
any permission on the file labeled as password file, which is accessible only by
the browser1 domain.

It is to note that both browser1 and password file are typebounded (see [9]),
thus browser1 is not violating any restriction defined on the parent domain (i.e.,
untrusted app). Greater flexibility derives from the possibility to freely manage
privileges for internal types over internal resources, building a MAC model that
remains completely under the control of the app.

The management of policy modules provided by apps and integrated within
the system-level SELinux policy has to satisfy four crucial requirements.

Req1, No impact on the system policy : the app must not change the sys-
tem policy and only have an impact on processes and resources associated
with the app itself;

Req2, No escalation : the app cannot specify a policy that gives more privi-
leges than those given to untrusted app;

Req3, Flexible internal structure : the app can define and activate sepa-
rate domains, to limit potential vulnerabilities deriving from internal flaws,
adopting the principle of “least privilege” and fragmenting its structure in
a way that each component is only given the minimum amount of privileges
it needs to execute properly;

Req4, Protection from external threats : the app can protect its resources
from other apps, specifying its own types and then defining SELinux restric-
tions on them.

We refer to [2] for an extensive discussion of these principles and their impact
on the realization of APMs.

12 Stefano Paraboschi, Enrico Bacis, and Simone Mutti

browser1 password file

browser2 normal

browser2 incognito

history file

untrusted app app data file

Fig. 3. Isolation of two applications using typebounds.

5 SEIntentFirewall

In order to cross the process boundaries (i.e., inter-process communication) an
app can use a messaging object to request an action from another app or system
component. The messaging object is called Intent.

5.1 Android Intents

Formally, Intents are asynchronous messages that allow application components
to request functionality from other Android components. This mechanism has
been denoted as Inter-Component Communication (ICC). Intents represent the
high-level Inter-process Communication (IPC) technique of Android, while the
underlying transport mechanism is called Binder.

Binder is a customized implementation of OpenBinder for Android. It has
the facility to provide bindings to functions and data from one execution en-
vironment to another. The OpenBinder implementation runs under Linux and
extends the existing IPC mechanisms. Android provides two types of intent:

Implicit intent : specifies the action that should be performed and optionally
the data for the action. If an implicit intent is used, Android searches for all
components that are registered for the specific action and the provided data
type;

Explicit intent : explicitly defines the component that should be called by the
Android system (i.e., using the Java class as identifier).

Intents can be used to: start Activities; start, stop, and bind Services; and,
broadcast information to Broadcast Receivers. All of these forms of communica-
tion can be used with either explicit or implicit Intents.

5.2 SEIntentFirewall Architecture

Unfortunately, Intent messages can be intercepted by a malicious app, as shown
in previous research [3, 12, 13], due to the fact that there is no guarantee that

Extending Mandatory Access Control Policies in Android 13

App A

App B

User - space Kernel - space

SELinux
security
serverKernel AVC

Security
Policy

I
n
t
e
n
t

F
i
r
e
w
a
l
l

Policy
Enforcement Point Policy Decision Point

In
te

nt

Fig. 4. Overview of the architecture used by SEIntentFirewall.

the Intent will be received by the intended recipient, and launch a malicious
Activity in place of the intended Activity. To address this problem, Google has
introduced the Intent Firewall component since Android 4.3. As it is explicit
in the name, the Intent Firewall is a security mechanism that regulates the
exchange of Intents among apps.

Although this approach provides several advantages in the protection against
Intent-based attacks, it introduces two major drawbacks. Firstly, the Intent Fire-
wall policy can be modified only by the root user (i.e., uid 0). Secondly, due to
the fact that the system has to manage a new policy language, it introduces
policy fragmentation.

SEIntentFirewall [8] is a built-in enhancement of IntentFirewall, providing
fine-grained Mandatory Access Control (MAC) for Intent objects (see Figure 4).
This approach leads to a more powerful control on the communication among
apps. This aims at strengthening the barriers among apps, introducing an ad-
ditional mechanism to guarantee that apps are isolated and cannot manipulate
the behavior of other apps.

The SELinux decision engine will then operate as the Policy Decision Point.
This choice offers a well-defined policy language and engine, leads to a simpler
and better structured code base, and minimizes the implementation effort. It
is to note that this design does not require to adapt apps source code. The
SEIntentFirewall will be obtained with an adaptation of the services provided by
APMs, discussed before [2]. This way, the security-demanding developers will be
able to embed their SEIntentFirewall rules jointly with the AppPolicyModule.

6 Conclusions

The paper reported on a number of interconnected investigations, all charac-
terized by the objective of extending the support of Mandatory Access Control
in Android. The integration of SELinux and SQLite extends the use of labels
to the database content, supporting the application of the system-level policy
to the structured data contained in the many existing databases. The support

14 Stefano Paraboschi, Enrico Bacis, and Simone Mutti

SeSQLite
Database

Content
Provider

Bening
App

Malicious
App

Password
file

SMS
Component

SeSQLite

SEIntent
Firewall

Permission
Mapping

APM

Fig. 5. A malign app is blocked in manifold ways thanks to the wide adoption of
SELinux. The SeSQLite database blocks the retrieval of sensitive data; SEIntentFire-
wall intercepts malicious Intents; the APM specifies which app has access to the pass-
word file, while the permission mapping strengthens the permission control.

for AppPolicyModules offers to app developers the opportunity to protect with
stronger guarantees their apps and data from vulnerabilities in other apps or
system components. The introduction of the SEIntentFirewall finally lets the
MAC model cover also the invocation of services.

As it is shown in Figure 5, all these elements support each other and permit
the construction of a more robust operating environment, with the possibility to
control the behavior of the system in different phases, all following the specifi-
cations of a modular policy applied at every access request.

Acknowledgments

The authors would like to thank Ivo Carminati, Paolo Carrara, Stefano Cat-
taneo, Valentina Centurelli, Andrea Durelli, Kevin Gotti, Niccoló Mangiagalli,
Giada Mariani, Francesco Marrazzo, Simone Opreni, Jacopo Ratti, Marco Rosa,
Gabriele Scotti, Paolo Vavassori, and Davide Vimercati for support in the im-
plementation of the systems and in the experimental evaluation. This work was
partially supported by a Google Research Award (winter 2014), by the Ital-
ian Ministry of Research within the PRIN project “GenData 2020” and by the
EC within the 7FP and H2020 program, respectively, under projects PoSecCo
(257129) and EscudoCloud (644579).

References

1. Arrigoni Neri, M., Guarnieri, M., Magri, E., Mutti, S., Paraboschi, S.: Conflict
Detection in Security Policies using Semantic Web Technology. In: Proc. of IEEE
ESTEL - Security Track (2012)

Extending Mandatory Access Control Policies in Android 15

2. Bacis, E., Mutti, S., Paraboschi, S.: AppPolicyModules: Mandatory Access Control
for Third-Party Apps. In: Proceedings of the 10th ACM Symposium on Informa-
tion, Computer and Communications Security. pp. 309–320. ACM (2015)

3. Chin, E., Felt, A.P., Greenwood, K., Wagner, D.: Analyzing inter-application com-
munication in Android. In: Proceedings of the 9th international conference on
Mobile systems, applications, and services. pp. 239–252. ACM (2011)

4. Denning, D.E., Akl, S.G., Morgenstern, M., Neumann, P.G., Schell, R.R., Heck-
man, M.: Views for multilevel database security. In: Security and Privacy, 1986
IEEE Symposium on. pp. 156–156. IEEE (1986)

5. Guarnieri, M., Arrigoni Neri, M., Magri, E., Mutti, S.: On the notion of redundancy
in access control policies. In: Proceedings of the 18th ACM symposium on Access
control models and technologies. pp. 161–172. ACM (2013)

6. Knox, D.: Effective Oracle database 10g security by design. McGraw-Hill, Inc.
(2004)

7. Lepreau, J., Spencer, R., Smalley, S., Loscocco, P., Hibler, M., Andersen, D.: The
flask security architecture: system support for diverse security policies. Secure
Computing Corp Saint Paul MN (2006)

8. Mutti, S., Bacis, E., Paraboschi, S.: An SELinux-based Intent manager for Android.
In: IEEE Conference On Communications and Network Security. Florence, Italy
(September 2015)

9. Mutti, S., Bacis, E., Paraboschi, S.: Policy Specialization to Support Domain Iso-
lation. In: SafeConfig 2015: Automated Decision Making for Active Cyber Defense.
Denver, Colorado, USA (October 2015)

10. Mutti, S., Bacis, E., Paraboschi, S.: SeSQLite: Security Enhanced SQLite. In: An-
nual Computer Security Applications Conference 2015 (ACSAC 2015). Los Ange-
les, California, USA (December 2015)

11. Mutti, S., Neri, M.A., Paraboschi, S.: An eclipse plug-in for specifying security
policies in modern information systems. Proc. of the Eclipse-IT (2011)

12. Ongtang, M., McLaughlin, S., Enck, W., McDaniel, P.: Semantically rich
application-centric security in Android. Security and Communication Networks
5(6), 658–673 (2012)

13. Sb̂ırlea, D., Burke, M.G., Guarnieri, S., Pistoia, M., Sarkar, V.: Automatic detec-
tion of inter-application permission leaks in Android applications. IBM Journal of
Research and Development 57(6), 10–1 (2013)

14. Schaufler, C.: Smack in embedded computing. In: Proc. Ottawa Linux Symposium
(2008)

15. Smalley, S., Craig, R.: Security Enhanced (SE) Android: Bringing Flexible MAC
to Android. In: Network and Distributed System Security Symposium (NDSS 13)
(2013)

