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Service-oriented applications may require adaptation to tackle changing user needs, system
intrusions or faults, changing operational environment, resource variability, etc. In order to
achieve the right trade off among the functional requirements, software qualities (such as
performance and reliability) and the adaptation cost itself, the adaptation decisions should
involve the (a priori) evaluation of new alternatives to the current application design.
However, the generation and evaluation of design alternatives is often time-consuming,
it can be error-prone and can lead to suboptimal design decisions, especially if carried out
manually by system maintainers.
This article proposes an automatic optimization process for adaptation space exploration of
service-oriented applications based on trade-offs between functional and extra-functional
requirements. The proposed method combines the use of metaheuristic search techniques and
functional/extra-functional patterns (i.e., architectural design patterns and tactics). Besides,
the proposed methodology relies on the standard Service Component Architecture (SCA)
for heterogeneous service assembly and its runtime platforms. As a proof-of-concept,
this article provides also an example of instantiation of the process together with an
experimentation on a sample application and a numerical evaluation of the scalability of
the approach.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Motivation

The Service-Oriented Architecture (SOA) paradigm is widely adopted for the development of software systems through
the dynamic composition of network-accessible loosely-coupled services.

In SOA, the development focus shifts from in-house custom design and implementation of system components to those
activities concerning the identification, selection, and composition of services offered by third parties.
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Modern service-oriented applications are often embedded in dynamic contexts, where requirements, environment as-
sumptions, and usage profiles continuously change. Ergo, a key requirement for software is becoming the capability to adapt
its behavior dynamically, to be able to ensure the required functionalities in a soft-fail manner even in hostile or error
conditions.

A second class of key requirements that today’s software applications are increasingly expected to fulfill concerns
extra-functional properties often specified as quality of service (QoS) constraints. As software is used more and more in
business-critical and safety-critical applications, it is important to prevent the realization of software with poor QoS. Adap-
tation decisions should be based on the right tradeoff among these quality properties. In fact, as claimed in [1], emerging
computing application paradigms require systems that are not only reliable, compact and fast, but which also optimize many
different competing and conflicting objectives, like response time, throughput and consumption of resources.

In order to achieve the right trade off among the functional requirements, software qualities (such as performance and
reliability) and the adaptation cost itself, the adaptation decisions should involve the evaluation of new alternatives to the
current application design (e.g., by changing the selection of components, the configuration of components, the sizing, etc.).
A decision, for example, taken for modifying a system functionality may be good for the satisfaction of the system reliability,
but at the same time it may require a high adaptation cost for adapting the interfaces of services [2]. A major challenge is
then finding the best balance among many different competing and conflicting requirements that a system has to meet and
cost constraints (e.g., maximize performance and availability, while minimizing cost).

This balance might be used to answer questions such as: (i) which services/service interactions are critical to the per-
formance and reliability of the application? (ii) how could a set of services be assembled to obtain a system, whose failure
probability and response time fall under a certain upper bound (if the failure probability and response time of each services
is known a priori)? (iii) how to combine architecture patterns and tactics [3,4] in order to take architectural decisions'?

For these multi-attribute problems, there is usually no single global solution, and the generation and evaluation of
design alternatives can be error-prone and lead to suboptimal design decisions, especially if carried out manually by system
architects or maintainers.

Several methods and tools have been introduced in the last years to predict and evaluate the quality of a software
system (see, for example, [5]). Usually, they predict and/or analyze some quality attributes, like performance or reliability,
starting from the architectural description of the system, or to select the architecture of the system among a finite set of
candidates that better fulfill the required quality. These evaluations can suffer of large elapsed time when the search space
size increases. In such cases, the complete enumeration of possible alternatives is inefficient. To address these issues, the
adoption of metaheuristic techniques has been proposed as a viable solution (e.g., see [6]).

In this article, we address the problem of system quality from a different point of view: starting from the description
of the system and from a set of new requirements, we devise the set of actions to be accomplished to obtain a new
architecture, which is able to both fulfill the new requirements under the right trade off among the functional requirements,
software qualities (such as performance and reliability) and the adaptation cost itself.

1.2. Contribution

The goal of this article is to provide an automatic optimization process for adaptation space exploration of service-oriented
applications based on trade-offs between functional and extra-functional requirements. The optimization method combines
the application of both metaheuristic search techniques and architectural design patterns and tactics.

The optimization process minimizes the adaptation costs of a system in correspondence with new requirements. These
requirements induce changes in the structural and behavioral architecture of the software system. Specifically, in our process,
we consider as possible changes the introduction of new functionalities (the satisfaction of new quality attributes) and
the modification of the dynamics of existing functionalities (the changing of required quality thresholds). For each new
requirement, we consider different sets of adaptation actions able to guarantee this new requirement. In this way, we
obtain a set of decisions that lead to the definition of a new architecture, which minimizes the costs while finding the best
balance among many different competing and conflicting requirements. A new architecture is, thus, obtained by modifying
both its structure and its behavior.

Specifically, in order to modify the software structure, the process replaces existing software services with different
available services and/or embeds new software services into the system. With respect to the changes in the system behavior,
it modifies the system scenarios by removing or introducing interactions between existing services and/or between existing
and new services. We adopt the OASIS/OSOA standard Service Component Architecture (SCA) [7] to represent service-oriented
software architecture models.

This paper extends our previous work [8], in which we have presented the initial idea of an optimization process,
that supports the adaptation of service-oriented applications including both static and dynamic aspects at runtime and at
re-design time. In this article, we describe in detail the proposed method and we present a numerical evaluation conducted
on an application example.

T Notice that architecture patterns are chosen in response to early design decisions, and provide the major structures in which multiple design decisions
are realized. When design decisions concern quality attributes they are often called tactics. So, a tactic is a design decision whose goal is the improvement
of one specific design concern of a quality attribute.
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The proposed optimization approach implements and enhances the one defined in [2] by taking into account also func-
tional aspects that allow us, among other things, to relax the assumption of independence between adaptation actions for
different adaptation requirements.

Our proposed methodology does not rely on a specific adaptation phase [9]. It could be used to support both dynamic
adaptation (or run-time adaptation) where adaptations may occur after deployment (meaning that the system does not need
to halt) and possibly in a self-manner (self-adaptation), and static adaptation (or evolution) where changes are set before
deployment or changes require some level of re-design and re-deployment to be performed.

The adoption of the proposed optimization process may require to be specialized in order to capture typical aspects
of a certain phase. On one hand, the dynamic adaptation regards temporary modification, such as the re-execution of an
unavailable service or a substitution of an unsuitable service, permitting to respond to changes in the requirements and/or in
the application context. Therefore, in this case, in which changes may happen very often, fast approaches for the adaptation
space exploration must be adopted in order to allow a prompt run-time adaptation. However, some of these changes often
regard critical aspects to be applied permanently to the system, and therefore they should be merely considered as evolution
steps. On the other hand, for the static adaptation, fast answers are not essential because the adaptation strategies are
evaluated and carried out at re-design time or re-deployment time.

In this article, we show mainly the process adoption for the static adaptations (or evolution steps) where more sophis-
ticated analysis are required. We postpone as future work the experimental validation of our approach also for dynamic
adaptations (like dynamic service selection) and the verification of the time constraints related to the execution time of the
optimization process itself.

1.3. Organization

The remainder of this article is organized as follows. Section 2 briefly surveys related works. The proposed methodology
for adaptation space exploration is presented in Section 3. The running case study is presented in Section 4 together with
the model parameters used for the experimental results. Possible adaptations evaluated through the application of our
methodology to the running case study are presented in Sections 5.1 and 6, respectively. Section 7 presents the results of
an extensive numerical evaluation conducted to analyze our optimization process sensitivity to changes in input parameters
and in the component set size. Section 8 draws some conclusions and provides pointers to on-going work. An Appendix A
is also included describing the selection of tactics used in the case study.

2. Related approaches

Several research efforts have been devoted in the last years to the definition of approaches and frameworks for adaptation
(see, e.g., the survey [10]). Most of them typically adapt a system by adopting different service selection policies, varying
system parametrization or exploiting the inherent redundancy of the Service-Oriented Architecture (SOA) environment.

For a given application domain, the behavior of an adaptation approach mainly depends on its use for evolution (at
re-design time) or self-adaptation (at run-time). As already stated, our approach is not tied to any particular adaptation
phase of the software life-cycle, but in this article we show mainly the process adoption for the static adaptations, where
more sophisticated analysis are required. Specifically, we show the use of tactics, which typically involve substantial archi-
tectural changes. As far as dynamic environments is concerned, requiring a continuous adaptation of the composition of
services, only temporary modification (such as the re-execution of an unavailable service or a substitution of an unsuitable
service) should be supported. To this extend, fast approaches (see, for example, [11] and [12] detailed below), combined
with techniques for estimation of quality at runtime (see Section 3.2), must be adopted in order to allow a prompt run-time
adaptation used for our adaptation process.

In [11] two heuristics methods are designed for the dynamics service composition in the sensor network environment.
In particular, the service-oriented domain is exploited for representing sensor network applications, and the sensor service
composition process is formulated as a cost-optimization problem.

In [12] the RasC (Regression-based Approach for Composition) for automated semantic web service composition at func-
tional level is presented. Specifically, a general framework is designed where web services are specified by means of input
and output parameters together with preconditions and effects. Moreover, in order to perform the web service composition,
the semantic link matrix is introduced as an innovative and formal model to apply problem-solving techniques such as
regression (or progression)-based search.

Here we shortly review the main methods for adaptation space exploration with the goal of improving system quality.

Rule-based Approaches, for example, include the work of Xu et al. [13] presenting a semi-automated approach to find con-
figuration and design improvement on the model level. Parsons et al. [14] present a framework for detecting performance
anti-patterns in Java EE architectures. The method requires an implementation of a component-based system, which can
be monitored for performance properties. Cortellessa et al. [15] propose an approach for automated feedback generation
for software performance analysis, which aims at systematically evaluating performance prediction results using step-wise
refinement and the detection of performance problem patterns. All rule-based approaches share a common limitation. The
model can only be changed as defined by the improvement rules. However, especially performance is a complex and cross-
cutting quality criterion. Thus, optimal solutions could lie on search paths not accessible by rules.
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Metaheuristic based Approaches: Evolutionary approaches are applied in Grunske [16] for the improvement of availability
and costs, in [17] for the study of the trade-off between performance and cost. The usage of evolutionary algorithms together
with architectural patterns is implemented in the SASSY framework for generating service-oriented architectures based on
quality requirements [18]. In these approaches the derived optimization process is time-consuming.

Software architecture analysis approaches such as SAAM and ATAM [19] and others reviewed in [20], analyze the software
architecture with respect to multiple quality attributes exploring also tradeoffs concerning software qualities in the design.
The outputs of such analysis include potential risks of the architecture and the verification result of the satisfaction of
quality requirements. Methods using architectural patterns and tactics for quality attributes are presented in [3,21], while
[22,4] describe how software adaptation patterns can be used to help with the adaptation of service-oriented software
systems after original deployment. These methods provide qualitative results and are mainly based on the experience and
the skill of designers and on the collaboration with different stakeholders.

With respect to the state-of-art, the novelty of our approach can be summarized as follows.

e This is one of the few papers (to the best of our knowledge our previous work is the first one [8]) proposing an auto-
matic optimization process for adaptation space exploration of service-oriented applications, supporting both static and
dynamic aspects, based on trade-offs between functional and extra-functional requirements. This paper is an extended
version of [8]. Here we describe in detail the proposed method and we present a numerical evaluation conducted on
an application example.

e Our approach is not tied to any particular adaptation phase, even if the proposed optimization process may require to
be specialized in order to capture typical aspects of a certain phase. Our optimization process uses a mixed approach
of metaheuristic search techniques and of application of recurring (repository-based) software design solutions. Besides,
this methodology relies on a formal and executable service-oriented component model called SCA-ASM [23] both for
the specification and analysis of functional and non-functional aspects.

e The proposed process takes into consideration the behavior of the “components” and the “architecture” of the appli-
cation. Therefore, the adaptation is driven by the analysis to characterize the system qualities (e.g., performance and
reliability) behavior of the software application. If the software application is to be adapted from a collection of basic
elements (e.g., components or services), then giving an answer to such questions can help to make decisions, such as
which services should be picked off the shelf, and which services should be embedded into the system.

e Our framework can facilitate the work of system architects and/or maintainers. In fact, a user does not have to insert
as input value architectures satisfying all changes required, but possible sets of adaptation actions (called adaptation
plans) for each new requirement (see Section 3.2), which he/she want to implement.

3. Adaptation methodology

This section presents background notions on the language adopted to describe service-oriented software architectures
(including the adaptation mechanism supported by the formalism) and describes the proposed adaptation space exploration
process.

3.1. Service architecture description language and adaptation

We adopt the OASIS/OSOA standard Service Component Architecture (SCA) [7] to represent service-oriented software archi-
tecture models. SCA defines how heterogeneous services can be described, assembled, and deployed in a graphical (through
a visual notation developed with the Eclipse-EMF environment) and XML meta-data driven way, independently of imple-
mentation languages and deployment platforms. SCA runtime environments (like Apache Tuscany [24] and FraSCAti [25], to
name a few) enable then developers to execute/debug the resulting composite application. By using the SCA programming
model, a service-oriented application can be built or adapted quickly and effectively, separating the business logic from
technology concerns and enabling re-use of existing components. Additionally, by exploiting the SCA Policy Framework [7],
the designer can specify for components necessary meta-data annotations. These are useful for providing metrics that can
be extracted from the model for non-functional analysis purposes, and for representing policies that can be guaranteed by
the runtime platforms.

Fig. 1 shows an SCA assembly of a service-oriented application as a composition of SCA components using the SCA
graphical notation. An SCA component is a piece of software that has been configured to provide its business functions
(operations) for interaction with the outside world. This interaction is accomplished through: services that are externally
visible functions provided by the component; references (access points to services) wired to services provided by other
components; properties allowing for the configuration of a component implementation with externally set data values; and
bindings that specify access mechanisms used by services and references according to some technology/protocol (e.g., WSDL
binding to consume/expose web services, JMS binding to receive/send Java Message Service, etc.). Services and references
are typed by interfaces. An interface describes a set of related operations (or business functions) which as a whole make up
the service offered or required by a component. The provider may respond to the requester client of an operation invocation
with zero or more messages. These messages may be returned synchronously or asynchronously.
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Fig. 1. An SCA composite (adapted from the SCA Assembly Model V1.00 spec.).

For behavioral specification and functional analysis purposes, we in particular adopt the SCA-ASM component implemen-
tation type [23]. SCA-ASM is based on a suitable subset of the SCA component model and complements it with the model
of computation of the formal method Abstract State Machine (ASM)? [26] to model notions of service behavior, interactions,
orchestration, and compensation in an abstract, formal, and executable way. An open framework, the ASM toolset ASMETA
(ASM mETA-modeling) [27,28], based on the Eclipse/EMF platform and integrated with the SCA runtime Tuscany, is also
available for editing, simulating, validating, and potentially model checking SCA-ASM models [29,30].

3.1.1. Adaptation mechanism

Adaptation actions at technology or business level are easily supported by extending/modifying the SCA assembly of
the application. Mechanisms for enacting and managing self-adaptation of SCA applications are being developed for SCA
run-time platforms. The work [31] is an example of such an effort showing how such mechanisms are being implemented
in the SCA runtime platform FraSCAti.

Our SCA-based framework achieves adaptations through the insertion or replacement of components or sets of compo-
nents or services. Basically, an SCA assembly (i.e., the architecture of the considered application) can be adapted through
the following atomic adaptation actions:

adding/removing components, component services, references, properties, and wires (component interactions);
changing a component implementation (but keeping its shape);

changing component properties values;

changing SCA domains® (components re-deployment);

changing the component interaction style in synchronous/asynchronous, stateful or not, unidirectional or bidirectional.

The changes in the interaction style are reflected at SCA level by changing the shape, at interface level, of the components
involved in the interaction and the wire type (communication binding) used to interconnect the components. See [7] for
more details. Moreover, with respect to changes in the system behavior (that is formally specified in terms of ASMs for
functional analysis purposes), an adaptation action may imply also changes in the services interaction(s) and orchestration
process. These are reflected also at ASM level, as refinement of the ASM transition rules specifying the components’ services
behavior and their orchestration.

Adaptations actions can be combined into an adaptation plan, which is a set of actions modifying the static and dynamic
parts of an application architecture to address a certain requirement. Adaptation plans may differ for adaptation cost and/or
for the system quality achieved after their application.

3.2. Adaptation Space Exploration

In this section, we describe an optimization process that suggests how to adapt the architecture of a service oriented
application by making the right tradeoff between functional and non-functional requirements. Specifically, cost and multiple
quality attributes (such as response time and availability) are considered.

The workflow of the proposed process is shown in Fig. 3. It starts (Candidates Selection) with an initial set of SCA-ASM
assemblies (the initial candidates or population of the search) fulfilling the existing/new functional requirements and fully
QoS annotated. It then proceeds iteratively. At each iteration step, new candidates are generated from the current population

2 ASMs are an extension of FSMs: states are arbitrary complex data (multi-sorted first-order structures) and the transition relation is specified by rules
describing how functions change from one state to the next.

3 An SCA domain consists of the definitions of composites, components, their implementations, and the nodes on which they run. Components deployed
into a domain can directly wire to other components within the same domain.
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1. Model Parameters and Variables
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iy delivery time

Vi the component i isin-house developed
Xy COTS Instance j selected for the component i
Nt number of tests performed on the in-house developed instance of the component i

n mn
2. Cost Objective Function: COF = Z (ci(ti +7,N i"”)yi + z cyXy
=1 J=1

n —((1-py)siyity wysixi)
H e = >R

i=1

3. Reliability Constraint: RelSys =

m
5. The delivery time of the componenti: T;= y,(f; + 7,N /) + D dyxy
j=1

Fig. 2. Cost Model and Delivery Time/Reliability constraint used in [33].

(New Candidates Generation), then evaluated (Functional and Quality Analysis) and the promising ones selected (Candidates
Selection), until the stop criteria are satisfied* [32].
There are two methods to generate new candidates based on the current population, which are executed in parallel:

e (i) Metaheuristic Search;
e (ii) Application of Existing Design Solutions

Both these two methods contribute new candidates to the next iteration. The first method uses the classic metaheuristic
search techniques to explore the adaptation space by applying user adaptation plans, service selection and service re-
deployment. The size of the population depends on the specific search technique. The second method uses the specific
knowledge of architectural design patterns and tactics to improve extra-functional aspects in current candidates, if appli-
cable. Essentially, new SCA-ASM assemblies are created from the current ones by making the necessary adaptation actions
required by the application of the specific design pattern or tactic. This may imply also the introduction of new concrete
components available from a component repository.’

The functional and quality analysis of the new population of candidates are performed together with an assessment of
the adaptation costs. Such analysis can also be used during the execution of the subprocesses to optimize the search space
exploration. For example, as done in the example shown below, the search metaheuristic process is guided by reliability
analysis. For each candidate, the metaheuristic algorithm performs the quality analysis by using the reliability model and
cost model used in [33]. As shown in Fig. 2, the cost model - representing the objective function - and the reliability
model - representing a model constraint - allows to predict the system reliability and cost as a function of the reliability
(cost) of single components.

In case of self-adaptation, the promising SCA-ASM assemblies are automatically selected as solutions according to pre-
defined selection criteria (e.g., cost minimization). In case of evolution, the solution can be more accurately selected also
considering a possible feed-back from the user [9].

Example of Adaptation Process Fig. 4 shows a concrete example of instantiation of our adaptation process, where an UML
Sequence Diagram (SD) describes the process behavior in terms of interactions that take place among modules executing
the main Activities shown in Fig. 3 (i.e., Candidate Selection, Metaheuristic Search, Application of Existing design solutions and
Functional and Quality Analysis). The application under consideration is composed by the components Ci, C; and Cs. The

4 We currently use a predefined number of iterations to determine the end of the search. More sophisticated stop criteria could use convergence detection
y p p P g
and stop when the global optimum is probably reached.
5 We assume that a number of concrete components are available in some repository, which is accessible to us and we need to make a selection out of
them.
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[ Candidates Selection

adaptation process tries to adapt the application minimizing the adaptation costs and assuring a level of reliability greater
than 0.99. The initial candidate of the process - provided to the module Candidates Selection for starting the adaptation
space exploration, and generated by replacing each application component with one of its three available instances - is the
vector [C11, C21, C31] (see Fig. 4(a)), where C;; denotes the j-th available instance for the component C;. The vector comes
with two parameters: the resulting system reliability and the cost of the solution. O

In order to support such proposed optimization process, we have also been working on developing a suitable software-
based “reasoner module” that can be embedded in any general-purpose adaptation framework. This software module (see
Fig. 5) may be activated after receiving (as input) either adaptation requests from the user or alerts from monitors (or
probes). By executing the process described above, this reasoner produces as output Pareto-efficient alternatives. Each point
of a Pareto curve is a chain of software adaptation actions that, if executed, lead to the new system architecture, i.e., the
adapted SCA-ASM assembly. These changes applied at SCA model level must be related then (through the use of effectors)
to the underlying mechanisms and runtime infrastructure. In the case of SCA, mechanisms like introspection and reconfigu-
ration, for managing and enacting self-adaptation of SCA assemblies [31] are applied.

Below, a more detailed description of the main phases follows.

New candidates generation: As first generation method, we rely on the use of metaheuristic search techniques. Their
effectiveness and efficiency has been already demonstrated [6] for supporting the service selection activity at run-time. As
remarked in [6], the global optimization, typically used by the approaches supporting such an activity driven by system
quality, is definitely useful for small composition, but a significant performance penalty incurs for large-scale optimization
problems, especially for runtime optimization. Several metaheuristic techniques [34] with different characteristics could be
adopted depending on the nature of the problem. For example, considering the system reliability, a possible heuristic is:
“the reliability of the whole system increases when the reliability of the most used components increases”. As remarked in [35],
there exist design options for which we have no prior knowledge on how they affect the extra-functional property of a
particular system. To this extent, undirected operations could be performed (e.g., random choices or exhaustive evaluation
of all neighboring candidates).

In our optimization approach, we adopt the Tabu Search heuristic technique described below, in Section 3.3. The result
of the first generation method is therefore a set of Pareto-optimal candidate solutions, probably superior to the initial
candidates.

For comparison purposes only (see the experimentation in Section 6), we also consider two other methods that are
described in Section 3.3.2.

Example of Adaptation Process At the first iteration step of the adaptation process, the module Metaheuristic Search (see
Fig. 4(c)) generates the set of new candidates Candy;. The module Metaheuristic Search selects the best candidate as the
one improving the reliability and minimizing the adaptation costs. It becomes the basis for next candidates generation.
The process terminates either if no better candidates can be found or the reliability threshold is reached. In our case, the
metaheuristic returns the solution [Cq2, C21, C33] with reliability equals to 0.990644 and cost equals to 14.5 (in KiloEuros,
KE). O
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The second method generates new candidates by applying recurring software design solutions, such as architectural de-
sign patterns and tactics. Architectural design patterns are templates for concrete software architectures. They are adopted to
embody functional requirements and, in particular, to enable self-adaptability by introducing sensors/effectors components
(e.g., Microkernel pattern, Reflection pattern, Interception pattern) [10]. To build new design solutions embodying extra-
functional requirements, we adopt architectural tactics [36], which are reusable architectural building blocks that provide a
generic solution to address issues pertaining to quality attributes.

Example of Adaptation Process At the first iteration step of the adaptation process, concurrently to the metaheuristic
search, the module Application of existing design solution (see Fig. 4(c)) applies tactics for reliability improvement leading to a
change of the components shape (i.e., in the required/provided interfaces) and also of their behavior. Besides, it is required
the introduction of a new component newc; for the fault detection tactics. O

Functional and Quality Analysis: This phase aims at guaranteeing the functional correctness of the resulting candidates
and that changes claimed by the adaptation actions do not compromise the satisfaction of existing non-functional require-
ments. To this purpose, we use a set of external analysis tools that can be invoked for the functional and non-functional
analysis, respectively. The functional analysis is assumed (but not limited to) that is executed with the help of the ASM
analysis toolset ASMETA [27,37]. Preliminary analysis of the functional requirements satisfiability of an SCA-ASM assembly
would be performed by easier validation techniques as simulation, [38] scenario-based simulation [39,40], and model-based
testing [41]. Later, heavier formal verification techniques (as model checking) [42] can be exploited when more complex
functional properties [43] must be proved to guarantee behavioral system correctness.

For the non-functional analysis, external tools for performance and reliability analysis like gnetworks [44] and LQN-
solver [45] are exploited. Examples of adaptation costs prediction techniques can be found in [2]. In general, different
approaches/strategies can be used depending on several factors due mainly to the use of our process for evolution (at re-
design time) or self-adaptation (at run time). If permanent changes, for example, are requested or a safe-critical service has
to be adapted, precise and often expensive analysis must be performed (e.g., see [5] for performance analysis). As oppo-
site, if runtime changes are claimed and these require, for example, only the adaptation of parameters without using more
sophisticated analysis, faster approaches must be adopted allowing a prompt run-time adaptation (see, e.g., techniques for
estimation of quality at runtime, such as [46]). Moreover, as we remarked above, this analysis could be also performed
during the execution of the two subprocesses executed in parallel. Similar considerations also apply for functional analysis.

Example of Adaptation Process As shown in Fig. 4(c), the Candidates Selection module uses the module Functional and
Quality Analysis for the quality analysis of the candidates generated by the module Application of Existing design solutions. As
already stated, the module Metaheuristic Search performs itself the quality analysis.

The best candidate is selected (by the module Candidates Selection) among the resulting candidates of the two sub-
processes as the one improving the system reliability and minimizing the adaptation costs. It becomes the basis for the
second candidates generation. As shown in Fig. 4(d), the initial candidate of the second iteration of the exploration pro-
cess is the solution Sol =[C11, C21, C31, newcy] provided by the tactics applications with reliability equals to 0.991 and cost
equals to 13.5 KE. The process terminates till stop criteria are satisfied (i.e., the number of iterations determining the end
of the search is greater than Ncycles). O

3.3. Multi-objective optimization and Pareto solutions

As already stated, we deal with multi-attribute problems and the proposed optimization process exploits the multi-
objective optimization [47], where the objectives represent different quality attributes. The aim of these techniques is to
devise a set of solutions, called Pareto optimal solutions or Pareto front, each of which assures a trade-off between the con-
flicting qualities. In other words, while moving from one Pareto solution to another, there is a certain amount of sacrifice in
one objective(s) to achieve a certain amount of gain in the other(s).

The adaptation space AS, that is the search space of our optimization process (i.e., the set of all possible candidate
solutions), is the Cartesian product of the option sets of all system-specific adaptation actions.

In our context, we can state that a candidate SCA-ASM assembly is Pareto-optimal, if it is superior to any candidates
evaluated so far in at least one quality criterion.

More formally: Let s be a candidate solution, let C € AS be a set of candidate solutions evaluated so far, and let q be
a quality criterion with a domain Dg, and an order < on Dy so that s; <4 s, means that s is better than or equal to s;
with respect to quality criterion q. Then, candidate solution s is Pareto-optimal with respect to a set of evaluated candidate
solutions C, iff

Vs € C3q: fq(s) <q fo(5)

If a candidate solution is not Pareto-optimal, then it is Pareto-dominated by at least one other candidate solution in C
that is better or equal in all quality criteria. Analogously, a candidate is globally Pareto-optimal, if it is Pareto-optimal with
respect to the set of all possible candidates AS.

In the remainder of this section we review the main methods used in the process to find these Pareto optimal solutions.
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Fig. 6. Algorithm: Tabu Search.

3.3.1. Tabu Search

The Tabu Search (TS) [34] is among the most cited and used metaheuristics for solving optimization models. It enhances
the performance of a local search method by using memory structures describing the visited solutions. Once a solution is
visited, it is marked as “taboo” so that the TS does not visit that possibility repeatedly. TS explicitly uses the history of
the search, both to escape from local minima and to implement an explorative strategy. For a given problem, the solution
produced by TS algorithm mainly depends on the combination of its parameters (e.g., the neighborhood size, the number of
the iterations and tabu tenure).

The pseudo-code of the simple TS algorithm is shown in Fig. 6. A description of its main steps follows.

Begin with a starting current solution The initial candidate s, representing an SCA-ASM assembly and fulfilling the exist-
ing/new functional and non-functional requirements is generated.

Create new candidates The tabu search is based on a short term memory, which is implemented as a tabu list. This latter
keeps track of the most recently visited solutions and forbids moves toward them.

At each iteration step, the neighborhood of the current solution® is restricted to the solutions that do not belong to
the tabu list (i.e., definition of NeighborsOkSet in Fig. 6). Such a set of new candidates is obtained making changes to the
current solution (these changes are also called moves) by applying user adaptation plans, service selection and service
re-deployment.

Choose the best candidate The best candidate is then selected as the one minimizing the objective function (under possible
constraints). This step is performed through the function ChooseBestof (NeighboursOkSet) in Fig. 6. The candidate becomes
the basis for next candidates generation and the current best solution of all tabu search interactions. Additionally, such a
solution is added to the tabu list and one of the solutions that were already in the tabu list is removed (usually in a FIFO
order). The length of the tabu list is given as value of input to the tabu search.

Stopping criterion The process proceeds iteratively till stop criteria are satisfied by returning the best solution of all inter-
actions. The algorithm can stop if the predefined number of iterations has elapsed in total. More sophisticated stop criteria
could use convergence detection and stop when the global optimum is probably reached.

This simple TS could be specialized and enhanced depending on the problem, varying, for example, the tabu list length
or leveraging on long-term memory [34].

3.3.2. Other methods

For comparison purposes, in our experimentation we considered two other methods to generate alternative adaptation
solutions: the lexicographic method [48], and a random solution generator.

We have implemented the lexicographic method as follows. First we have solved the optimization model minimizing
the adaptation cost under reliability and delivery time constraint (using the model in [33]), then we have formulated the
optimization model that minimizes the probability of failure under the cost constraint expressed as fi1(x) < fi1(xx) + €,
where € is a positive tolerance (real number). Finally, we have found the set of Pareto optimal solutions by varying €
applying the e-constraint approach [48]) The process continues till the stop criteria are satisfied.” For the experimentation
we have used the LINGO tool [49], which is a non-linear model solver, to produce the results.

The choices of the random solution generator were, of course, random. For the component C;, a COTS component is chosen
by picking it uniformly at random from the set of COTS instances available for C;.

4. Running case study

This section presents a sample application from the Stock Trading System (STS) originally presented in [36]. It is used
throughout the article to exemplify the proposed adaptation process. Fig. 7 shows the initial SCA assembly of the STS.
Briefly, an STS user, through the OrderWebComponent interacting with the OrderDeliveryComponent, can check the

6 “A neighborhood structure is a function N: S — 25 that assigns to every s € S a set of neighbors N(s) € S. N(s) is called the neighborhood of s.” [34].

7 We have used the satisfaction of reliability constraint to determine the end of the search and a predefined number of interactions.



366 R. Mirandola et al. / Science of Computer Programming 80 (2014) 356-384

OrderWebService StockTradingsystem stockExchange

1
1
1
OrderDeliveryService i
1
H

~==n e~ ~
StockQu :S Pt Order Order ~ eeeeeeeeeeee =
tockQuotieService 5
i Web orderDelivery ety
i Component Component
|
i
1
i
i
|
i .
I, Stock SCA symbols:
Quote
Component r— : : : ’
Service Reference Wire

Fig. 7. Stock Trading System.

Table 1
Parameters of instances available for existing components.
Instance Cost Average Average no. Prob. of fail.
alternatives Cij delivery time d;; of invocations s; on demand
C1 Ci1 1 4 180 0.0002
C12 2.5 4 180 0.0002
Ci3 2 4 180 0.0004
Cy Ca1 2 4 20 0.0002
Cx 3 4 20 0.0002
Ca3 6 15 20 0.0004
C3 C31 10 4 60 0.0002
Cs32 14 10 60 0.0004
Cs3 10 10 60 0.0004

current price of stocks, placing buy or sell orders and reviewing traded stock volume. Moreover, he/she can know stock quote
information through the StockQuoteComponent. STS interacts also with the external Stock Exchange system, which we
do not model.

Below we report the experimental data set used in this case study.

4.1. Model parameters of the STS case study

The estimation of functional/extra-functional parameters is a well-know problem. It has been discussed, for example in
[50], where the state of existing approaches is identified. Possible solutions are proposed, mainly based on the usage of
historical data (if available) or derived from similar situations.

The model parameters used here are partially derived from the WEB-based data retrieval system adopted as case study
in [33]. In such a system clients are equipped with the local processing capability and local database. A WEB connection is
provided to execute data search and data updates in a distributed system, through the network. We have assumed, though
not shown in Fig. 7, that our STS application also instantiates an agent on the server side of the WEB-based data retrieval
system.

As done in [33], the estimation of the parameters entering our system has been partly based on the monitoring of an
existing data retrieval system at University of L’Aquila and partly extracted from software artifacts of the same system.
However, incomplete documentation forced us to adopt extrapolation techniques for providing certain values. For example,
the number of invocations has been obtained by analyzing partial scenario descriptions and validating the analysis results
with monitored average number of interactions.

We assume that several instances (i.e., implementations) of an existing component may be available on the market, all
equivalent from the functional viewpoint. Basically, the instances differ each other for costs and non-functional properties
such as reliability and response time. Table 1 shows the initial values that we have considered for the parameters of SCA
components available on the market. Similarly, Table 2 shows the initial parameters that we have considered for in-house
SCA components. We have associated the IDs to the components as follows: C; to Order Web Component, C, to Stock Quote
Component and C3 to Order Delivery Component.

The second column of Table 1 lists, for each component, the set of instance alternatives available. For each alternative:
the adaptation cost c;; (in KiloEuros, KE) is given in the third column, the average delivery time d;; (in time unit) is given
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Table 2
Parameters for in-house developed instances.
Development Testing Unitary Average no. of Testability
time tjo time tjo development cost Cig invocations s; Tio
Cq 1 0.05 1 180 0.002
Cy 3 0.05 1 20 0.002
C3 5 0.05 1 60 0.002

in the fourth column, the average number of invocations of the component in the system s; is given in the fifth column,
finally the probability of failure on demand p;; is given in the sixth column.

For each component in Table 2: the estimated development time tjp (in time unit) is given in the second column and
the average time required to perform a test case tjp (in time unit) is given in the third column, the unitary development
cost Cjp (in KE per day) is given in the fourth column, the average number of invocations s; is given in the fifth column, and
finally the component testability 7jp is given in the last column. The definition of testability 7r; that we adopt is the one
given in [51], that is the probability that a single execution of a software fails on a test case chosen from a certain input
distribution. The input distribution represents the operational profile that we assume for the component, as obtained from
the operational profile of the whole application [52].

Note that we have defined the parameters of components as average values of the values of their provided services. The
parameters could be refined with respect to the services without essentially changing the overall model structure.

STS system configurations. We here discuss the parameters of three configurations of the STS system used later in Sec-
tion 6.2.

The first configuration has the threshold on the delivery time and reliability to T =7 and R = 0.5, respectively. In
addition, the costs of C1; and Cyq is increased to 5 units (i.e,, C;1 and Cy; = 5). The reliability threshold (that may be
unrealistic) has been set to this value to show the behavior of three approaches in the case of a not complex search space.

The second configuration has the threshold on the delivery time and reliability to T =15 and R = 0.8, respectively. In
addition, the costs of C11, C21 and Cy; are increased to 5 units (i.e., C11 = C21 = Cy2 =5), and the probability of failure on
demand of SCA component implementations available for Cy is increased to 0.003 (i.e., Vj p1; = 0.003).

Finally, the third configuration has the threshold on the delivery time and reliability to T =15 and R = 0.8, respectively.
In addition, the costs of Cy1, C21 and Cy, are increased to 5 units (i.e., C11 = C31 = Cy3 = 5), and the probability of failure
on demand of SCA component implementations available for all components is increased to 0.003 (i.e., Vi, j w;j = 0.003).

The experiments were run on a Windows workstation equipped with an Intel Centrino Processor 1.3 GHz CPU and a 512
MB RAM. The tabu search algorithm was compiled using Icc-win32 3.3. We imposed a number of interactions of 50, and
the tabu list length limit of 45 to each experiment. Finally, the optimization model for the lexicographic method was solved
using LINGO 11.0.

5. Adaptation space exploration for service-oriented components replacement

In this section, we exemplify the proposed adaptation methodology by instantiating the tabu search for the specific
problem of service-oriented components replacement. We illustrate the adaptation process through the STS case study
where most adaptation actions concern the replacement of SCA components.

5.1. Downscaling the Tabu Search for SCA components replacement

This tabu search application is designed for replacing the STS components by buying or building components on the
base of cost and non-functional factors (i.e., reliability and delivery time). The TS also provides the best amount of testing to
be performed on each in-house developed component to fulfill the constraints while minimizing the adaptation costs. The
TS solves the non-linear cost/quality optimization model [33] based on decision variables indicating the set of architectural
components to buy and to build in order to minimize the software cost under the delivery time and reliability constraint
(i.e., the system reliability and delivery time are required within a threshold R and T, respectively). Such a model belongs to
the class of mixed integer non-linear programming models. It can suffer of large elapsed time when its size increases (e.g.,
it grows exponentially in the number of components). We have implemented in C and optimized for fast execution the TS
algorithm. The entire set of experiments, which we have performed, took practically no noticeable time (order of seconds)
on standard computing equipment.

In the sequel we describe how the steps of the general algorithm described in Section 3.3.1 are instantiated.

Multi-objective function As shown in Fig. 8, the function objective f(s) is the weighted sum of the adaptation cost
and the system probability of failure obtained by considering the candidate s. These objectives are defined by using the
cost model and the reliability model used in [33] (see Fig. 2). In particular, at each iteration step, the neighborhood of the
current solution is explored (i.e., for each neighbor s, f(s) is estimated). The best candidate is then selected as the one
minimizing the objective function (under possible constraints). This step is performed through the function ChooseBestof of
Fig. 6. The tabu search is executed for different set of s values. The solutions of each tabu search’s execution are analyzed,
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Fig. 8. Objective function as weighted sum of the cost model and reliability model used in [33].

and the set of Pareto-optimal solutions is defined. Note that, to sum such objectives we apply the logarithm function to the
system probability of failure on demand. In fact, since the probability of failure on demand is a number that falls within the
range of [0, 1] its logarithm is a negative number.

Begin with a starting current solution The initial candidate s, which fulfills the reliability and delivery time constraints is
the vector [C;j], made of three elements, where an element C;; denotes either a COTS? or an in-house instance. For its first
application, Cjp means an in-house developed component and the symbol name of the instance is paired with the number
of test to perform on the instance.

C7 indicates the OrderWebComponent, C; the StockQuoteComponent and C3 the OrderDeliveryComponent.
The resulting system reliability, the cost and delivery time of the solution are predicted using the reliability, cost and
delivery time model used in [33] (see Fig. 2). The candidate s is generated by using the TS Initial Solution Generation method
described in Section 5.1.1.

Create new candidates The set of new candidates is generated by replacing, one at a time, an existing component with
either one available on the market or an in-house instance. The amount of testing of the in-house developed instances is
found by using the Testing Generation algorithm described in Section 5.1.2.

Choose the best candidates The best candidate is selected as the one minimizing the objective function under reliability
and delivery time constraints. Additionally, the pair (i, j) is stored into the tabu list, where i is the index of component
changed and j represents the new solution chosen for the component i, and the oldest components in the tabu list are
removed as the list becomes full following a FIFO order.

Stopping criterion The TS stops if the predefined number of iterations has elapsed in total. At each iteration, upon
examining the neighborhood, if no feasible solution is found, then the initial solution of the next interaction is generated
using the TS Initial Solution Generation method.

5.1.1. Initial Solution Generation algorithm

Depending on several factors (e.g., search technique used) different strategies could be adopted [34] for finding a set
of feasible solutions, such as an algorithm combining heuristics, local search, user adaptation plans, service selection and
re-deployment actions.

For this step, we draw inspiration from the solution construction phase of the Greedy Randomized Adaptive Search
Procedure (GRASP) [34]. We generate a list of feasible solutions that fulfill the quality constraints (i.e., the system reliability
and delivery time are assured within the required thresholds). A solution is the vector [Cj;] where an element C;; denotes
either a COTS instance or an in-house instance. First the COTS component Cy; is chosen by picking it uniformly at random
from the set of COTS instances available for Cq, then the set of solutions is generated by replacing, one at a time, another
existing component with one available on the market instance.

Such a search is optimized by the reliability heuristic described above. If no solutions are returned, the process is repeated
by choosing another component C1j‘ using the reliability heuristic, and a solution is randomly generated by considering also
the in-house instances.

5.1.2. Testing Generation algorithm

The Testing Generation (TG) algorithm estimates the amount of testing of the npo,s in-house developed instances of the
candidate s. In the following we discuss the main steps and features of TG, which implements another tabu search.

Begin with a starting current solution The initial candidate t, that fulfills the quality constraints is the vector [t,], made
of npouse elements, where an element t; denotes the maximum amount of unit test maxt, that could be performed on the
in-house component h. t, is estimated as a function of the threshold T required for the system delivery time.

Create new candidates At each iteration step, the neighborhood of the current solution t is generated by varying the
testing of an in-house instance h on the range [0, maxty].

Choose the best candidate The best candidate is selected as the one minimizing the objective function f(s) under re-
liability and delivery time constraints. The candidate becomes the basis for next candidates generation and possibly the
current best solution of all TG interactions. Additionally, the pair (h,ty) is added to the tabu list, where h is the index of
the changed in-house element (with respect to the initial candidate t of the current TG interaction) and t, represents the

8 Throughout this article, we use improperly the term COTS to denote in a concise way an SCA service-oriented component already available on the
market.
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amount of unit test for the in-house h. The oldest solutions that were already in the tabu list are removed whether the list
is full using a FIFO discipline. The length of the tabu list is given as value of input to the tabu search.

Stopping criterion The TG stops if the predefined number of iterations has elapsed by returning the best solution of all
interactions. At each interaction, upon examining the neighborhood, if no feasible solution is found, then the initial solution
for the next iteration is generated as follows.

A starting solution t = [t;] is generated with an algorithm similar to the Initial solution algorithm described above. First
t1 is chosen by picking it uniformly on the range [0, maxt;], then the other testing amounts are generated by varying the
one of an in-house instance h (h # 1) on the range [0, maxty]. Note that such an algorithm could be also used for generating
the initial candidate for the first interaction of TG.

6. Adaptation space exploration of the STS

In this section, we illustrate the experimental results of a possible execution of the proposed adaptation process for the
STS case study, while in the next section we show the results of an extensive numerical evaluation conducted to analyze the
performance of the overall process. Specifically, first we show the application of the TS described in the previous section
to the STS. We also confirm the importance of having such an automated support by showing that our heuristic search
produces results that exceed the one produced by the other two considered methods, i.e., the lexicographic method and
the random solution generator. Then, we combine the use of the metaheuristic search with some tactics and architectural
adaptation patterns, re-iterating the process.

6.1. Application of the Tabu Search to the STS

We have designed a TS for replacing the STS components by buying or building components basing on cost and non-
functional factors (i.e., reliability and delivery time). The TS also provides the best amount of testing to be performed on
each in-house developed component to fulfill the constraints while minimizing the adaptation costs. The TS solves an op-
timization model as the one proposed in [33]. The search space (i.e., the set of all possible candidate solutions) is the
Cartesian product of the COTS and in-house instances sets of the STS components. The instantiation of TS to the case
study has been described in Section 5.1. Each candidate is expressed as a vector [Cj;]. In the STS case study, C; indicates
the OrderWebComponent, C; the StockQuoteComponent and C3 the OrderDeliveryComponent. Detail on the TS
implementation can be found in [53].

6.2. A comparison among the tabu search, the lexicographic method, and the random solution generator

We have applied the approaches on three different configurations of the STS system characterized by the parameters
reported in Tables 1 and 2. In order to keep our model as simple as possible, in all configurations we assume that only one
in-house instance for each component can be developed, but several in-house components can exist. The number of COTS
instances does not change across configurations, but each configuration is based on a different set of component parameters.
The configurations differ also for the values of reliability R and delivery time T bounds.

The configuration parameters have been set for showing the behavior of three approaches while increasing the search
space complexity. The configurations differ for the probability to find a Pareto solution: the first configuration, characterized
by a lower threshold R, has a higher probability with respect to the other ones, characterized by a higher threshold R and
a set of selected components more complex to be analyzed.

Fig. 9 shows the approximate Pareto curves obtained from solving the optimization problem of the first system config-
uration using the three approaches. In the figure we have put a cross on the unfeasible solutions. In this configuration a
maximum threshold T =7 has given on the delivery time of the whole system, and a minimum threshold R = 0.5 is given
on the reliability of the whole system. This reliability threshold (that may be unrealistic) has been set to show the behavior
of three approaches in the case of a not complex search space.

Each Pareto solution represents a configuration of components that minimizes both the system adaptation cost and its
probability of failure on demand. For example, the tabu search results claim that if the probability of failure is equal to
0.405479 (represented on the x-axis), then the minimum cost to adapt the system is 9 KE. The tabu search results also
show that the optimal solution cost increases (up to 17.5 KE) while decreasing the system probability of failure (down to
0.050671).

By looking at the details of the solution, for example, we observe that for the tabu search point (0.405479, 9 KE)
the solution point is: [(Cyg, 0), (C20, 0), (C39,0)]. This means that, in order to achieve the optimal cost of adaptation all
components have to be built in-house and without suggesting an amount of testing. We recall that the amount of testing is
suggested only when it is necessary to make an instance more reliable in order to achieve the desired level of reliability R.

Table 3 reports further details on the results shown in Fig. 9. The table is organized as follows: the first, second and third
columns represent the lexicographic method, the tabu search and the random generator, respectively. In each entry (row,
column) we represent the choice of components (i.e., a Pareto solution). The choice is represented as a vector, where each
element can be either a COTS instance or an in-house instance. For its first application, Cjp means an in-house developed
component and the symbol name of the instance is paired with the number of successful (i.e., failure-free) test to perform
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Fig. 9. Comparison of the three approaches with respect to the first configuration.

Table 3
Results from Lexicographic, Tabu Search, and Random Generator for the first configuration.

Lexicographic Tabu Search Random Generator

[(C10, 1), (C20, 1), (C30, 1] [(C10, 0), (C20, 0), (C30, 0)] [C11, C22, (C30, 22)]

FRsys = 0.404862 FRsys = 0.405479 FRsys = 0.143447

Cost =9.15 KE Cost =9 KE Cost = 14.102 KE
Time = 13.06 sec, « =1

[(C10,3), C22, (C30, 0)] [(C10,0), C22, (C30, 0)] [C12, Ca1, C32]

FRsys = 0.382359 FRsys = 0.383687 FRsys = 0.0506711

Cost =9.15 KE Cost =9 KE Cost =15.5 KE
Time = 14.482 sec, « = 0.6

[C13, C22, (C30, 3)] [C13, C22, (C30, 0)] [C12, C22, C32]

FRsys =0.177398 FRsys =0.177988 FRsys = 0.0619950

Cost =10.15 KE, € =0.999 Cost =10 KE Cost =19.5 KE
Time = 11.938 sec, « = 0.4

[C12, C22, (C30, 13)] [C12, C22, (C30, 0)] [(C10,25), (C20, 10), C32]

FRsys = 0.145230 FRsys = 0.147856 FRsys = 0.333468

Cost=11.15KE, e =2 Cost =10.5 KE Cost =19.753 KE
Time =11.998 sec, « = 0.2

[C12, C22, (C30,33)] [C12, C21, C31] [C11, (C20, 1)C31]

FRsys = 0.141306 FRsys = 0.050671 FRsys = 0.0841660

Cost=12.15KE, e =3 Cost =17.5 KE Cost = 18.050 KE
Time = 9.855 sec, « =0

[C12, C22, C31] [(C10,17)Ca2, C32]

FRsys = 0.0506711 FRsys = 0.313382

Cost=15.5 KE, € =8 Cost =18.851 KE

[C11, (C20, 19), (C30, 10)]
FRsys = 0.174805
Cost = 14.452 KE

on the instance. Beside the vector of instance components, the resulting system probability of failure (i.e., FRsys) and the
cost (i.e., Cost) of the solution are reported in each entry. Furthermore, specific parameters (i.e., «;, €, and the tabu search
execution time Time) of the approaches are also reported.

The results highlight, in general, that the solutions of the lexicographic method and the tabu search do not show discrep-
ancies: the probability of failure and the cost of their Pareto solutions are slightly different. On the other hand, increasing
the reliability threshold R, such as in second and third system configurations the discrepancies become more evident.

Even if the random generator method is able to find feasible solutions, in general they are quite different from the
solutions returned by the other two methods (see Fig. 9).

Fig. 10 shows the approximate Pareto curves obtained from solving the optimization problem using the three approaches
with respect to the second system configuration, where it is required that T =15 and R = 0.8. Fig. 11 reports the ap-
proximate Pareto curves obtained from solving the optimization problem using the three approaches with respect to the
third system configuration, where it is required that T =24 and R = 0.8. In the figures we have circumscribed the feasible
solutions. Similarly to Table 3 for the first configuration, Tables 4 and 5 report the detailed results of the experimentation
for the second and third system configuration, respectively.
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Table 4

Results from Lexicographic, Tabu Search, and Random Generator for the second configuration.

Lexicographic

Tabu Search

Random Generator

[(C10, 1), (C20, 1), (C30, D]
FRsys = 0.404862
Cost =9.15 KE

[(C10, 3), (C20, 0), (C30, 0)]
FRsys = 0.404199
Cost =9.15 KE

[(C10,23), (C20, 0), (C30, 0)]
FRsys = 0.395788
Cost =10.15 KE, € =0.999

[(C10,3), C22, (C30, 0)]
FRsys = 0.382359
Cost =11.15 KE, e =2

[(C10,23), (C20,0), C31]
FRsys = 0.326879
Cost=15.15KE, € =6

[(C10,63), C21, C31]
FRsys = 0.283528
Cost =19.16 KE, € =10

[(C10,280), C21, C31]
FRsys = 0.198841
Cost =30.03 KE, € =23

[(C10,277), C21, C31]

FRsys = 0.199833

Cost = 29.88 KE

Time =11 sec, v =1,0.2,0.01,0

[C12, (C20,3)C32]
FRsys = 0.4532485
Cost = 19.65030 KE

[(C10,2), (C20,7)C32]
FRsys = 0.344271
Cost = 18.450 KE

[C11, C21, C32]
FRsys = 0.4333424
Cost =24 KE

[(C10,0), C22, (C30,20)]
FRsys = 0.380782
Cost =12.002 KE

[(C10,29), C22, (C30, 16)]
FRsys = 0.368689
Cost =13.254 KE

[C12, (€20, 0), (C30, 10)]
FRsys = 0.502234
Cost =11.001 KE

[C11, C21, (C30, 23)]
FRsys = 0.482429
Cost =16.152 KE
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Table 5
Results from Lexicographic, Tabu Search, and Random Generator for the third configuration.
Lexicographic Tabu Search Random Generator
[(C10, 1), (C20, 1), (C30, D] [(C10, 460), (C20, 267), (C30, 380)] [C11, C21, (C30, 283)]
FRsys = 0.404862 FRsys = 0.199966 FRsys = 0.487346
Cost =9.15 KE Cost = 64.46 KE Cost =29.178 KE
Time =65 sec, x =1,0.2
[(C10,3), (C20, 0), (C30, 0)] [(C10, 460), (C20,420), (C30, 380)] [C12, (C20,381), (C30, 13)]
FRsys = 0.404199 FRsys = 0.195004 FRsys = 0.491148
Cost =9.15 KE Cost =72.13 KE Cost =30.239 KE
Time = 65.725 sec, « =0
[(C10,23), (C20, 0), (C30, 0)] [C11, C22, C31]
FRsys = 0.395788 FRsys = 0.541594
Cost =10.15 KE, € =0.999 Cost =20 KE
[(C10,123), (C20, 0), (C30, 0)] [C12, C21, C31]
FRsys = 0.356958 FRsys = 0.541594
Cost =15.16 KE, ¢ =6 Cost =17.500 KE
[(C10, 183), C20, C30] [(C10,483), C22, (C30, 277)]
FRsys = 0.336165 FRsys = 0.233585
Cost=18.13 KE, e =9 Cost =49.076 KE
[(C10,303), (C20,0), (C30, 0)] [(C10.442), (C20, 80), C32]
FRsys = 0.299842 FRsys = 0.304315
Cost =24.18 KE, e =15 Cost =44.152 KE
[(C10,460), (C20, 0), (C30, 143)] [C12, C21, (C30,303)]
FRsys = 0.239423 FRsys = 0.485975
Cost =39.21 KE, € =30 Cost =27.680 KE

[(C10,460), (C20, 163), (C30, 380)]
FRsys = 0.204292
Cost =59.25 KE, € =50

[(C10,460), (C20, 420), (C30, 380)]
FRsys = 0.195004
Cost =72.13 KE, € =100

The tabu search, even when the search space became more complex, has returned feasible solutions in a short time: its
execution time increased from few seconds (about eleven seconds) to few minutes (about one minute). On the opposite, the
lexicographic method has taken more time while increasing the search space. Finally, the random solution generation has
also used a short computation time (usually not finding feasible solutions) by making its decisions randomly.

Discussion on the compared approaches. The comparison of the results has revealed that the lexicographic method out-
performs the choices of the random generator solution generator. In fact, the lexicographic finds optimal solution with a
short time while increasing the search space complexity with respect to the random generator.” The tabu search, in turn,
outperforms the random generator and the lexicographic method. For example, the tabu algorithm allows tackling well-
known drawback such as the specification of preferences to arrange the objective functions in order of importance. In fact,
it may be difficult to specify preferences with no/limited knowledge on the optimal objective values and, as a consequence,
the Pareto-optimal solutions consistent with the given preferences could present the effects of wrong choices. A detailed
discussion on the method scalability is carried out in Section 7.

6.3. Application of reliability tactics to a tabu search solution

In order to improve the quality attributes of the current solution - the one obtained by the tabu search (as first process
iteration) from the third system configuration — some tactics can be taken in consideration and properly composed. We here
show the application of a reliability tactic to the STS architecture. Let us assume for the STS the following extra-functional
requirement (taken from [36]):

NFR1. The STS reliability should be greater than 0.85.

To address NFR1, reliability (or availability) tactics for recognizing faults and recovery can be adopted (see Appendix A.1
for a description of reliability tactics). Tactics for Fault Detection, for example, can be composed with the tactics for Recovery
Reintroduction and for Recovery-Preparation and Repair. The tactics for Fault Detection allow the detection and the notification
of a fault to a monitoring component or to the system administrator. The tactics for Recovery Reintroduction allow the
restoring of the state of a failed component, whereas the tactics for Recovery Preparation and Repair are for the recovering
and repairing of a component from a failure.

9 Note that in the figures of results we report Pareto solutions for the lexicographic method and the tabu search. We have discarded Pareto-dominated
solutions.
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Fig. 13. Comparison of the two approaches and the tactics with respect to the third configuration.

Specifically, we support NFR1 by combining the tactics Ping/Echo and Heartbeat (tactics for Fault Detection), and the tactic
State Resynchronization (a tactic for Recovery Reintroduction). In the tactic Ping/Echo, one monitoring component issues a ping
and expects to receive back an echo, within a predefined time, from the component under scrutiny; if such a message is
not received within the time limit, then it considers that component to be in failure mode, and takes corrective actions.
In the tactic Heartbeat, one component emits a heartbeat message periodically and another component listens for it; if
the heartbeat fails, the originating component is assumed to have failed and a fault correction component is notified.
The tactic State Resynchronization restores (through a resynchronization manager) the state of a source component through
resynchronization with the state of a backup component, either when the state of the source component is changed or
when the source component is recovered from a failure.

The resulting assembly SCA obtained by applying the reliability tactics mentioned above is shown in Fig. 12. It contains a
new composite component MonitoringComponent for the fault detection tactics Ping/Echo and Heartbeat. Of course, this
adaptation implies a change of the components shape (i.e., in the required/provided interfaces) and also of their behavior.
The tactic State Resynchronization involves concepts of a state resynchronization manager, source components and backup
components; but, these concepts are non-visible at architectural level of the top SCA assembly.

The (implementation of one) combination of such reliability tactics can be specified by using basic parameters of the
adaptation process, e.g., the reliability of a component depends on the redundant components used by the tactics for it, and
be a measure of developer skills (e.g., two applications of the same tactics may impact differently on the in-house instances
parameters).

As shown in Fig. 13 for the third configuration of the STS, the application of reliability tactics to the solutions provided
by the tabu search may increase the system reliability. As done in [54], we have formulated, the probability of failure on
demand of an in-house developed instance as a function of the probability that the instance is faulty, the testability and the
number of successful test cases performed. The probability that an instance is faulty is an intrinsic property of the instance
that depends on its internal complexity. The more complex the internal dynamics of the component instance is, the higher is
the probability that a bug has been introduced during its development. The testability expresses the conditional probability
that a single execution of a software fails on a test case following a certain input distribution [55].
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1. Model Parameters and Variables

n number of system components

J;  COTS instances available for the component i

Ji in-house developed instances available for the component i
5 average number of invocations

4y probability of failure on demand of the COTS instance j
py;  probability that the in-house instance; is faulty
T testability of the in-house instance j

Xy COTS instance; (in-house instance) selected for the component i
Ny number of tests performed on the in-house j developed for the component i
Ny number of of successful (i.e. failure-free) tests performed on the in-house j
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Fig. 14. Reliability Model used in [54].

Table 6
Tactics Application Results for the solution of cost 64.46 KE.
p10=0.5, p2o =04, p10=0.3, p2o =04, p10=0.3, p2o=0.3, p10=0.2, pxo=0.2,
P30 = 0.4 P30 = 0.4 P30 = 0.3 P30 = 0.2
Rsys = 0.867397 Rsys =0.911908 Rsys =0.922630 Rsys =0.950988
Table 7
Tactics Application Results for the solution of cost 72.13 KE.
P10 =0.5, p2o =04, p10=0.3, p2o =04, p10=0.3, p2o=0.3, P10=0.2, p20=0.2,
p30=0.4 p30=0.4 p30=0.3 p30=0.2
Rsys = 0.869397 Rsys =0.914010 Rsys = 0.924281 Rsys = 0.952146

Fig. 14 reports the reliability model used in [54]. In particular, the figure shows how the probability to be faulty and the
testability are combined in order to predict the probability of failure on demand on an in-house developed component. In
[54], an optimization model is formulated, in order to support the decision whether to buy software components or to build
them in-house upon designing a software architecture. The selection criterion is based on cost minimization of the whole
assembly subject to constraints on system reliability and delivery time. In addition, the model suggests the amount of unit
testing to be performed on each in-house developed component.

In [54] procedures to estimate reliability parameters are suggested. Obviously, different (implementation of) combination
reliability tactics may impact differently on the in-house instance parameters.

Experimental results. Tables 6 and 7 report the detailed results of the reliability tactics application to the solutions
provided by the tabu search (with respect to the third system configuration). The tables are organized as follows: each
column represents a value of the probability that the in-house instances are faulty p;o, which we have estimated after tactic
application, each entry (row, column) represents the system reliability resulting after the tactics application.

By analyzing the results we can observe that while varying the tactics application the solution with cost 72.13 KE
becomes Pareto-dominated by the solution with cost 64.46 KE (i.e., the reliability of the solution with cost 64.46 KE becomes
slightly different to the one of solution with cost 72.13 KE). Therefore, the application of design solutions may decrease the
cost to adapt the system. This highlights the novelty and capabilities of our approach. In fact, this difference would have
not been perceived by using approaches that do not predict the quality attributes (and the adaptation cost) of the system
resulting after the design solutions application (like, for example, the works in [3,21] and [56]).

On the other hand, the application of more sophisticated adaptation actions (e.g., the ones of tactics) may require a
higher adaptation cost. This cost could be required, for example, to introduce new components required by the tactics (e.g.,
the Recovery tactics application may involves concepts of clients, a primary component, backup components and a state
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resynchronization manager). These new components can likely increase the average time required to perform a test case on
an in-house instance. For example, if the average time required to perform a test case of all in-house components increases
from 0.05 to 0.1, the adaptation cost would increase to 135.25 KE and 119.92 KE, respectively, from 72.13 KE and 64.46 KE.

Applying again the tabu search. After the tactics application, if the tabu search is applied (as second iteration process)
again then a better candidate solution could be found. For example, if after the tactics application, that involves pj9 = 0.2,
p20 =0.2 and p3p = 0.2, we use the tabu search the following candidates are returned.

First candidate: [(C19, 90), (C29, 67), (C39, 76)] The system reliability is equal to 0.913413 and the cost is equal to 20.67
KE. Note that such a solution involves a lower adaptation cost with respect to the one of solutions obtained only with the
tactics application (see Table 6 and 7).

Second candidate: [(C10,470), C23, (C30, 500)] The system reliability is equal to 0.902940 and the cost is equal to 60.60
KE. Note that in this case the tabu search, other than changing the number of test, selects the COTS instance C,3 for the
second component.

6.4. Application of reliability and performance tactics

The adoption of specific design solutions (like tactics) for a quality attribute is often dictated by the trade-off with other
quality attributes. Since tactics suggest different adaptations actions, they may differ for adaptation cost and/or for the
system quality they achieve. Our optimization process allows the combination of different tactics by predicting the resulting
system quality. We here show, for example, how to compose reliability and performance tactics for the STS. Let us assume
for the STS the further performance requirement'?:

NFR2. The trading information of about 600 items is sent every second on average to the STS. Updating such a high volume of
information imposes an intensive load on the STS’s database, which may cause slow performance. In order to minimize the impairment
of performance, updates should be the least possible.

This new requirement is concerned with the performance of the STS since when updates are received at such a high
frequency, some items (e.g., stocks having less trades) may not have changes in every update. To this purpose, many systems
usually use local caches to filter out the actual items that need to be updated by comparing the received update with
the previous update. Instead of having all consumption points (clients) bound to one data repository source, local copies
significantly improve performance of the overall system by reducing contention. To satisfy such new requirement, therefore,
in addition to the reliability tactics (Ping/Echo, Heartbeat, and State Resynchronization) applied previously to support NFR1,
we adopt the tactic Maintain Multiple Copies (a tactic for Resource Management, see Appendix A.2 for a detailed description)
to force a caching mechanism. Such a tactic introduces: a data repository of existing data, a cache maintaining local copies
of frequently requested data, and a cache manager that is responsible to keep local copies consistent and synchronized.

The resulting SCA assembly obtained by applying all the tactics mentioned above is still the one shown in Fig. 12, but
the StockQuoteComponent is refined into a composite component (see Fig. 15) to support selective updates through
the tactic Maintain Multiple Copies. The composite StockQuoteComponent contains three components, namely a cache
StockQuoteChaceComponent, a cache client StockQuoteReceiveComponent, and a cache manager StockCache-
MgrComponent. The cache client receives the updates from the external Stock Exchange system, and then it requests the
cache manager to update the received update. The cache manager looks up the previous update in the cache and compare
it with the one that is received and identify the items that have changes. Only those items that have changes are updated
in the data repository, thus reducing the repository update load [36].

Below, we provide the experimental results obtained by the optimization process when we apply first the tactic for NFR2,
and then the tactics for NFR1 to a candidate solution obtained from a previous Tabu Search application.

Application of tactics to a tabu search solution. Starting from the candidate [(Cyg, 460), (C20, 420), (C30, 380)] (with a
cost equal to 72.13 KE and system reliability equal to 0.804996) returned by the Tabu Search for the third system configu-

10 Such a requirement corresponds to the requirement NFR3 of the case study in [36].
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ration, let us apply the Maintain Multiple Copies tactic for NFR2. Such a tactic involves adaptation actions on the Stock Quote
Component (i.e., C3). If to implement the tactic (i.e., a cache, a cache client and a cache manager) the unitary development
cost of the in-house instance Cp increases from 3 to 5, and its testability increases from 0.002 to 0.006, the reliability
of the solution (predicted using the reliability model used in [54]) increases from 0.804996 to 0.811168, and its cost in-
creases from 72.13 KE to 74.21 KE. This is due to the fact that, once fixed the number of test cases successfully performed,
the probability of failure on demand of a component decreases while increasing its testability. Thus, let us combine the
Maintain Multiple Copies tactic with the tactics for NFR1. Let us consider an application of such performance and reliability
tactics, that increases the average time required to perform a test case for Cyg, C20 and C3p from 0.05 to 0.1, from 0.05 to
0.2 and from 0.05 to 0.1, respectively. In the following, we report examples of candidates generated for different values of
the unitary development cost of the in-house components.

- First Candidate: If the unitary development cost of C1g, C9 and Cs3g, increases from 1 to 2, from 5 to 6 and from 5 to
6, respectively, and the probability that the instance is faulty is equal to 0.4, 0.4 and 0.3, then the system reliability
increases to 0.903389 and the cost increases to 182.68 KE.

- Second Candidate: If the unitary development cost of C1g, C¢ and Cs3g, increases from 1 to 3, from 5 to 7 and from 5 to
9, respectively, and the probability that the instance is faulty is equal to 0.3, 0.2 and 0.2, then the reliability increases
to 0.934843 and the cost increases to 187.67 KE.

- Third Candidate: If the unitary development cost of Cqg, Ca9, C3¢ increases from 1 to 2, from 5 to 6 and do not change,
respectively, and the faulty probability is equal to 0.4, 0.4 and 0.5, then the system reliability increases to 0.887101 and
the cost increases to 181.68 KE.

Applying again the Tabu Search. If we apply again the metaheuristic technique, then better solutions can be found.
For example, if we use the Tabu Search by starting from the third candidate, then we obtain the following candidate:
[(C10, 800), C23, (C30, 700)]. The reliability is equal to 0.881299 and the cost decreases from 181.68 KE to 163.30 KE. Such
solutions differ for the number of test for C19 and C3g, and the component selected for C,.

6.5. Combining tactics and architectural patterns

Let us assume for the STS the following new functional requirement:

F1. The STS should convert the stock price in the user preferred currency.

To address F1 we adopt the architectural pattern Pipe and Filter. This pattern provides a structure for systems that process a
stream of data. Each processing step is encapsulated in a filter component. Data is passed through pipes between adjacent
filters [57]. Specifically, in the STS architecture a filter is added to the OrderDeliveryComponent for converting the
currency into the required one, while the users check the current price of stocks, place buy or sell orders and review traded
stock volume. Similarly, a filter is added to the StockQuoteComponent for converting the currency into the required one
when the users want to know stock quote information.

Tactics may impact on architectural patterns (see, e.g., [3,21] where a qualitative analysis of the interaction between
reliability tactics and architectural pattern is provided). Let us assume, for example, that for the STS, other than F1, the
following non-functional requirement is required:

NFR1*: The STS reliability should be greater than 0.9.

To address both F1 and NFR1* we compose (as suggested in [3]) the Pipe and Filter architectural pattern with the previous
reliability tactics for Fault Detection and a reliability tactic for Recovery-Preparation and Repair. This last is the tactic Voting'':
processes running on redundant processors each take equivalent input and compute a simple output value that is sent to a
voter; if the voter detects deviant behavior from a single processor, it fails it.

Starting from the candidate [(Cy9, 460), (C20, 420), (C30, 380)] (with a cost equal to 72.13 KE and system reliability equal
to 0.804996) returned by the Tabu Search for the third system configuration (see Fig. 7 and Section 6.2), let us apply the
Pipe and Filter and the reliability tactics. Let us consider an implementation, where the average time required to perform a
test case on Cqg, Cz9 and Csp, increases from 0.05 to 0.1, from 0.05 to 0.2 and from 0.05 to 0.1, respectively, and the unitary
development time of the instances increases from 1 to 3, from 3 to 6 and does not change. Besides, the probability that
C10, C20 and Csq are faulty results equal to 0.3, 0.2 and 0.2, respectively. NFR1* is not satisfied with respect to these design
pattern and tactics. In fact, the system reliability is equal to 0.863466, while the adaptation cost is equal to 182.68 KE.

Applying again the Tabu Search. If we would apply again the Tabu Search algorithm by generating new candidates
also using user adaptation plans, after the tactic and design pattern application, the following candidate is returned:
[(C13), (Cy0,420), (C3p,380)] with reliability equals to 0.954962. Note that NFR1* is satisfied. Besides, the cost decreases
from 182.68 KE to 139.58 KE. The Tabu Search returns such a solution by applying a user adaptation plan.

This result highlights the capabilities of our approach with respect to, for example, the works in [3,21,56]. In fact, this
difference is not perceived by using approaches that do not combine the metaheuristic techniques and the design solutions,
and do not predict the quality attributes of the system resulting after the adaptation actions application.

11 As alternative also the tactic Active Redundancy can be used (see Appendix A.1 for a description).
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Table 8
Parameters of instances available for existing components.
Instance Cost Average Average no. of Prob. of fail.
alternatives Cij delivery time d;; invocations s; on demand p;;
Cq Cn 1 4 170 0.0001
Ci2 3 4 170 0.00004
Cy Ca 3 4 20 0.0003
Ca 5 5 20 0.0004
C3 Cs1 2 4 20 0.00001
C3 3 13 20 0.000002
Cy Caq 1 3 45 0.00003
Cap 3 2 45 0.000004
Cs Cs1 9 4 50 0.00003
Cs2 11 8 50 0.000001
Ce Ce1 8 4 10 0.00002
Ce2 10 3 10 0.00001
Cy Cn 7 2 5 0.00025
C72 9 3 5 0.00001

Table 9
Parameters for in-house developed instances.
Development Testing Unitary Average no. of Testability
time tjo time tjo development cost Cjo invocations s; Tio
Cq 1 1 1 170 0.001
Cy 3 1 1 20 0.002
C3 5 1 1 20 0.001
Cs 1 1 1 45 0.002
Cs 1 1 1 50 0.003
Ce 2 1 1 10 0.002
Cy 1 1 2 5 0.0001

7. Numerical evaluation

To show the effectiveness of the proposed approach we here illustrate the results we have obtained performing an
extensive evaluation. Specifically, we analyze the optimization process sensitivity to changes in its input parameters (e.g.,
size of the possible components). For this experimental study, we used a system containing seven software components.

We assume that several instances (i.e., implementations) of an existing component may be available on the market, all
equivalent from the functional viewpoint. Basically, the instances differ each other for costs and non-functional properties
such as reliability and response time. Table 8 shows the initial values that we have considered for the parameters of SCA
components available on the market. Similarly, Table 9 shows the initial parameters that we have considered for in-house
SCA components.

The second column of Table 8 lists, for each component, the set of instance alternatives available. For each alternative:
the adaptation cost c;; (in KiloEuros, KE) is given in the third column, the average delivery time d;; (in time unit) is given
in the fourth column, the average number of invocations of the component in the system s; is given in the fifth column,
finally the probability of failure on demand w;; is given in the sixth column.

For each component in Table 9: the estimated development time tjp (in time unit) is given in the third column and the
average time required to perform a test case 7jp (in time unit) is given in the fourth column, the unitary development cost
Cio (in KE per day) is given in the fifth column, the average number of invocations s; is given in the sixth column, and
finally the component testability i is given in the last column.

Application of the TS algorithm. In order to demonstrate the scalability of the TS algorithm, we solve randomly generated
system configurations. Specifically, starting from the initial values of the parameters, we have generated nine different
system configurations (here also called perturbed configurations) by randomly changing the parameters. For example, two of
these configurations differ both for the COTS instances’ parameters (as we explain below) and for the in-house instances’
parameters, which we have slightly decreased/increased. For each perturbed configuration, we have generated six COTS
component bases. For each existing component, the number of COTS components spans from 6 to 60 (i.e., related to one
of the six component bases). We have generated these new COTS components by randomly perturbing the initial COTS
instances available for each component (see Table 8). For a component base, the number of COTS instances available for
each component does not change across the perturbed configurations, but each configuration’s base is based on a different
set of component parameters.

The perturbed configurations’ parameters and the ones of the component bases have been varied for showing the be-
havior of the TS while increasing the search space complexity. For example, two COTS instances available for the same
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component, differ for the probability of failures values. These values differ in at most 80% of the probability of failure of the
initial COTS components. For a given perturbed configuration, the component bases differ for the probability to find a Pareto
solution (or end the TS process): the first base, characterized by a lower number of COTS instances, has a higher probability
with respect to the other ones, characterized by a set of selected components more complex to be analyzed.

For each perturbed configuration, we have solved the TS algorithm by replacing the components by buying or building
components basing on cost and non-functional factors (see Section 6.1), for a set of reliability values bound to R. This
latter spans from 0.85 from 0.96. Specifically, given a perturbed configuration, we have used the TS algorithm under these
different reliability constraints while varying the configuration’ component bases.

In Fig. 16 we illustrate the performance of the TS algorithm in terms of COTS component set size. The figure shows
the results for the nine perturbed configurations with 6, 20, ...,60 COTS components. For the sake of continuity, we have
imposed the same parameters for the example considered in the previous section (see Section 5.1), i.e., we imposed a
number of interactions of 50, and the tabu list length limit of 45 to each experiment.

The bars refer to the execution of the TS for the perturbed configurations for every component bases’ parameter setting.
In particular, each bar - corresponding to one component base - contains the higher, lower and the average execution time
of the TS.

As expected, the lower (higher or average) TS execution time increases while increasing the number of COTS components
(i.e., while varying the component sets). For example, with a component base of 28 components per each component, the
TS average execution time is about 45.91 sec, whereas if the number of component increases to 40, then the TS average
execution time is about 73.2 sec. Even for higher number of components, the increase is still acceptable (about to 120 sec
for 60 COTS components for each component).

The figure indicates that the tabu search manages the search space, even when it became more complex: its execution
time increased from few seconds (about six seconds in average) to few minutes (about two minutes in average).

In Fig. 17 we illustrate the results of the TS in terms of the system reliability. The figure shows the gain in system
reliability obtained with the TS results. The x-axis represents the variation of the reliability threshold (R).

The figure shows the results for the nine perturbed configurations with their base of 6 COTS components per each
component. Specifically, each bar - corresponding to one reliability threshold’s value - contains the higher, lower and the
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average relative profit'?> obtained for the system reliability. The “failures” of the TS (i.e., it was not able to find feasible

solutions for a perturbed configuration) correspond in Fig. 17 to the points of the bars where the lower reliability profit on
the y-axis equals 0. Since TS algorithm leverages the TS Initial Solution Generation method, that generates a set of feasible
solutions (see Section 5.1), in these TS failure cases, there are not solutions that fulfill the quality constraints. To address
such a problem, the optimization process applies existing design solutions. However, other different strategies could also
be used (e.g., an algorithm combining heuristics, local search, user adaptation plans, service selection and re-deployment
actions). We consider this to be an interesting avenue of future research.

As expected, the lower (higher or average) gain in system reliability decreases while increasing the reliability threshold
(R). For example, with R equals to 0.9, the average profit is about 0.048, whereas if R increases to 0.95, then the average
profit decreases, and it is about 0.0007.

Application of reliability and performance tactics to the TS solutions. In order to analyze the tactics application, we
apply randomly generated tactics. Specifically, starting from the initial values of the parameters (see Table 8 and Table 9),
we have generated five sets of tactics. Each set contains different implementations of reliability and performance tactics (e.g.,
the combination of the Ping/Echo, Heartbeat, State synchronization, and the Maintain Multiple Copies tactics). The numbers of
tactics spans from 13 to 70 in five steps (i.e., one for each set).

As remarked in Section 6.3, a tactic implementation is characterized by a particular system parameters setting. On one
hand, the combinations of tactics have been randomly varied for analyzing the optimization process sensitivity to changes
in parameters. On the other hand, the number of tactics has been increased to show the process’ behavior while increasing
the search space complexity.

For example, two implementations of the Maintain Multiple Copies tactic differ slightly for values of the development
cost (see Table 9). These values differ in at most 25% of the development cost of the initial in-house instances. Different
implementations of the reliability tactics have been generated by randomly setting parameters like the probability to be
faulty and the testability (see Section 6.3).

We have applied the tactics sets for every TS solutions, returned for the nine perturbed configurations, with R equals to
0.85, with respect to the COTS component bases.

In Fig. 18 we report the results obtained from applying the tactics sets for the TS solutions. The figure shows the system
reliability, obtained after the tactics applications, for the TS solutions of the nine perturbed configurations with 6, 20, ..., 60
COTS components. The reliability has been predicted by using the reliability model used in [54] (see Fig. 14). This quality
analysis results were run with the LINGO 11.0 optimization package.

The diamonds (triangles and rectangles) refer to the execution of the TS for the perturbed configurations for every
component bases’ parameter setting. Each group of five diamonds, triangles and rectangles corresponds to the application of
the five tactics sets to the TS solutions for the nine perturbed configurations with a fixed COTS components base. Specifically,
once fixed a tactics set, the diamond, the triangle and the rectangle represent the higher, lower and the average system
reliability, respectively, achieved after the application of the set of tactics.

The figure reveals that, depending on the system parameter setting, any combination of tactics may have a considerable
impact on the system reliability. For example, with a component base of 20 components per each component, the average
system reliability with the first set of tactics (first triangle) is about 0.9, whereas with the application of the same set of
tactics, to the TS solutions returned for the set of 60 COTS component, the average system reliability decreases about to
0.87. Therefore, our optimization process aims at quantifying such impact to suggest the best adaptation actions that still
minimizes the costs while satisfying the reliability constraints.

On the other hand, our optimization process allows to analyze the right tradeoff among the system software qualities.
In fact, depending on the system parameter setting, any combination of tactics may have a considerable impact on differ-

12 For a feasible solution s returned by the TS, we have estimated the profit as follows: (RelSys(s) — R)/RelSys(s), where RelSys(s) is the system reliability
achieved with the solution s.
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ent competing and conflicting objectives such as reliability, response time, throughput and consumption of resources. For
example, with the application of the last set of tactics (i.e., the one with 70 tactics), to the TS solutions returned for the
set of 40 COTS component, the performance tactics (e.g., Maintain Multiple Copies tactic) improves the system performance
(see Section 6.4), whereas, the average system reliability stays under the threshold R (equals to 0.85). In fact, it is equal to
0.849257. This highlights the potential of the optimization process to drive architectural decisions under quality attributes
tradeoffs.

Combined application of TS algorithm and tactics. In Fig. 19 we illustrate the performance of our optimization process
in terms of the composition of the TS algorithm and the tactics application. The figure shows the results obtained from
applying the tactics sets for the TS solutions in terms of system reliability and average execution time, i.e., the one related
to the TS execution plus the ones for the tactic applications. Specifically, the figure reports the system reliability, obtained
after the tactics applications, for the TS solutions of the nine perturbed configurations with 6, 20, ...,60 COTS components.
The x-axis represents the average execution time per component bases. Each curve represents the average value of the
system reliability, obtained after the tactics application to the TS solutions, with respect to the tactics sets. In particular, the
curve with diamonds reports the lower average values, whereas the curve with triangles reports the higher average values.
For example, after the application of all tactics sets, with the average execution time equals to 9,446 sec (related to the base
of six COTS instance per component), the lower average value of the system reliability is equal to 0.927327.

As expected, the average execution time of our optimization process increases while increasing the number of COTS
components, i.e., for different COTS component sets with different probability to find a Pareto solution (or end the TS
process). For example, with a component base of 20 components, the average execution time is about 32 sec, whereas if
the number of component increases to 40, the average execution time increases about to 79 sec. Even for higher number of
components and tactics, the increase is still appreciable.

The figure reveals that the tactics application (depending on the time to perform the quality analysis) takes a short
computation time (see Fig. 16 for the TS execution time). It was out of the scope of this paper to deal with the tactics
implementation effort, but we want to work on this aspect. We are planning to enhance our optimization process with
the well-assessed cost/time models (e.g., COCOMO [58] cost model). In fact, the developers of a system could implement a
tactics by adopting different strategies of development. Therefore, the values of cost and time of tactics could vary due to
the values of the development process parameters (e.g. experience and skills of the developing team).

8. Conclusions and future work

In this article, we presented an automatic optimization process for adaptation space exploration of service-oriented ap-
plications. The adaptation is based on trade-offs between functional and extra-functional requirements. The optimization
method combines the application of both metaheuristic search techniques and architectural design patterns and tactics.
The proposed methodology relies on heterogeneous service assembly and open tools and runtime infrastructures to pro-
cess architectural models that are directly tight to the real assembled components implementations and their distributed
deployment.

Currently, we are implementing a prototype to compare different implementations of our optimization process (e.g., with
heuristics depending on application domain or quality attributes) on a certain number of applications. We also intend to
compare several metaheuristics, because different techniques might work differently for different application domains (e.g.,
neighborhood relations, search space, and initial solution generation).

As future work, we intend to enhance our adaptation space exploration methodology towards several directions. We
here described a preliminary experimental validation of our approach focusing mainly on static adaptations. We postpone
as future work also the experimental validation on dynamic adaptations. In particular, we intend to support the right
trade-off between the adaptation overhead (due, e.g., to the frequent execution of the reasoning algorithms in the New
Candidate Generation phase) and the accrued benefits of changing the system. Finally, we aim at providing means to allow,
for example, the automatic composition of design patterns and tactics and their application to explore the adaptation space
under certain assumptions. These might include performance requirements or other quality attributes.
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Appendix A. Tactics used in the STS case study

In this section we describe the tactics used in the STS case study by using feature diagrams [59]. In [36] and [60] more
details can be found. The formalization of tactics composition is outside the scope of this paper. However, to this extent,
the binding roles and the composition roles defined in [36] could be exploited.

A.1. Reliability Tactics

As remarked in [60], it does not exist a universally accepted terminology for the various tactics of fault tolerance.

As shown in Fig. A.20, the several tactics for reliability can be categorized into Fault Detection, Fault Recovery Preparation
and Repair, and Recovery Reintroduction of a Failed Component tactics.'> In Fig. A.20 we have circumscribed the tactics, which
we have used.

The Fault Detection Tactic is for the detection and notification of a fault to a monitoring component or to the system
administrator. The Recovery Reintroduction of a Failed Component is for the restoring of the state of a failed component,
whereas the Fault Recovery Preparation and Repair is for the recovering and repairing of a component from a failure. Each
kind of these tactics can be refined into other ones.

Fault Detection Tactic

In the STS case study, we have refined the Fault Detection Tactic in Ping/Echo and Heartbeat tactics — described below.

- Ping/Echo: A ping message is sent from a monitoring component to one or more components under scrutiny. The
monitoring component expects to receive an echo message back within a predetermined time. If such a message is not
received within the time limit, then it considers that the component is in failure mode, and takes corrective actions.
Therefore, the implementation of such a tactic concerns the creation or the use of a monitoring process, and then all
components being watched must be modified to handle the echo messages.

- Heartbeat: A heartbeat message is sent from a component at regular interval and a monitoring component listens for
it. If such a component does not receive the heartbeat message within a predetermined time, then the originating
component is assumed to have failed, and corrective actions are taken.

Therefore, the implementation of such a tactic involves the creation of a monitoring component, and all components
must be modified to send heartbeats at the proper intervals.

13 The figure is not exhaustive; it could be refined/exploited by considering other reliability tactics.
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Recovery Reintroduction

In Section 6.4 we have combined the Fault Detection Tactic and the State Resynchronization tactic (one of the Recovery
Reintroduction tactics). The scope of this latter tactic is the restoration of the state of a component through resynchroniza-
tion with the state of a backup component. Thus, the state resynchronization manager, source components, and backup
components are the main components involved in such a tactic.

Fault Recovery Preparation and Repair

In Section 6.5 we have combined the Fault Detection Tactic and the Voting (or Active Redundancy) tactic - here below
described.

- Voting: There are different processes that run on redundant processors. Each process takes equivalent input and com-
putes a single out value. This latter is sent to a voter component that decides which of the results is correct using an
algorithm such as majority rules. If each voting component is implemented independently, then the implementation is
the strongest. Otherwise, only hardware faults can be detected, while algorithm faults can not. Therefore, the imple-
mentation of such a tactic concerns the creation of voter component. Note that if the voting components are running
the same software, such a tactic becomes very similar to the Active Redundancy tactic — here below detailed.

- Active Redundancy: There are redundant components receiving events in parallel - they are always in the same state.
When a component fails, the other components can immediately take over.

The implementation of such a tactic usually involves a central arbitrating component - the redundant components can
also perform the arbitrating without a central component.

A.2. Performance Tactics

As shown in Fig. A.21, several tactics for performance can be categorized in Resource Arbitration and Resource Manage-
ment tactics. The first is used for improving performance by scheduling requests for expensive resources (e.g., processors,
networks), whereas the latter improves performance by managing resources affecting response time.

In Section 6.4 we have used the Maintain Multiple Copies tactic (one of the Resource Management tactics). This tactic allows
the management of resources by keeping replicas of resources on separate repositories, so that contention for resources can
be reduced. The implementation issues of such a tactic are related to the clients, a cache - maintaining copies of data that
are frequently requested for faster access, a cache manager and a data repository. Thus, if a data request is received, then
the cache manager first searches the cache. When the data is not found, the cache manager queries the repository and
makes copies of the data into the cache.
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