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Abstract Modern heterogeneous systems, due to their com-
plexity and multifaceted nature, require flexible high-level
design and simulation techniques that take into account
both aspects of continuous time modeling and discrete event
modeling. In this context, model-driven approaches and
extensions of the OMG Unified Modeling Language for the
Real-time Embedded system and System-on-Chip domains
are gaining popularity, both in industry as well as in acad-
emy, since they offer a high degree of abstraction and provide
a common framework for the design, simulation and con-
figuration management. To establish advanced model-driven
design environments for complex heterogeneous systems,
possible strategies for combining such approaches and lan-
guages in a common modeling and simulation framework
must be determined. This article proposes a model-driven
continuous/discrete co-simulation framework based on the
OMG SysML standard—a UML profile for system engi-
neering applications—for discrete event modeling, and on
the industry de-facto standard Matlab/Simulink for continu-
ous time modeling. The proposed approach adopts a code-
in-the-loop co-simulation schema where optimized C/C++
code—including glue code for time synchronization and
model interaction—is automatically generated from Simu-
link and SysML models according to model-driven develop-
ment principles. A supporting environment (also described
here) provides simulation features such as remote graphical
animation and model execution control.
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1 Introduction

Heterogeneous systems, due to their complexity and multi-
faceted nature, require advanced engineering from different
disciplines (such as software engineering, hardware–soft-
ware co-design, and system modeling, to name a few) with
flexible high-level design and simulation techniques that take
into account both aspects of continuous time modeling and
discrete event modeling.

During system design, often the core of the activity is the
definition of a special algorithm or the plant. Consider, for
example, the Flight Control System (FCS) of a flying vehi-
cle (like a jet), or the Radio Transmission Algorithm (like
W-CDMA) for a wireless communication system like UMTS
or OFDMA for WiMAX. Most algorithms work in continu-
ous time domain: the input values are taken, the control law
is applied, and the output values are immediately made avail-
able to the actuators. The algorithm specialists often start to
work before system engineers, since they have to simulate
and validate in advance all the details of the algorithm with
a separate tool. One of the most used tools for this purpose
is Mathworks Matlab/Simulink. The Simulink model, pos-
sibly composed by sub-modules, is typically a continuous
time-description of the algorithm; but, this model is only a
small part of the overall system design. On the other hand,
system-level events are usually asynchronous and discrete;
consider, for example, user interactions, threshold passing,
alarms, etc. The system state and its changes as reaction to
certain discrete events are usually described in terms of a
state model using a state-like formalism such as Finite State
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Machines or extensions. Tool-supported co-design and sim-
ulation methodologies that suit the peculiarities of the two
worlds (continuous and discrete) are, therefore, necessary.

In this context, Model-driven Engineering [14] approaches
to the design and development of software and systems
are gaining popularity, both in industry as well as in acad-
emy, since they offer a high degree of abstraction and
provide a common framework for the design, simulation
and configuration management. These approaches rely on
high-level modeling languages and automatic model trans-
formations and code generation techniques to achieve signif-
icant boosts in both productivity and quality. A great variety
of modeling languages for the real-time embedded system
and System-on-Chip (SoC) domains have been emerging as
extensions (or profiles) of the OMG Unified Modeling Lan-
guage (UML)[18]—like the SysML (Systems Modeling Lan-
guage) [16] for system engineering applications, the MARTE
(Modeling and Analysis of Real-Time Embedded Systems)
[10], and the UML for SoC [19] for System-on-Chip design,
to name a few.

However, more synergies and integration are necessary
before model-driven IDEs become available for use in multi-
disciplinary contexts. In particular, research is still undergo-
ing in the continuous/discrete co-design and co-simulation
area. The idea of co-simulation is to bring together the Con-
tinuous Time (CT) together with Discrete Events (DE), to
provide a more effective environment for simulation cover-
ing several different aspects. Some difficulties in the develop-
ment of such tools are (1) the heterogeneity of concepts and
timing aspects manipulated by the discrete and continuous
components, and (2) the communication and synchronization
issues with respect to accuracy and performance constraints
of continuous/discrete system model simulation.

To establish advanced model-driven design environments
in such area, possible strategies for combining high-level
modeling languages in a common design and simulation
framework for continuous/discrete systems must be deter-
mined. Recently, the Matlab/Simulink framework and the
OMG SysML and MARTE modeling languages are gain-
ing increased attention for electronics system-level design
[5,20]. While Matlab is commonly used to model signal pro-
cessing intensive systems, UML-based notations have the
potential to support innovative methodologies which tie the
architecture, design and validation tasks in a unified manner
and from a system engineer perspective.

Along this direction, this article proposes a model-
driven co-simulation approach for continuous/discrete sys-
tems based on the OMG SysML standard (as implemented
in the Atego Artisan Studio) for discrete event modeling, and
on the industry de-facto standard Matlab Simulink for mod-
eling algorithms and continuous time aspects of a system. On
one hand, Simulink allows the system engineers to: model
the mathematical constraints of a system, simulate the sys-

tem, and refining algorithms and system parameters. On the
other hand, SysML allows system engineers to: model the
structure and behavior of a system with Block Diagrams and
State Diagrams, model the mathematical constraints of a sys-
tem with Constraint Blocks and Parametric Diagrams. These
constraints/parameters may be synchronized with their corre-
sponding counterpart within Simulink, expanded on, used for
simulation, refined as necessary, and reversed back at SysML
diagram level for model animation. In particular, a code-
in-the-loop CT/DE co-simulation schema is here proposed.
Indeed, co-simulation is based on a target implementation
language (C/C++ programming languages) that is used as
common execution language for both Simulink and SysML
models.

The proposed methodology is supported by an environ-
ment that relies on model-driven development principles to
allow C/C++ code generation from Simulink and SysML
models. It exploits the native code generation capabilities of
two existing selected tools, Matlab Simulink and Artisan Stu-
dio, and model-to-model transformations of the second one,
to generate source code for the DE and CT simulations and
additional “glue code” (including scripts and project/make
files) to allow the exchange of events and data between the
CT/DE simulators and resolve time synchronization aspects.
The resulting code is automatically compiled for a specific
target (a host PC or an embedded target) and runs at real-
time or scaled real-time. The tool provides also simulation
features such as remote graphical animation and model exe-
cution control.

With respect to the state of the art (as better explained in
Sect. 2), there are two innovative aspects in our contribution.
First, the use of a model-driven approach and, in particular,
of the SysML standard improves significantly the design of
systems and of embedded software. One of the advantages of
combining SysML with Simulink compared to classical Sim-
ulink/Stateflow or Simulink/UML solutions is that SysML
has a more precise semantics and offers better support to tie
in an unified perspective the specification, analysis, design,
verification, validation, requirements traceability, and docu-
mentation of system engineering. These systems may include
hardware, software, information, processes, personnel, and
facilities.

Second, the adoption of a co-simulation schema based
on (C++) code, that is generated automatically from SysML
and Simulink models and executed natively on a target plat-
form, allows faster simulations and better performance than
co-simulation approaches where Simulink and the UML tool
communicate with each other via a coupling tool [20].

This article is organized as follows. Section 2 compares
this work with existing approaches in the literature. A brief
description of the SysML language is given in Sect. 3, while
the reader is assumed to be familiar with Simulink. The
CT/DE co-simulation methodology is presented in Sect. 4.
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Section 5 describes the co-simulation environment support-
ing the proposed methodology. Section 6 provides an illustra-
tive case study of a discrete/continuous application. Finally,
Sect. 7 concludes the article and outlines some future research
directions.

2 Related work

Experiments to integrate the Matlab Simulink tool, com-
monly used to model signal processing intensive systems,
with UML/SysML simulation tools for co-simulation pur-
poses already exist. As stated in [20], two different approa-
ches for coupling UML and Simulink have been proposed so
far: (1) model-in-the-loop co-simulation via an intermediate
coupling bus that allows the two simulations (Simulink and
UML simulations) to communicate, and (2) code-in-the-loop
co-simulation based on a target implementation language
(usually C++ or the Matlab code itself) that is used as com-
mon execution language for both models. Both approaches
vary in the provided abstraction and effective integration.
The first co-simulation approach requires special attention
to the synchronization between the UML tool and Simulink.
Both simulations exchange signals and may run concurrently,
in the case of duplex synchronization, or alternatively in the
sequential case. The former solution increases the simulation
speed, whereas the time precision of the exchanged signals
is higher in the latter case [20]. The second co-simulation
approach requires specific development frameworks which
ease the creation or the generation of the executable code
from UML and Simulink, and their connection; but it allows
faster simulations than the first approach since simulations
and communications are at code level. As an example of the
first co-simulation approach, the Exite ACE tool from Ext-
essy [8] allows the coupling of a Simulink model with Artisan
Studio. The second approach is adopted for example in the
Constellation framework [9] and in the General Store integra-
tion platform [7]. Both tools provide a unified representation
of the system at UML model level on top of a code imple-
mentation level. The Simulink subsystem appears in Con-
stellation as a component which can be opened in Matlab,
whereas a UML representation of the Simulink subsystem
is available in GeneralStore, based on precise bidirectional
transformation rules.

The work proposed in this article is an example of the sec-
ond co-simulation approach, as the integration is effectively
made at (C++) code-level. Specifically, the proposed meth-
odology: (1) offers an easy code-in-the-loop synchronization
schema for continuous/discrete co-simulation to minimize
interactions between simulators; (2) generates the synchro-
nization “glue code” in an automatic way from input mod-
els by a model-driven approach that relies on a small set of
specific stereotypes (extensions/annotations of SysML mod-

eling concepts) and transformation rules applied to the input
SysML model; (3) supports the native running on a target
embedded system (no instances of the Simulink and SysML
Artisan Studio tools are required on the target); (4) provides
remote model debugging/animation features (and in particu-
lar, the real-time animation of the SysML state machine dia-
grams by the data coming continuously from the simulation).

The work in [3] is similar to ours. Their co-simulation
approach relies on Simulink for the continuous simulation
and on SystemC1 for the discrete simulation. However, they
do not rely on a MDE approach. In our code-in-the-loop
co-simulation schema, optimized C/C++ code is automati-
cally generated, instead, from Simulink and SysML mod-
els according to model-driven development principles. Our
approach does not support the generation of SystemC code
merely to allow hardware–software co-simulation. SystemC
is a code-based formalism too specific to the Soc domain
and as modeling language may not cover all aspects required
in a multidisciplinary domain to describe complex hetero-
geneous systems as the SysML (and therefore C/C++) may
do.

The Ptolemy project2 studies modeling and simulation
of concurrent, real-time, embedded systems. The focus is
on the use of well-defined (and possibly heterogeneous)
models of computation that govern the interaction between
components. However, the Ptolemy framework does not
rely on standard notations, while our framework is com-
pletely SysML-based (OMG standard) and Simulink-based
(de-facto standard).

The work in [4] is also similar to our approach. The
authors propose the use of the UML as a single modeling
language for initial specification, and the synthesis of a Sim-
ulink model from the UML model. Thought using the UML
as it is provides the advantage of using a standard language
that is widely accepted in the software engineering commu-
nity, their work would benefit from the use of SysML (instead
of UML).

In [15], an approach for transforming Simulink models
into UML composite structure diagrams (for the structural
view) and activity diagrams (for the behavioral view) is pre-
sented. The work has been carried out in the context of the
ATESST project [2] in the automotive domain. In this con-
text, an architecture description language, named EAST-
ADL2, for automotive embedded systems has been defined
as an UML profile. Though their work is too specific to a tra-
ditional automotive software engineering process, it would
be worth in the future to study the feasibility of a possi-

1 SystemC [17] is an open standard in the EDA (Electronic Design
Automation) industry. Built as C++ library, SystemC is a programming
language providing abstractions for the description and simulation of
SoCs.
2 http://ptolemy.eecs.berkeley.edu/.
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Fig. 1 The four pillars of SysML—adapted from [16]

ble integration with our approach that relies, instead, on the
SysML state machine diagrams for modeling the discrete sys-
tem behavior and on parametric diagrams for modeling con-
straints of the system’s parameters. Another similar work that
still relies on the UML activity diagrams is proposed in [15].

3 The SysML modeling language

SysML is a general-purpose modeling language for system
engineering applications (including Aerospace and Defense,
Automotive, and IT system applications) providing sup-
port for the representation and simulation of heterogeneous
behavior [11]. A SysML model provides, therefore, a graph-
ical representation of the system being developed, enabling
a design team to share ideas and to cope with issues early
thus preventing problems that would otherwise delay devel-
opment and degrade design quality.

SysML is defined as an extension of a subset of the UML
using the UML’s profile mechanism [18]. SysML does not
adopt all UML diagram types (object diagram, communica-
tion diagram, interaction overview diagram, timing diagram,
and deployment diagram are not included, for example), as
SysML is based on a minimal subset of the UML. Figure 1
shows the four pillars SysML diagrams (slightly adapted
from [16]).

For requirement traceability, SysML introduces a require-
ment diagram to structure the requirements and link these to
the system architecture and test procedures.

For structural modeling, SysML offers the Block Defini-
tion diagram (BDD) and the Internal Block diagram (IBD)
to model the collaborative and hierarchical structure of a
system in terms of modular units called blocks. Blocks may
include both structural and behavioral features, such as prop-
erties and operations, to represent the state of the system and
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behavior that the system may exhibit. A block can include
properties to specify its values, parts, standard and flow ports,
and references to other blocks.

Parametric diagram (ParD) is another new structural dia-
gram. The parametric diagram is used to model system
parameters and relate them to each other. SysML allows also
the specification of constraints blocks to represent mathe-
matical expressions constraining the physical properties of
a system. Such constraints can also be used to identify crit-
ical performance parameters and their relationships to other
parameters, which can be tracked throughout the system life
cycle.

For behavioral modeling, SysML offers activity diagrams,
sequence diagrams, and state machine diagrams (SDs),
slightly improved and simplified from the UML2 version.

4 Co-simulation methodology

In the co-design and co-simulation process proposed here,
it is assumed that: on one hand, the algorithm specialists
provide and validate a Simulink continuous-time model of
the plant or the main algorithm, and on the other hand, sys-
tem engineers provide a SysML model of the entire system
including requirements diagrams for requirement traceabil-
ity, BDDs and IBDs describing the collaborative and hier-
archical structure of the system in terms of blocks, ParDs
describing the constraints and parameters of system’s blocks,
and SDs modeling reactive discrete behavior. SysML SDs are
crucial for a code-in-the-loop co-simulation schema (like the
on proposed here), because they provide a well-consolidated
formal description of the states (and sub-states) changes of
a system.3 Moreover, SDs can be easily animated at code-
level since their synthesis into code is easily performed by
exploiting well-known generation patterns (Run-To-Comple-
tion, state pattern, stable table pattern, etc.).

Usually, these two Simulink-SysML worlds remain sep-
arate. Technically, on one hand, Simulink has a native GUI
for host-based simulation, supporting graphical plot of the
output variables with scopes. The Simulink environment is
also endowed of a component, called Real Time Workshop
(RTW), that allows C/C++ code generation for a generic
or specific target, so the simulation could be run natively
without GUI support. On the other hand, Artisan Studio
(the tool adopted here for modeling in SysML) supports—
by the Automatic Code Synchronizer (ACS)—code gener-
ation from SysML state diagrams, and it has also a sim-
ulation environment for state machines. It also includes a
graphical debugger with basic animation capabilities for state

3 SysML SDs are formal enough to be used for this purpose and, in
contrast to the Simulink/Stateflow formalism, are well integrated in the
overall SysML-based system design activity. Other SysML behavioral
diagrams, such as Activity Diagrams, are not yet formal enough for
simulation purposes.

Fig. 2 Code-in-the-loop co-simulation schema

diagrams and the opportunity to interactively send/receive
events to/from the simulator.

The Simulink experts and SysML engineers have no easy
way to exchange parts of the two models, even when the
structure and the modeled elements correspond to the same
concepts. The Simulink simulation may be self-contained,
but usually requires some inputs and outputs coming from
the remaining parts of the system. Data are usually provided
in form of vectors or stored signals, and the output is recorded
in form of vectors or graphs. The basic idea proposed here
for synchronizing the two worlds consists in aligning the
two Simulink-SysML models for both the structural and the
behavioral views.

For the structural view, only the topological structure of
the two models is synchronized, while inner details of the
algorithm (such as descriptions of integrators, PIDs, sums,
etc.) may not be expressed in SysML and remain completely
described in the Simulink model. The synchronization pro-
cess assures that the Simulink model and SysML model are
constantly kept aligned. With the Artisan Studio, this is fea-
sible in practice through a component named Mathematical
Model Synchronizer (MMS); therefore, the proposed frame-
work (as better described in the Sect. 5) exploits such a com-
ponent to allow an automatic and easy alignment between
Simulink modules from one side and SysML blocks with
associated parameters (IBDs and PDs) on the other side.

A tighter synchronization is achieved at behavioral level
(behavioral view), by combining and simulating together CT
aspects described in the Simulink model with the DE mod-
eling provided in terms of SysML SDs. Up to now, most
of the approaches (to the best of our knowledge) are based
on a direct connection at run-time (through an appropriate
coupling tool) of the tools’ GUIs. The proposed approach,
instead, adopts the code-in-the-loop co-simulation schema
shown in Fig. 2: by exploiting the code generation capa-
bilities of both Simulink RTW and Artisan Studio ACS, an
optimized code is automatically generated (including glue-
artifacts) from both the Simulink and the SysML models
and then compiled and executed directly on the target plat-
form allowing, therefore, real-time simulation natively on
the target. Below, more details on the proposed co-simula-
tion schema are provided.
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Fig. 3 Co-simulation loop

4.1 Time synchronization

Ensuring a consistent notion of time is crucial to guaran-
tee proper synchronization between the two timelines: the
Simulink (continuous timeline) and the SysML simulation
(discrete timeline).

Simulink is based on continuous time model, but the inner
algorithms require to work on a minimal step size that should
be chosen depending on the frequency of the signals, accord-
ing to the Nyquist Theorem. So a simulation sample time
or step size should be selected by the user (or the default
one accepted): this is the basic unit for calculation of all the
algorithms and, therefore, for all the co-simulation aspects.
The basic simulation schema consists of a tight loop where,
among other things, the timing aspects are evaluated, and
when the simulation timing step is expired, the main core
function of the algorithm, step rtOneStep, is invoked.

SysML SDs simulation, as implemented by the ACS code
synchronizer, is based on the RunToCompletion semantics
defined in the UML specification [18]: every time an event
is injected into the system (event occurrence processing), a
transition is taken, a timer elapses, and the RunToCompletion
step is executed.

The proposed co-simulation schema is essentially an
extension of the basic Simulink simulation loop, where nor-
mally only the rtOneStep is invoked, as follows:

1. data input values from Studio to Simulink are transferred
2. an rtOneStep is executed
3. data output values from Simulink to Studio are trans-

ferred
4. a RunToCompletion step is executed to evaluate change

conditions at SysML state machine level
5. optionally, internal events are generated for graphically

animating the SysML state diagram.

The resulting simulation loop is depicted in Fig. 3. In
this way, Simulink plays the role of master of the co-sim-
ulation schema, and at every simulation step, it computes

Fig. 4 SysML/Simulink co-simulation environment architecture

through the rtOneStep routine the new values of the sim-
ulation from the input values. Once the output values are
exchanged between the two worlds, a call to the RunToCom-
pletion routine then verifies the change conditions and trig-
gers events in the SysML SD simulation (the slave). The sim-
ulation normally is real-time, running at full speed; it may
be slow down, scaled-realtime, by allowing a user-defined
simulation delay be elapsed at every simulation step. Note
that during the RunToCompletion step, the CT simulation is
“frozen” (see Fig. 3), until the call to the RunToCompletion
is terminated.4

4.2 Discrete event generators: timers and user events

Events in SysML SDs can be normal events (call events, sig-
nal events, and change events) or time events. Normal events
can be injected from the user simulation interface itself, or
caused by other internal actions of the system, or externally in
the Host PC with the Inject/Query Dialog and GUI interface,
as better described in Sect. 5.6.

Time events are generated by timers, started at simula-
tion startup or by other conditions, and handled by OS calls.
When a timer expires, automatically a callback routine is
called that in turn invokes the RunToCompletion step. In this
initial approach, the timescale for time events is absolute,5 so
it is independent from the Simulink sampling time and from
the simulation delay.

5 Co-simulation environment

Figure 4 shows the overall architecture of the proposed
co-simulation environment in terms of components and com-
munication bindings. Essentially, the simulation code can be
generated from the Simulink and SysML models for a normal
Windows PC or for a specific embedded target—currently

4 The amount of processing of the RunToCompletion routine must be
guaranteed to be not too big, to avoid to slow down the simulation.
5 OS timers at SysML level could be replaced by simulation-time timers
at code level, to remove the limitation that they actually are absolute.
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supported OSs are Linux and VxWorks—and then compiled
for the specific architecture. The compilation and simulation
facilities are provided directly within the Artisan Studio (the
SysML modeling tool) through a context-menu. Additional
features are also supported such as graphical animation of the
SysML SDs on the host PC, connected through a TCP/IP con-
nection to the target performing the simulation, and the capa-
bility of sending/receiving events—Inject/Query events—
to/from the simulation environment interactively through a
graphical interface (for example a VB.NET GUI).

The main features of the co-simulation environment are
detailed in the following subsections.

5.1 Simulation parameters and initialization

The co-simulation process usually requires some input
parameters to start. In the proposed approach, these param-
eters are provided directly into the SysML description, as
default values. The ACS tool takes into account these values
when it generates the code for the simulation.

The co-simulation process requires an initialization for:

• Resource allocation memory, timers, algorithms, and
other resources that should be allocated before the simu-
lation starts.

• Working variables some working variables should be ini-
tialized for the simulation steps to be executed correctly.

• Connection to remote Artisan Studio instances the TCP/IP
connection from the target code to the host Artisan Studio
instance should be setup before the simulation starts, for
activating the Remote Animation feature.

• Basic simulation parameters it regards the duration of
basic simulation time steps and should be defined by the
user or by default values. These basic simulation param-
eters include:
• Start Time default is 0 s, it represents the initial time of
the simulation
• Stop Time default is 100 s, it represents the final time
of the simulation
• Step Size default is 0.1 s, it represents the finer step for
the simulation
• Step Delay default is 100 ms, it represents a delay
inserted between two simulation steps to scale down the
simulation realtime. 0 ms is for real-time simulation.

The source code of the program (a file Main.Cpp)
executing this initialization is generated automatically by
an ACS Generator of dynamic-link libraries (DLLs). This
source file is a collection of different contributions: GRT
MAIN.CPP, the base module usually provided with the Sim-
ulink RTW component and contains all the initialization and
allocation aspects related to the continuous time algorithm;
State Machines setup done automatically from the context

Table 1 Structural mapping between Simulink and SysML

Simulink element SysML element

Model Reference Constraint Property

Subsystem Constraint Property

Port Constraint Parameter [ParD]

Port Flow Port [IBD]

Data stores Block Properties

Fig. 5 SysML extension for CT/DE events and data exchange

class constructor; CLI (Command Line Interface) to accept
user-defined values for simulation parameters.

5.2 Automatic structural synchronization

Structural synchronization between the Simulink and the
SysML models is achieved through the automatic creation
of a Simulink block diagram from a SysML Parametric
Diagram, or vice versa—the import/export functionality of
the Mathematical Model Synchronizer of Artisan Studio.
The bidirectional mapping between structural Simulink and
SysML modeling elements adopted for such goal is reported
in Table 1. After a change to the structural view of either
the Simulink or the SysML model, one can therefore imme-
diately update its corresponding counterpart to reflect those
changes.

5.3 Model annotation for events and data exchange

Another important aspect regards the events and data
exchange between the CT view (the Simulink simulation)
and the DE view (SysML SDs simulation).

In Simulink, different kind of signals and value ports
are available for events and data exchange: Data Store
Read/Write, Ports (In, Out), and Signals. All these values
could be typed by basic Simulink datatypes (like Uint8,
Uint16, etc.). The corresponding counterpart in SysML are
essentially blocks property values (i.e., attributes for a class)
typed by data types that match the corresponding Simulink
data types.

To support run-time synchronization between these con-
cepts and allow events and data exchange, the SysML model
is annotated through a small set of stereotypes (see Fig. 5) and
their associated tagged values that have been defined accord-
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ing to the standard UML extension mechanism of profiles.6

Tagged values associated to these stereotypes provide the
following information:

• Event Enabled if set to TRUE, it indicates that the rela-
tive Event Name event must be injected in the SysML SD
every time the value changes—Signal Name name of the
corresponding signal/port in the Simulink model (same
name used in the SysML model by default)

• Signal Multiplicity multiplicity of the signal/port in the
Simulink model (default is 1 for scalars).

The ACS tool takes into account these annotations during
the code generation phase. It checks the consistency of the
mapping between the Simulink and the SysML datatypes,
and eventually it generates a warning.

Currently, events and data exchange is only one-way, i.e.,
the direction is either from the Simulink algorithm to SysML
SD (involving Outport or DatastoreWrite) or from SysML
SD to the Simulink algorithm (involving Import or Datasto-
reRead). No support for In-Out ports, i.e., bi-directional data
exchange, is supported yet, as it requires a certain reasoning
and design effort to avoid any ambiguity issue that may arise
during simulation when the same value is modified simulta-
neously in both directions.

5.4 Automated script generation for compilation

The code provided by Simulink Real Time Workshop and
the standard Artisan Studio ACS, usually may be compiled
and run independently. Since the final result, together with
the glue code for co-simulation, should run on the Host PC
or on a target, an adequate makefile should be generated.
Currently, the Window OS and Microsoft Visual Studio are
supported,7 so through a modified C++ Generator DLL, the
automatic generation of a Microsoft Studio Visual C Project
(VC Project) is provided. To this purpose, another stereotype,
Automatic_SM, applied to the SysML SD diagram iden-
tifies the Simulink model to which the SysML model should
be connected. This stereotype provides additional informa-
tion for the generation of the Makefile/VC Project through
the following tags:

• Model Name of the Simulink model to synchronize
• Model Path path where Simulink RTW generates files

6 A UML profile is formally a set of stereotypes, each defining how
the syntax and the semantics of a UML modeling construct is extended
for a target application domain. A stereotype can define tagged values
to enrich a modeling construct with further properties and can express
constraints to enforce semantic restrictions.
7 Other operating systems could be easily added: this aspect is taken
into account also by the ACS component with the PowerMaker feature
(allowing automatic generation of Makefiles according to basic rules).

• Synchronized SM a boolean indicating if the co-simula-
tion is active

• Simulation Log a boolean indicating if a simulation log
is available

• Build Configuration select Debug or Release.

5.5 Model-driven code generation

The code generation facilities already available in the Simu-
link environment and Artisan Studio are both exploited.

On one hand, the code generated by the Simulink RTW
component usually is used “as it is”, but it can be easily inter-
faced to other simulation tools to control the simulation and
provide input and outputs in a certain manner (like in the
proposed co-simulation approach).

On the other hand, the Artisan Studio has the ACS
real-time synchronizer that keeps model and code synchro-
nized according to the chosen Generator DLL. These DLLs
range several different target languages and applications. The
default code generation setting for SysML SDs was adopted
for the proposed approach; namely the RunToCompletion
code generation pattern and the generator DLL for standard
C++.

The ACS synchronizer is also customizable, through the
Artisan Studio Transformation Development Kit (TDK) for
model transformations, allowing therefore the creation of
new patterns for code generation and model-to-model trans-
formations. The languages natively supported in TDK are
SDL (Syntax Definition Language) and RSN (Reverse Syn-
tax Notation). This feature has been exploited to customize
the default code generation mechanism for SysML SDs to
adapt it to a different target architecture, taking advantage of
the OS features and APIs available on the target (e.g., thread
synchronization and communication mechanisms like sema-
phores, mutex, locks, etc.). In particular, the SDL language of
the ACS TDK has been used for implementing the transfor-
mation that generates the “glue code” to interface the SysML
model with the Simulink model. This generated interface
covers the synchronization aspects of the co-simulation pre-
sented previously, i.e., data types handling, initialization and
model synchronization, generation of project/makefiles, etc.

5.6 Simulation logger and tools for simulation control

A simulation snapshot is shown in Fig. 10 for the case
study presented in the next section. When the user starts the
simulation, basically a console-based log is displayed for
the duration of the simulation (see the left-lower corner of
Fig. 10). The information displayed by the simulation log-
ger regards the simulation time, exchanged signals and ports
values, and system events. In addition, remote graphical ani-
mation for SysML SDs is supported within Artisan Studio,
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Fig. 6 SysML Internal Block diagram of the CCS vehicle

and also commands to interactively Inject/Query events dur-
ing simulation.

5.6.1 Remote animation capabilities

The simulation could run natively on a target (of course it
could be the same Host PC used for simulation) and could be
connected through the TCP/IP protocol to an Artisan Studio
instance running on the Host PC. Every event and transi-
tion in the State Machine is broadcasted to the remote Studio
instance, and an Instance Diagram is created as shown in
left-upper corner of Fig. 10. There is a color convention: red
to denote the current state; blue to indicate the simulation
control flow (i.e., the active states and triggered transitions),
and black to denote the remaining parts not yet explored.

5.6.2 Inject/Query events features

The Artisan Studio GUI may be used also to inject user
events during simulation. An “Inject/Query Events Dialog”
(see the right-lower corner of Fig. 10) is used for this pur-
pose. This window contains a dynamically generated list of
system events and variables that the user could inject at any
moment during the simulation. Every time an event is sent,

the RunToCompletion step is automatically executed on the
corresponding state machine.

5.6.3 Graphical interface

Artisan Studio supports OLE Automation to control all
aspects of the simulation. This mechanism can be exploited
to easily build a system-specific GUI with a rapid develop-
ment tool such as Microsoft Visual Basic.NET. This GUI can
then be used to interactively generate and inject events, and
to display simulation values in real-time (see the right-upper
corner in Fig. 10).

6 Case study

As complete case study, a cruise control system (CCS) for an
Hybrid Sport Utility Vehicle (HSUV) is presented. The start-
ing point was the CCS vehicle model in SysML (see some
fragments of it in the SysML diagrams shown in Figs. 6, 7
and 8) as provided by the Artisan Studio tool and recom-
mended by the SysML Specification [16]. In particular, a
SysML SD (see Fig. 7) represents the basic operational states
of the vehicle. The core CCS algorithm was implemented,
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Fig. 7 SysML State Machine
diagram of the CCS vehicle

Fig. 8 SysML Parametric
diagram of the CCS

instead, in Simulink (see Fig. 9 for a fragment of the Simu-
link block diagram).

From this base, few changes have been made to the origi-
nal SysML model and to the underlying environment before
co-simulation:

• The SysML SD has been annotated with the SimulinkSM
stereotype to provide information about the Simulink
model and RTW code;

• The SysML ParD (see Fig. 8), describing the constraints
of the CCS algorithm, has been exported to Simulink with
the Studio structural synchronizer;

• The blocks properties involved in the data exchange with
Simulink (Target Speed, Start, Speed, Acceleration) have
been annotated with adequate SimulinkInport-Outport or
SimulinkDSR-DSW stereotypes;

• Change events on the transitions between states have been
created to detect changes in the values calculated by Sim-
ulink;

• Artisan Studio ACS has been started with the Co-simu-
lation Generation DLL and the code and makefile have
been generated;

• The final code has been compiled for Windows and an
executable has been created;

• Finally, a graphical interface for exchanging events has
been created with VB.Net.

The Simulink implementation of the CCS algorithm was
then co-simulated with the HSUV SysML state diagram (see
Fig. 7). Once the vehicle is started and the CCS is engaged,
the state of the machine (ranging in the set {Cruising,
Accelerating, Braking}) is no more static or forced
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Fig. 9 Simulink block diagram
of the CCS algorithm

Fig. 10 Simulation snapshot of a Cruise Control System for a HSUV

by the user, but calculated in a real-time way by the algorithm
as implemented in Simulink. A simulation snapshot is shown
in Fig. 10. The initial speed is 0, then it is set to the value
50 km/h.

7 Conclusion and future directions

This article proposes an approach that combines the Matlab
Simulink (for continuous time modeling) with the SysML
UML profile (for discrete event modeling) to provide a

model-driven continuous/discrete co-simulation framework
for complex heterogeneous systems. The proposed co-sim-
ulation framework is simple and intuitive since it adopts a
code-in-the-loop schema where optimized C/C++ code is
generated from Simulink and SysML models automatically
by reusing existing tools for code generation for SysML
(Artisan Studio) and Simulink. The framework is an Arti-
san Studio add-in but it is still in an experimental phase.

As future directions, we aim at improving the co-simu-
lation framework for allowing a more interactive debugging
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tool and automatic generation of application-specific graphi-
cal user interfaces. We have been working also on the evalua-
tion of our approach in large scenarios with the development
of (mostly confidential) in-house case studies and best prac-
tices in conjunction with Atego partners for demo/training
purposes.

As future work, we will also investigate in more detail the
relation between the SysML and other UML profiles such
as MARTE to find more synergies and integration paths
along the system development process and promote their
joint use in a unified co-simulation framework. In MAR-
TE, for example, time modeling is a core concern. The
basic idea would be therefore to adopt both SysML and
MARTE, as MARTE can complement SysML for timing
aspects. Some interesting contributions in this direction are
the work in [6] where the authors assess possible strate-
gies for combining the SysML and MARTE profiles in a
common modeling framework, and the work in [12] where
some guidelines are presented on how to use the SysML
and MARTE profiles for design space exploration of real-
time embedded systems. Also the SATURN EU Project is
investigating about SysML and MARTE integration [13].
Another EU Project that deserves further investigation is
MODELISAR [1] for the purpose of coupling different sim-
ulation tools and for the availability of an open exchange
format for simulation models of embedded software in vehi-
cles.
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