
A

R
a

b

c

a

A
R
R
A
A

K
S
S
A

1

d
t
(
2
s
i
w
s
f
c
d

t
l
o
t

p
p

0
h

The Journal of Systems and Software 89 (2014) 109– 127

Contents lists available at ScienceDirect

The Journal of Systems and Software

jo u r n al homepage: www.elsev ier .com/ locate / j ss

 reliability model for Service Component Architectures

. Mirandolac, P. Potenab, E. Riccobenea,∗, P. Scandurrab

Computer Science Department, Univ. degli Studi di Milano, Crema, CR, Italy
Engineering Department, Univ. degli Studi di Bergamo, Dalmine, BG, Italy
Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Italy

 r t i c l e i n f o

rticle history:
eceived 19 October 2012
eceived in revised form 21 June 2013
ccepted 3 November 2013
vailable online 27 November 2013

eywords:
oftware reliability models
ervice Component Architecture

a b s t r a c t

Service-oriented applications are dynamically built by assembling existing, loosely coupled, distributed,
and heterogeneous services. Predicting their reliability is very important to appropriately drive the selec-
tion and assembly of services, to evaluate design feasibility, to compare design alternatives, to identify
potential failure areas and to maintain an acceptable reliability level under environmental extremes.

This article presents a model for predicting reliability of a service-oriented application based on its
architecture specification in the lightweight formal language SCA-ASM. The SCA-ASM component model
is based on the OASIS standard Service Component Architecture for heterogeneous service assembly and on
the formal method Abstract State Machines for modeling service behavior, interactions, and orchestration
bstract State Machines in an abstract but executable way.
The proposed method provides an automatic and compositional means for predicting reliability both at

system-level and component-level by combining a reliability model for an SCA assembly involving SCA-
ASM components, and a reliability model of an SCA-ASM component. It exploits ideas from architecture-
based and path-based reliability models. A set of experimental results shows the effectiveness of the
proposed approach and its comparison with a state-of-the art BPEL-based approach.

© 2013 Elsevier Inc. All rights reserved.
. Introduction

In service-oriented computing, software applications are
ynamically built by assembling existing, loosely coupled, dis-
ributed, and heterogeneous services. It has been widely recognized
Smith and Williams, 2002; Cardellini et al., 2012; Calinescu et al.,
012) that the prediction of non-functional properties of these
ystems is a crucial design-time concern. Architectural decisions,
ndeed, including selection of services and the structure of the

orkflow, may significantly affect the qualities of the resulting
ystem, such as their reliability, performance, or cost. This paper
ocuses on reliability. Early assessment of reliability is one of the
hallenges of service-oriented architectures and a key factor to
eveloping dependable software.

Service-oriented architectures allow designers to reason on sys-
ems’ reliability at a higher level of abstraction. At the modeling

evel, services can be viewed as black-box units. Based on a model
f the architecture, which describes how services are connected
ogether and interact, we expect well-founded methods to be

∗ Corresponding author. Tel.: +39 0250330055.
E-mail addresses: raffaela.mirandola@polimi.it (R. Mirandola),

asqualina.potena@unibg.it (P. Potena), elvinia.riccobene@unimi.it (E. Riccobene),
atrizia.scandurra@unibg.it (P. Scandurra).

164-1212/$ – see front matter © 2013 Elsevier Inc. All rights reserved.
ttp://dx.doi.org/10.1016/j.jss.2013.11.002
available to software engineers to reason about satisfaction of the
global system’s reliability requirements.

In the literature, different procedures exist for system reli-
ability prediction based on different assumptions and applicable
at different granularity of information (Immonen and Niemelä,
2008; Grassi, 2004; Goseva-Popstojanova and Trivedi, 2001; Filieri
et al., 2010; Cardellini et al., 2012). These techniques can be
applied for several purposes such as: to evaluate design feasi-
bility, to compare design alternatives, to assist in evaluating the
significance of reported failures, to trade-off system design fac-
tors, to track reliability improvement, to appropriately allocate
validation/testing effort, and to identify potential failure areas
and maintain an acceptable reliability level under environmental
extremes.

In this paper, we propose a reliability prediction method for
the SCA-ASM component model (Riccobene et al., 2011; Riccobene
and Scandurra, 2013), which is automatic and compositional. The
SCA-ASM has been recently proposed as a lightweight formal lan-
guage for modeling both architecture and behavior aspects of a
service application. This component model is based on the OASIS
open standard Service Component Architecture (SCA) for heteroge-

neous service assembly, and on the formal method Abstract State
Machines (ASMs) (Börger and Stärk, 2003) for modeling notions of
service behavior, interactions, orchestration, fault and compensa-
tion handling in an abstract but executable way. Since the SCA-ASM

dx.doi.org/10.1016/j.jss.2013.11.002
http://www.sciencedirect.com/science/journal/01641212
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2013.11.002&domain=pdf
mailto:raffaela.mirandola@polimi.it
mailto:pasqualina.potena@unibg.it
mailto:elvinia.riccobene@unimi.it
mailto:patrizia.scandurra@unibg.it
dx.doi.org/10.1016/j.jss.2013.11.002

1 ystem

r
e
d

f
P
p
a
m
e
a
s

w
o
A
a
r
o
fl
m
S
i
o
t
a
a
d
w
t
p

c
b
a
t
a
f
i
S
u
c

2

u
s
o
f
A
a
a

2

i
a
1
y
s
d
f
i

10 R. Mirandola et al. / The Journal of S

elies on the SCA design framework, it is supported by the runtime
nvironment Tuscany, thus simplifying the prototyping, analysis,
evelopment, and deployment of service compositions.

The reliability model we propose here exploits ideas taken
rom architecture-based and path-based reliability models (Goseva-
opstojanova and Trivedi, 2001). It is an extension of the model
resented in Riccobene et al. (2012) where the reliability model of
n SCA-ASM component was left abstract. We present a reliability
odel for an SCA assembly involving SCA-ASM components that

mbed the main service orchestration. We also introduce a reli-
bility model of an SCA-ASM component by considering failures
pecific to the nature of the ASMs.

Besides to be compositional and applicable at design phase as
ell as at run-time, there are some other potential advantages of

ur approach. We rely on a unique component model, i.e. SCA-
SM, that is both the “design-oriented model” of the component
ssembly and the “formal analysis-oriented model” that leads the
eliability analysis. Instead, there are many approaches developed
ver the past ten years that directly tie architectural models (or
avors of UML and other modeling notations) to formal reliability
odels such as Markov or Bayesian models (see related works in

ection 7). W.r.t. these classical approaches, a novelty aspect here
s also the combination of the reliability prediction of the service
rchestrator with those of other service components; this leads
o a more accurate estimation of the reliability. An experimental
nalysis illustrates the usage and the effectiveness of the proposed
pproach. Moreover, for the sake of comparison, we have con-
ucted a parametric numerical evaluation of the reliability obtained
ith the SCA-ASM model proposed in this paper and with one of

he state-of-the art models considering a BPEL-based service com-
osition.

This paper is organized as follows. Section 2 recall some basic
oncepts concerning reliability prediction, and provides some
ackground on the SCA-ASM formal modeling language both for the
rchitectural description and for the behavioral specification. Sec-
ions 3 and 4 describe, respectively, the reliability model for an SCA
ssembly and for an SCA-ASM component. Two kinds of behavioral
ailure are taken in to consideration. Section 5 provides a case study
nspired by the “Finance case study” of the EU project SENSORIA.
ection 6 presents the results of the parametric numerical eval-
ation. Section 7 describes some related work. Finally, Section 8
oncludes the paper and sketches some future directions.

. Background concepts

This section provides those background concepts useful to
nderstand the reliability prediction method we here propose for
ervice-oriented applications. We introduce some basic concepts
n reliability prediction, and we present the SCA-ASM lightweight
ormal language adopted for modeling the Service Component
rchitecture. The proposed reliability prediction method combines

 reliability model for an SCA assembly of SCA-ASM components,
nd a reliability model of an SCA-ASM component.

.1. Reliability prediction basics

Reliability is one of the major factors of software quality and
s defined as the “probability of failure-free software operation for

 specified period of time in a specified environment” (Standard,
991). Reliability prediction is a common form of reliability anal-
sis to predict the failure rate of components and the overall

ystem reliability. Reliability predictions are useful to evaluate
esign feasibility, compare design alternatives, identify potential
ailure areas, trade-off system design factors, and track reliability
mprovement. A reliability prediction can also assist in evaluating
s and Software 89 (2014) 109– 127

the significance of reported failures and it can be used to maintain
an acceptable reliability level under environmental extremes. Reli-
ability strongly depends on two main concerns. First, the reliability
of a software system depends on the reliability of individual com-
ponents, component interactions, and the execution environment.
Second, reliability depends on how the system will be used (usage
profile or operational profile). Since reliability (like availability) is an
execution quality, the impact of faults on reliability differs depend-
ing on how the system is used, i.e. how often the faulty part of the
system is executed. The analysis of different ways and frequen-
cies to execute the system is a challenge to reliability prediction,
especially when the usage profiles are unknown beforehand.

In the last few years many reliability prediction methods for
software have been introduced (Filieri et al., 2010; Immonen and
Niemelä, 2008; Goseva-Popstojanova and Trivedi, 2001). Basically,
the existing techniques can be classified as path-based models and
state-based models (Goseva-Popstojanova and Trivedi, 2001). The
former ones represent the system architecture as a combination of
the possible execution paths, whereas the latter ones as a combi-
nation of the possible states of the system.

In the following we describe the main assumptions underlying
our reliability model. Most of them are common to many exist-
ing reliability approaches (see, for example, the surveys Krka et al.,
2009; Immonen and Niemelä, 2008) and are necessary to be able to
provide in an efficient way analytical results that, even if approxi-
mate with respect to the more complex reality, can give meaningful
insights to system designers. Our main assumptions are:

(i) The components communicate by exchanging synchronous
messages.

(ii) The components’ failures are independent of each other. We
assume that a component’s failure provokes the crash of the
whole system, namely the system straightforwardly stops its
execution. The inclusion in our model of different types of
failures and of error propagation analysis is at present under
study.

(iii) Model parameters’ uncertainties (Chandran et al., 2010) are
not dealt. It was out of the scope of this paper to deal with this
kind of sensitivity analysis. We consider this to be an interest-
ing avenue of future research.

2.2. Service Component Architecture (SCA)

SCA is an XML-based component model used to develop service-
oriented applications independently from SOA platforms and
middleware programming APIs (like Java, C++, Spring, PHP, BPEL,
Web services, etc.). SCA is also supported by a visual notation (a
metamodel-based language developed with the Eclipse-EMF) and
runtime environments (like Apache Tuscany, FRAscaTI, IBM Web-
Sphere Application Server V7, to name a few) to create service
components, assemble them into a composite application, provide
an implementation for them, and then run/debug the resulting
composite application.

According to the principles of service-oriented computing,
loosely coupled service components are used as atomic units or
building blocks to build an application. Fig. 1 shows an SCA com-
posite (or assembly) as a collection of SCA components. An SCA
component is a piece of software that has been configured to provide
its business functions (operations) for interaction with the out-
side world. This interaction is accomplished through: services that
are externally visible functions provided by the component; ref-
erences (functions required by the component) wired to services

provided by other components; properties allowing for the config-
uration of a component implementation and bindings that specify
access mechanisms used by services and references according to
some technology/protocol (e.g. WSDL binding to consume/expose

R. Mirandola et al. / The Journal of Systems and Software 89 (2014) 109– 127 111

om th

w
e
f
w
c
a
e
s
t
e
s
l
a

2

S
t
a
m
T
t
o
S
b
r
e
(

a
s
s
a
r
o
c
u
t
e
q
m
t
b
t

s
p
o

Fig. 1. An SCA composite (adapted fr

eb services, JMS binding to receive/send Java Message Service,
tc.). Services and references are typed by interfaces. An inter-
ace describes a set of related operations (or business functions)
hich as a whole make up the service offered or required by a

omponent. The provider may respond to the requester client of
n operation invocation with zero or more messages. Message
xchange may be synchronous or asynchronous. As unit of compo-
ition and hierarchical design, assemblies of components deployed
ogether are called composite components and consist of: prop-
rties, services, services organized as sub-components, required
ervices as references, and wires connecting sub-components. A top
evel composite describes the overall assembly (service-oriented
pplication).

.3. The SCA-ASM component model

This section sketches some basic notions concerning the Abstract
tate Machines (ASM) formal method (Börger and Stärk, 2003) and
he SCA-ASM modeling language (Riccobene et al., 2011; Riccobene
nd Scandurra, 2013). SCA-ASM complements the SCA component
odel with the “model of computation” of the ASM formalism.

he aim is to define a new SCA component implementation type
o provide ASM-based formal stateful and executable descriptions
f the services internal behavior, orchestration and interactions. An
CA-ASM design environment (Brugali et al., 2011) was developed
y integrating the Eclipse-based SCA Composite Designer, the SCA
untime platform Tuscany, and the simulator AsmetaS (Arcaini
t al., 2011) of the ASM specification and analysis toolset ASMETA
ASMETA, 2011).

ASMs are an extension of Finite State Machines (FSMs) (Börger
nd Stärk, 2003) where unstructured control states are replaced by
tates of arbitrary complex data. The states of an ASM are multi-
orted first-order structures, i.e. domains of objects with functions
nd predicates (Boolean functions) defined on them. The transition
elation is specified by rules describing how functions change from
ne state to the next. There is a concise but powerful set of ASM rule
onstructors, but the basic transition rule has the form of guarded
pdate “if Condition then Updates” where Updates is a set of func-
ion updates of the form f(t1, . . ., tn) : = t which are simultaneously
xecuted1 when Condition is true. Functions changing as a conse-
uence of updates are dynamic and they are further classified in:
onitored (only read, as events provided by the environment), con-
rolled (read and written by the machine), shared (read and written
y the machine and by the environment) and out (only written by
he machine) functions.

1 f is an n-ary function and t1, . . ., tn , t are first-order terms. To fire this rule in a
tate Si , i ≥ 0, evaluate all terms t1, . . ., tn , t at Si and update the function f to t on
arameters t1, . . ., tn . The next state Si+1 differs from Si only in the new interpretation
f f.
e SCA Assembly Model V1.00 spec.)

According to the SCA-ASM component implementation type, a
service-oriented component is an ASM endowed with (at least) one
agent (a business partner or role) able to interact with other agents
by providing and requiring services to/from other service-oriented
components’ agents. The service behaviors encapsulated in an SCA-
ASM component are captured by ASM transition rules.

Fig. 2 shows the shape of an SCA-ASM component A and the cor-
responding ASM modules for the provided interface AService (on
the left) and the skeleton of the component itself (on the right) using
the textual notation AsmetaL (Gargantini et al., 2008)2 of the toolset
ASMETA. The @annotations are used to denote SCA concepts such
as references, properties, etc.

The ASM module for the component A provides definitions
for the business functions declared in the imported ASM module
AService corresponding to the provided interface AService. The
module A also provides declarations for the property pA, the ref-
erence b to an agent BService, a back reference client to the
requester agent, and other functions. An ASM agent is associated to
the SCA-ASM and executes a specific program (a named ASM transi-
tion rule) as its behavior. To this purpose, an SCA-ASM component
has a distinguished rule name of arity zero taking by convention
the same name of the component. The agent domain AService,
for example, declared in the interface module AService in Fig. 2
characterizes the agent associated to the component A. The rule r A
defined in the module A is assigned as program to the A component’s
agent. This agent is created during the component initialization and
its program is used as entry point for the component execution.

The formal definition of SCA-ASM component can be found in
Riccobene and Scandurra (2013). A working definition follows.

Definition 1. An SCA-ASM component is an ASM module of form

(header, body)

The header is the tuple

(name, prov services, req services, signature, import, export)

and the body is the tuple

(doms and functs, invs, rules, services, prog, init, handlers)

where

name is the component name;
prov services and req services are import clauses annotated, respec-
tively, with @Provided and @Required, to include the ASM

modules of the service interfaces provided/required by the com-
ponent;
signature is defined as the tuple (pro decl, ref decl,
dom and funct decl) and contains declarations for externally

2 Two grammatical conventions must be recalled: a variable identifier starts with
$; a rule identifier begins with “r ”.

112 R. Mirandola et al. / The Journal of Systems and Software 89 (2014) 109– 127

 com

global variables in the rule declarations of an SCA-ASM, the notion
of a move does not depend on a variable assignment.
Fig. 2. SCA-ASM

settable property values (i.e., ASM monitored functions – or
shared functions when promoted as a composite property –
annotated with @Property), declarations for references (ASM con-
trolled functions annotated with @Reference), and declarations
of other ASM domains and functions to be used by the compo-
nent for internal computation only. In SCA-ASM, references are
represented as functions (annotated with @Reference) having as
codomain a subset of the Agent domain named with the name
of the reference’s typing interface (see, e.g., the reference b to a
BService agent in the ASM module A in Fig. 1). This domain is
declared in the ASM module corresponding to the reference’s typ-
ing interface; the ASM module corresponding to the component
exposing the interface has also to import the ASM module for the
interface. Thus, we identify (even if it is not known at design time)
the partner’s business role (i.e., the agent type). Back references
to requester agents are modeled as functions in the same way
(using the annotation @Backref), but the agent codomain is the
most generic one, i.e., the Agent domain.
import and export specify other module libraries that are included;
doms and functs are definitions of domains and functions (static
concrete-domains and static/derived functions) already declared
in the signature;
invs are definitions of state invariants (eg., first-order formulas
over some functions of the ASM which must hold in every state
of the ASM);
rules are definitions of (utility) transition rules for internal com-
putation;
services are definitions of services (i.e., definition of transition rules
annotated with @Service);
prog is the definition of a main transition rule (that takes by con-
vention the same name of the component’s module) to assign as
“program” to the component’s agent created during the compo-
nent initialization;
init is the definition of the transition rule with the predefined
name r init that is in turn invoked during initialization to set the
internal state (controlled functions) of the SCA-ASM component;

handlers are definitions of transition rules, annotated with
@ExceptionHandler and @CompensationHandler, fired as,
respectively, exception and compensation handlers in case of
faults.
ponent shape.

In addition to the basic function update rule, ASM rule con-
structors and predefined ASM rules (i.e., named ASM rules made
available as model library) are used as SCA-ASM behavioral
primitives. They are summarized in Table 1 by separating them
according to the separation of concerns computation and coordina-
tion, and communication.3 In particular, communication primitives
provide both synchronous and asynchronous interaction styles
(corresponding, respectively, to the request-response and one-way
interaction patterns of the SCA standard). Communication relies
on an abstract message-passing mechanism by adopting the default
SCA binding (binding.sca) for message delivering. SCA-ASM rule
constructors can be combined to model specific interaction and
orchestration patterns in well structured and modularized entities.
SCA-ASM modeling constructs for fault/compensation handling are
also supported (see Riccobene et al., 2011), but are not reported
here since we do not take into account fault tolerance concepts in
the reliability model proposed here.

Currently, the implementation scope of an SCA-ASM compo-
nent is composite, i.e. a single component instance (a single ASM)
is created for all service calls of the component. The other two
SCA implementation scopes, stateless (to create a new component
instance for each service call) and conversation (to create a compo-
nent instance for each conversation), are not yet supported.

Below, two definitions follow about the computational seman-
tics of an SCA-ASM component (or SCA-ASM machine) within
an SCA assembly, referred by us as in-place simulation semantics
(Brugali et al., 2011).

Definition 2. A movi from a machine state si−1 to the state si is a
single computation step executed by an SCA-ASM component (or
SCA-ASM machine). It consists into firing the updates produced by
the program of the machine, if they do not clash. Since the main
rule of an SCA-ASM does not have parameters and there are no free
3 The formal semantics of such rules is given in Riccobene and Scandurra (2013).
Note that, differently from Riccobene and Scandurra (2013), here the names of the
communication primitives start with the prefix “w”.

R. Mirandola et al. / The Journal of Systems and Software 89 (2014) 109– 127 113

Fig. 3. The SCA-ASM notions of move and run.

Table 1
SCA-ASM rule constructors.

Computation and Coordination
Skip rule skip

do nothing
Update rule f(t1, . . ., tn) : = t

update the value of f at t1, . . ., tn to t
Call rule R[x1, . . ., xn]

call rule R with parameters x1, . . ., xn

Let rule let x = t in R
assign the value of t to x and then execute R

Conditional rule if � then R1 else R2 endif
if � is true, then execute rule R1, otherwise R2

Iterate rule while � do R
execute rule R until � is true

Seq rule seq R1 . . . Rn endseq
rules R1 . . .Rn are executed in sequence without exposing
intermediate updates

Parallel rule par R1 . . . Rn endpar
rules R1 . . .Rn are executed in parallel

Forall rule forall x with � do R(x)
forall x satisfying � execute R

Choose rule choose x with � do R(x)
choose an x satisfying � and then execute R

Split rule forall n ∈ N do R(n)
split N times the execution of R

Spawn rule spawn child with R
create a child agent with program R

Communication
Send rule wsend[lnk,R,snd]

send data snd to lnk in reference to rule R (no blocking, no
acknowledgment)

Receive rule wreceive[lnk,R,rcv]
receive data rcv from lnk in reference to R (blocks until
data are received, no ack)

SendReceive rule wsendreceive[lnk,R,snd,rcv]
send data snd to lnk in reference to R waits for data rcv to
be sent back (no ack)

Reply rule wreply[lnk,R,snd]
returns data snd to lnk, as response of R request received

D
m
o
w
t

m
r
t

A

D
p
a
.
l

final price with tax. In addition, by default there is a tip rate, the
property tipRate, no greater than 15 (by the state invariant), but
the client invoking the service can also specify a further user tip
rate. If a user tip rate is specified, the default tip rate will not be
considered.

4 Read: by some other (say an unknown) agent representing the context in which
the SCA-ASM machine computes, namely the SCA “container” of the component
from lnk (no ack)

efinition 3. A runk of an SCA-ASM component (or SCA-ASM
achine) Mk related to the invocation of the service k is a finite

r infinite sequence s0, s1, . . . si−1, si . . . of states of the machine,
here s0 is an initial state and each si is obtained from si−1 by firing

he program of Mk.

Fig. 3 illustrates the notion of abstract computation segments
ov1, . . ., movi of an SCA-ASM machine Mk where each movi rep-

esents a single Mk-move, and of run of Mk from an initial state s0
o a state si.

In dynamic situations, it is convenient to view a state of an SCA-
SM machine as a kind of memory that maps locations to values.

efinition 4. A location of a state s of an SCA-ASM machine is a
air (f, (a1 . . . an)), where f is an n-ary function name and a1 . . . an
re elements of the base set (or superuniverse) of s. The value f(a1,
 . ., an) is called the content of the location in s. The elements of the
ocation are the elements of the set {a1, . . ., an}.
Fig. 4. An SCA BillServiceComponent.

The meaning of an update (l, v) is that the content of a location
l in the state has to be changed to a value v. Since due to the paral-
lelism a transition rule may prescribe updating the same function
at the same arguments several times, we require such updates to
be consistent. Two updates clash, if they refer to the same location
but are distinct. Formally:

Definition 5. An update set U is consistent, if it contains no pair
of updates with the same location, i.e., no two elements (l, v), (l, w)
with v = w.

As long as the SCA-ASM machine can make a move, the
run proceeds, requiring only that the interspersed moves of the
environment,4 namely updating monitored or shared functions
(essentially, SCA properties of the component), produce a consis-
tent state for the next machine move. If in a state the machine
cannot produce a consistent update set or no update set at all, then
the state is considered to be the last state in the run.

Running example. The Bill Service is a concise and simple
service-oriented component that we use as running example in the
following sections to explain definitions and concepts regarding the
reliability model. Fig. 4 shows an SCA component for the bill service,
slightly adapted from the Restaurant case study of the SCA distri-
bution (SCA). The Bill Service computes the price of a menu5 with
the different taxes. Listings 1 shows a possible SCA-ASM implemen-
tation of such a component in AsmetaL, the textual notation of the
ASM toolset ASMETA (ASMETA, 2011). An external helper service,
a VAT service, is invoked in turn by the bill service to compute the
according to the underlying technology (Brugali et al., 2011).
5 A menu is here a data type defined by a description and the price without VAT

and tip taxes.

1 ystem

L

3

b
t
c
(
c
i
(
N
w
i
A
“
t
t
a
A
m

invariant failure or any other unexpected faulty behavior) the mon-
itored function mj, 1 ≤ j ≤ fm, at the move i, given that fm is the
number of monitored functions.
14 R. Mirandola et al. / The Journal of S

isting 1. SCA-ASM model of a BillServiceComponent.
module BillServiceComponent

import STDL/StandardLibrary

import STDL/CommonBehavior

//@Provided interface

import BillService

//@Required interface

import VatService

export *

signature:

//@Reference

shared vatService: Agent → VatService

//@Backref

shared clientBillService: Agent → Agent

//@Property

shared tipRate: Agent → Real

//Other functions used for internal computation

controlled priceWithTaxRate: Agent → Real

controlled priceWithTipRate: Agent → Real

controlled menuprice: Agent → Real

controlled usrTipRate: Agent → Real

definitions:

//Invariant definitions:

invariant tipRate inv over tipRate: tipRate > = 0.0 and tipRate ≤
15

invariant priceWithTaxRate inv over priceWithTaxRate:

priceWithTaxRate > menuprice

invariant usrTipRate inv over usrTipRate: usrTipRate ≥ 0.0 and

usrTipRate ≤ 15

//@Service

rule r getBill($a in Agent, $menuPrice in Real, $usrTipRate in

Real) =

seq

r wsendreceive(vatService($a),”getPriceWithVat”,$menuPrice,

priceWithTaxRate($a))

if ($usrTipRate > 0.0) //A user tip rate has been specified

then priceWithTipRate($a):=

priceWithTaxRate($a) * $usrTipRate/100.0 +priceWithTaxRate($a)

else priceWithTipRate($a):= priceWithTaxRate($a) *

tipRate($a)/100.0 +priceWithTaxRate($a)

//setting of the out business function location

getBill($a,$menuPrice, $usrTipRate):= priceWithTipRate($a)

endseq

rule r BillServiceComponent = //Component’s program

seq

r wreceive(clientBillService(self),”getBill”,(menuprice(self),

usrTipRate(self)))

r getBill(self, menuprice(self), usrTipRate(self)) //direct

service invocation

r wreply(clientBillService(self),”getBill”,getBill(self,

menuprice(self),usrTipRate(self)))

endseq

//Constructor rule

macro rule r init($a in BillService) = usrTipRate(self):= 0.0

. Reliability of an SCA assembly

In this section, we present a reliability model for an SCA assem-
ly (an SCA application) involving SCA-ASM components that play
he role of “core components” in the service orchestration. Specifi-
ally, we assume that for each service exposed by the SCA assembly
composite component) there is an SCA-ASM component, a core
omponent, that provides that service on behalf of the composite by
nteracting with and coordinating the other SCA sub-components
possibly implemented with different programming languages).
ote that this assumption is not restrictive; it is only a position
ith respect to the concern of coordinating (orchestrating) the var-

ous parties that, together, deliver a complex service. The works in
rbab (2004) and Abreu and Fiadeiro (2008), for example, adopt a
classical” architectural approach in which this type of coordina-
ion is distributed and performed by connectors that link together

he different parties involved in the delivery of the service. Other
pproaches, like our approach, adopt workflow models (van der
alst and Pesic, 2006). The orchestration of business roles can be
uch more complex. Our model, however, can be easily adapted
s and Software 89 (2014) 109– 127

to reflect these different levels of coordination. Note also that these
core components could be implemented in a different way without
essentially changing the overall model structure. In fact, the orches-
tration of components within composites can be realized with other
workflow-oriented languages such as BPEL/WSDL, Jolie, etc. (Mayer
et al., 2008).

Moreover, in order to keep the reliability model simple, we
assume that such SCA-ASM core components are single-agent
ASMs6 supporting sequential and parallel computations.

At a coarse grain, failures occurring during the execution of
an SCA application can be classified as follows: crash failures, that
provoke the crash of the whole application, namely that imme-
diately and irreversibly compromise the behavior of the whole
application; no-crash failures, that do not provoke the immediate
termination of the whole application, but manifest themselves by
the return of an erroneous message. We here focus our attention
on crash failures, and we assume that a failure of a component in
the SCA assembly (included the SCA-ASM core components) pro-
vokes the failure of the whole application. Such assumption is not
too restrictive. It is a common practice in many reliability modeling
approaches (see, e.g., the survey Immonen and Niemelä, 2008). We
postpone the study of no-crash failures to future work.

In the remainder of this section, we first define the SCA-ASM
usage profile, then the structure of SCA-ASM Rule Dependency Tree
(similar to the structure CDG in Yacoub et al., 1999), and finally we
introduce our model for the reliability of an SCA assembly based on
such tree-structures for the SCA-ASM core components.

3.1. SCA-ASM usage profile

For a service k provided by the SCA-ASM core component of an
SCA assembly, the following definitions hold.

Definition 6. An SCA-ASM usage profile is a tuple

(pexeck, (P(rule1), P(rule2), . . ., P(rulem)))

where

pexeck is the probability of execution for service k and can be given
in input from the designer or can be derived from the observation
of the SCA-ASM component behavior or from observations derived
from systems offering the same type of services.
P(rulej) is the probability of executing rulej, 1 ≤ j ≤ m, supposing m
is the number of occurrences of rule constructors in the SCA-ASM
model for service k.7 These probabilities are derived from historical
data deriving from the observation of the SCA-ASM component
behavior.

The definition of the SCA-ASM usage profile is then completed
by considering a single movi. Its execution depends on how in the
state si−1 the environment updates the monitored functions.

Definition 7. A movi usage profile is a tuple
(P(mi1), P(mi2), . . ., P(mi

fm
))

where P(mi
j
) denotes the probability that the environment updates

correctly (i.e., input values do not cause inconsistent updates,
6 We therefore do not consider dynamic instantiation of sub-agents (by the use
of the spawn rule).

7 More precisely, m yields the number of rule constructors occurring in the sec-
tions rules, services and prog (see Definition 1) of the SCA-ASM component providing
the service k.

R. Mirandola et al. / The Journal of Systems and Software 89 (2014) 109– 127 115

 BillSe

3

n

p
I

b
p
t
s
a

c
s
t

D
d
w
o
o
s
a
a

i
c
a
t
a
a
p
r
a
m

l
n

t

t

w

Fig. 5. RDT for the

.2. SCA-ASM rule dependency tree

Let C be the set of components in an SCA assembly, and K be the
umber of services exposed and provided by the assembly.

By the usage profile (see Definition 6), we know the probability
execk that the kth service will be invoked and, therefore, executed.
t must hold

∑K
k=1pexeck = 1.

Let us assume that for each service k exposed by the SCA assem-
ly one of the |C| components, a core component, is in charge of
rocessing the information on the client’s behalf and coordinating
he other components in order to provide the service. Note that
uch a component may still provide other services exposed by the
ssembly.

Given an SCA-ASM component (or SCA-ASM machine) M, it is
onvenient to represent the component’s agent program of M (or
imply, program of M), by means of a tree that concisely captures
he nesting relationship of the rules involved in its definition.

efinition 8. Given an SCA-ASM component or machine M, we
efine the Rule Dependency Tree (RDT) of M a tree structure (V, E)
here a node v ∈ V is labeled by a basic rule for computation (skip

r update rule) or by a basic rule for communication (wreceive
r wsendreceive or wreply) if v is a leaf node, and by a rule con-
tructor for computation/coordination (seq, par, if, forall) if v is
n internal node; the edges E reflect the direct nesting relationship
mong the rules of the program of M.

For the sake of model formulation, in this paper the reliability
s calculated under the assumption that service invocation is syn-
hronous (i.e. with a blocking effect for the caller). This means that

 service operation is invoked through the communication primi-
ive wsendreceive. We do not allow the use of wsend that has an
synchronous semantics. Moreover, by the definition above there
re some SCA-ASM rule constructors for computation/coordination
resented previously in Table 1 that are not yet supported. These
ule constructors are: let-rule, iterate-rule, choose-rule, split-rule
nd spawn-rule. We postpone as future work the extension of the
odel to include also these rule constructors.
We denote by root the root of the RDT and by PAR the set of nodes

abeled by par. For a node v ∈ V , we denote by d(v) the set of child
odes of v and by L(v) the set of leaf nodes of the tree rooted at v.

For the internal nodes of the RDT, we define the labeling func-
ion:
 : V → {seq, par, if, forall}
For the edges of the RDT, we introduce the labeling function:

 : E → [0, 1]
rviceComponent.

where w(f (i), i), for each edge (f(i), i) ∈ E, yields the probability that
the rule i is executed within rule f(i). Such probability values are
provided by the tuple (P(rule1), P(rule2), . . ., P(rulem)) of the usage
profile for the SCA-ASM component (see Definition 6).

The RDT corresponding to the SCA-ASM model of the bill service
component (see Fig. 4) reported in Listing 1, is shown in Fig. 5.
Unlabeled edges in the figure have a probability value equal to 1.
By visiting the RDT in preorder, we have associated the labels v,
1 ≤ v ≤ |V | = 9, to the nodes.

Note that an RDT can be defined for any named rule of M, but
we treat such trees as subtree of the “main RDT” by unfolding the
nodes corresponding to their invocations (i.e. rule call nodes).

We denote by v ≺ v′ if the node v is a descendant of the node v′.
We also introduce a new relation between nodes, as follows.

Definition 9. Given an RDT (V, E) of an SCA-ASM component M,
we say that a node v ∈ V is a direct PAR descendant of v′ ∈ V , if v ≺ v′

and for any other node v′′ ∈ V , v ≺ v′′ ≺ v′ implies v′′ /= par, i.e., if
there is no node par rule in the path from v to v′. We denote by
v	ddv′ the node v as direct PAR descendant of v′.

3.3. Reliability model formulation

Since we assume that for each service k provided by the SCA
assembly there exists an SCA-ASM core component Mk, the reli-
ability of an SCA assembly related to the execution of the service
k is computed by exploiting the rule dependency tree RDTk = (Vk,
Ek) of Mk. To this purpose, we exploit the notions of move (a single
computation step) and of run of an SCA-ASM component related to
the invocation of the service, as defined in Section 2. These defini-
tions reflect the in-place simulation semantics (Brugali et al., 2011)
of SCA-ASM models within an SCA-compliant runtime platform.

For each service k provided by the SCA application, considering
the (logarithm of the) reliability is additive (Cardoso et al., 2004),
the reliability of the move movi of Mk is obtained by combining
the reliability of the SCA components involved in the provision of k
with the reliability of the SCA-ASM core component Mk itself that
orchestrates such components. Formally:

i

⎛
⎝

|Ck |∑
c=1

nic · ric

⎞
⎠+riMk
RelMk = e (1)

Under the simplifying assumption of independence between
failures, ReliMk depends on:

1 ystem

•

•
•

•

T
R
p
w

o

a
S
t
o

a
b
b
f

c
a
a
d
r
o

o
m

R

T
a
t

R

4

c
A
i
n
o
(
t
I
i
c
v

e
n

Example 2 (ReliIenv estimation). Let us assume that the monitored
invariant tipRate inv of the running example is the only model
16 R. Mirandola et al. / The Journal of S

the set Ck ⊂ C of components orchestrated by the core SCA-ASM
component for providing the service k;
the probability nic that the component c ∈ Ck is invoked;
the logarithm of the reliability ric of the SCA component c, namely
the probability that the components completes its task when
invoked;
and the logarithm of the reliability riMk of the core SCA-ASM com-
ponent, which reflects the nature of failures in an ASM.

he parameter nic can be easily estimated by parsing the paths of the
DTk of the core component, from the root to the leafs containing
rimitives wsendreceive/receive to/from c, and multiplying the
i labels of the arcs along the paths.

To compute the reliability of SCA-ASM components – depending
n failures specific to an ASM –, and thus the value riMk , we provide

 precise method in Section 4. Precisely, the reliability riMk of an
CA-ASM component related to a single move can be estimated by
he formula (4), while the reliability rc of an SCA-ASM component
ver an entire run of moves is estimated by the formula (5).

In case the component c is not an SCA-ASM component, its reli-
bility rc must be given by the user. Suggestions to estimate rc can
e found in Cortellessa et al. (2006). A rough upper bound 1/Nnf can
e estimated upon observing that the component has been invoked
or Nnf number of times with no failures.

For the sake of model linearity, as in Zeng et al. (2004), we
onsider the natural logarithm of the reliability rather than the reli-
bility itself. Note that we defined the parameters of components
s average values of the values of their provided services. They are
efined on the basis of the usage profile and could be refined with
espect to the services without essentially changing the structure
f the overall reliability model.

Now, for each provided service k, the reliability RelMk of a runk
f length n of Mk, under failures independence assumption, can be
odeled as follows:

elMk =
n−1∏
i=0

ReliMk (2)

Finally, in an average case setting (Goseva-Popstojanova and
rivedi, 2001), considering all provided services k ∈ K of the SCA
ssembly and the SCA-ASM core components Mk for such services,
he reliability of the overall assembly SCA is:

el =
|K |∑
k=1

pexeck · RelMk (3)

. Reliability of an SCA-ASM component

We show now how to compute the reliability of an SCA-ASM
omponent by considering failures specific to the semantics of
SMs. As ASM crash failures we here consider the yielding of an

nconsistent update set and the violation of invariants. In particular,
ote that the function updates that we consider in our approach are
f the form f(t1, . . ., tn) : = t where t is a function term whose value
interpretation) depends on a monitored function, and therefore on
he environment and not only on the controlled part of the machine.
n such scenario, our reliability prediction method is useful because
t helps to reason about these non trivial inconsistent updates that
annot be determined by conventional functional validation and

erification techniques.

To compute the reliability of an SCA-ASM component, we still
xploit the notions of RDT, move, and run of an SCA-ASM compo-
ent.
s and Software 89 (2014) 109– 127

Under failures independence assumption, the reliability of a
move movic of an SCA-ASM component c, is:

Relic = ReliIU · ReliIM · ReliIenv (4)

where ReliIU is the SCA-ASM reliability for inconsistent update fail-
ures, whereas ReliIM and ReliIenv are the SCA-ASM machine and the
environment reliabilities, respectively, for invariant failures.

The reliability rc of an SCA-ASM component c over a run of n
moves can be modeled as:

rc =
n−1∏
i=0

Relic (5)

4.1. Invariant failures (InvF)

We here give in a parametric way the definition and the exem-
plification for the environment (env) reliability ReliIenv and for the

machine (M) reliability ReliIM . For convenience, we distinguish state
invariants in: controlled invariants, invariants that involve only
controlled/out functions, and monitored invariants, invariants that
involve monitored functions (not only controlled/out) and those
shared functions the component never updates (therefore they can
be treated as monitored for reliability estimation).

Let Zenv be the set of monitored invariants and ZM be the set of
controlled invariants.

Example 1 (Zenv and ZM estimation). Let us consider the SCA-
ASM model of the BillServiceComponent (see Fig. 4 and
Listing 1). Fig. 5 shows the RDT of the component’s pro-
gram r BillServiceComponent. For this component, it yields
Zenv = {tipRate inv}8 and ZM = {priceWithTaxRate inv, usr-
TipRate inv}.

4.1.1. Environment reliability in presence of invariant failures
Under the assumption that the failures are independent and that

monitored invariants are evaluated at the beginning of the state
transition movi, before firing the rules of M enabled in the current
state si−1, the reliability ReliIenv can be formulated as follows:

ReliIenv =
∏
z∈Zenv

(1 − P(Aiz)) (6)

where Aiz is the event “The invariant z is violated at the move i due
to an update by the env”.

The probability P(Aiz) can be computed in terms of the distribu-
tion of the P((mi)j) at the move i of the component (see Definition 7).
This distribution comes together with the usage profile. Formally,
it yields

P(Aiz) =
∏

m∈Mon(z)

(1 − P(mi)) (7)

where Mon(z) is the set of monitored functions9 occurring in the
invariant z and P(mi) the probability that the function m is erro-
neously updated by the environment.

To provide an operational support to the computation of ReliIenv ,
we report the algorithm in Fig. 6.
8 Although function tipRate is declared as shared in the SCA-ASM module, the
BillServiceComponent considers it as monitored since it never updates the func-
tion value.

9 This set includes also those shared functions the component never updates and
that therefore they can be treated as monitored for reliability estimation.

R. Mirandola et al. / The Journal of Systems and Software 89 (2014) 109– 127 117

m
(

t
i

i

o
t
Z

b
o
0

4

p
c
o
e
a
i

p
f
m

R

w

c
p

E
a
v
p
0

(
i
f

other par rules – do not perform an inconsistent update. Thus,
this term is obtained by visiting the RDT in postorder and prop-
erly aggregating the probability to perform an inconsistent update
Fig. 6. Computation of ReliIenv .

onitored invariant, and let us assume (see Eq. (6)) that ReliIenv =
1 − P(Ai

tipRate inv
)) yields 0.92. Upon introducing a new invariant,

he reliability ReliIenv may decrease. Let us suppose to add the mon-
tored invariant

nvariant monAB invover monA, monB : monA = ¬monB
ver two additional monitored functions monA and monB
o the SCA-ASM component specification. It now yields
env = {tipRate inv, monAB inv}. If (1 − P(Ai

monAB inv
)) would

e equal to 0.97, then the reliability ReliIenv obtained as a functions
f the P(Aiz) probabilities of the two invariants, decreases from
.92 to 0.8924.

.1.2. Machine reliability in presence of invariant failures
To compute the reliability ReliIM , for the sake of the failure inde-

endence requirement, we here assume that the expression of a
ontrolled invariant may be influenced by at most one update rule
f M. The association of the invariants to the update rules that influ-
nce them is represented by the matrix RIM(|L(root)| × |ZM|), where
n element RIM[v, z] is equal to 1 if the dynamic functions occurring
n the invariant z are modifiable by the rule v, 0 otherwise.

The reliability ReliIM , under the assumption that failures are inde-
endent and the values of the functions read by M (i.e., monitored
unctions) are correctly provided by the env (i.e., without violating

onitored invariants), can be modeled as follows:

eliIM = e
i

(8)

The parameter i can be estimated as follows:

i =
∑

v∈L(root)
pv ·

∑
z∈ZM

RIM[v, z] · ln(P(Bizv|Iiv)

here

ln is the natural logarithm;
pv is the probability that the rule v is invoked, obtained from the
RDT multiplying the labels of the edges along the path from the
root to rule v;
Bizv is the event “functions occurring in the invariant z are correctly
updated by M executing v in the movi”;
Iiv is the event “the values of monitored functions occurring in the
rule v are correctly updated by the environment at movi”.

The probability P(Bizv|Iiv) can be computed in a way similar to the
omputation of P(Aiz) in (7) by using the information of the usage
rofile (see Definitions 6 and 7)

Fig. 7 reports the algorithm to compute the reliabilities ReliIM .

xample 3 (ReliIM estimation). The invariants priceWithTaxRate inv
nd usrTipRate inv of the running example must be verified for rules

 = 4 and v = 2, respectively. As an example, let us consider that the
robability P(Bizv|Iiv) of the rules 4 and 2, at a certain move i, is set to

i
.94 and 0.97, respectively. Thus the reliability RelIM using formula

8) is equal to 0.911800. The reliability ReliIM may increase depend-
ng on the variation of the probability that an invariant is satisfied
or a rule. For example, if we increase P(Biz4|Ii4) from 0.94 to 0.989,
Fig. 7. Computation of ReliIM .

then ReliIM increases to 0.959330. Therefore the probability P(Bizv|Iiv)
(combined with the probability pv) of the rules may sensibly affect
the reliability.

4.2. Inconsistent update failures (IU)

The reliability ReliIU of an SCA-ASM component is defined as the
probability that no inconsistent update is performed for a specific
move movi.

Let I be the event “the input of the SCA-ASM is correct, i.e.,
the monitored/shared functions updated by the env do not violate
state invariants”, and O the event “no inconsistent update is ever
performed”. Then the reliability ReliIU can be expressed as follows:

ReliIU = P(I ∩ O) = P(I)P(O|I) (9)

where P(I) = 1 since we assume I is a certain event.
The parallel execution of rules may generate an inconsistent

update, thus ReliIU depends on the probabilities P(Ov|I) with v ∈ PAR
that the par rules do not perform inconsistent updates, where Ov
is the event “no inconsistent update is ever performed by the par
rule v ∈ PAR”.

Example 4 (IU Running Example). Fig. 8 shows an RDT to exemplify
the IU failures. By visiting it in preorder, we have associated with
the nodes labels assuming values v ∈ [1, 28]. Symbols e, q, t, and u
denote monitored functions.

In the remainder of this section we first show how to compute
the probability P(Ov|I) and then how to compute P(O|I) to model
the whole reliability ReliIU .

4.2.1. Probability “P(Ov|I)” estimation
For a parallel rule v ∈ PAR, the probability P(Ov|I) can be obtained

recursively by a depth-first traversal of the RDT. Let Cv be the event
“an inconsistent update is performed among the subtrees of the
child nodes of v”, and Ov′ be the event “no inconsistent update is
ever performed by v′	ddv′′”. Then P(Ov|I) is10:

P(Ov|I) = (1 − �v) · e�v + �v · (1 − P(Cv|I)) (10)

where the parameter �v can be expressed as follows:

�v =
∑

v′∈PAR,v′	ddv
pv′ · ln(P(Ov′ |I)) (11)

P(Ov|I) is the sum of two terms. The first term depends recur-
sively on the probabilities P(Ov′ |I) that the direct PAR descendant
nodes v′ of v – corresponding to outer par rules not nested within
10 Note that the number of child nodes of a forall rule is not fixed and depends
on the operational profile.

118 R. Mirandola et al. / The Journal of Systems and Software 89 (2014) 109– 127

or the

o
b
i

E
t
(
n
p
v

(

Fig. 8. RDT f

f the child nodes. The second term is a function of the proba-
ility P(Cv|I) that the subtrees of the child nodes of v perform an

nconsistent update among each other.

xample 5 (P(Ov|I) estimation). The probability that no inconsis-
ent update is ever performed by the par rule v = 8 depends on:
1) the probability that its direct PAR descendant node v = 10 does
ot perform an inconsistent update of the function g(1); and the
robability that the subtrees rooted at the child nodes v = 9 and

 = 14 perform an inconsistent update of g(1) among each other.

Let us now detail the parameters of the right-side of (10) and
11) as follows:

�v expresses the conditional probability that a single execution
of the rule v does not fail (i.e., the whole SCA-ASM does not crash
before the end of the execution of the rule v) on a test case fol-
lowing a certain input distribution. It can be derived by using the
guidelines of the testability (Voas and Miller, 1995) estimations.
In fact, this property expresses the conditional probability that a
single execution of a software fails on a test case following a cer-
tain input distribution. In Cortellessa et al. (2006), we suggest a
procedure to estimate it.

Example 6 (�v estimation). For example, �3 is the probability that
the par rule v = 3 is executed without stopping for a failure raised
by either the child nodes 4 or 7.

pv′ is the probability that the node v′ is invoked from the node v,
obtained by multiplying the labels of the arcs along the path from
the node v to v′.
P(Cv|I) is the probability that the subtrees of the child nodes of v
perform an inconsistent update among each other.

Example 7 (P(Cv|I) estimation). P(C10|I) is the probability that the
nodes 11 and 12 generate an inconsistent update for the function
g(1), whereas P(C15|I) is the probability that the subtrees of the
child nodes 16 and 28 generate an inconsistent update among each

other for the function f. Therefore, P(C10|I) is the probability that
the nodes – the SCA-ASM component itself and the component C1
– write differently g(1). P(C15|I) is the probability that components
C3 and C2 update differently f.
 IU example.

Formally:

P(Cv|I) = 1 − e˛v (12)

The parameter ˛v is:

˛v =
∑

l1≡(l,x)∈L(v′),l2≡(l,y)∈L(v′′),v′,v′′∈d(v)

pl1 · pl2 · ˇl1l2 (13)

and, the parameter ˇl1l2 is:

ˇl1l2 = ln(1 − P(x /= y)) (14)

where (l, x) and (l, y) are the updates produced by the leaf nodes l1 ∈
L(v′) and l2 ∈ L(v′′), respectively, for the same location (dynamic
function) l of the SCA-ASM signature, and d(v) is the set of the child
nodes of v. Thus, upon estimating the formula (14) for each pair of
update rules l1 and l2, we substitute this estimation in the formula
(13). Finally, by back substituting in formulas (12), we obtain an
expression for P(Cv|I).
ˇl1l2 can be estimated as follows. A rough upper bound 1/Nnf

of ˇl1l2 can be obtained by monitoring (Gargantini and Riccobene,
2001) the rules l1 and l2 and observing their execution for a Nnf
number of times with no failures (i.e., an inconsistent update is
not performed). Alternatively, ˇl1l2 can also be estimated with the
formulas introduced in Abdelmoez et al. (2004) for the error propa-
gation probability from component A to component B, and the ones
in Abdelmoez et al. (2005) for the change propagation probability.
To take into account also the probability of failure on demand of
a component in the error propagation the approach in Filieri et al.
(2010) can be applied.

The parameters �v, pv′ , and P(Cv|I) may be characterized by
a not negligible uncertainty. The propagation of this uncertainty
should be analyzed, but it is a very complex task and it is outside
the scope of this paper. Several methods to perform this type of
analysis can be found in the literature, as it has been done, for exam-
ple, in Goseva-Popstojanova and Kamavaram (2004) for a reliability
model.

Example 8 (P(Ov|I) variations). Let us consider the following values
for the par node v=8: the probability �v and P(Cv|I) equal to 0.6

and 0.08, respectively, and the probability P(O10|I) = 0.97. Thus by
applying formula (10) the probability P(O8|I) is equal to 0.943561.

The probability P(Ov|I) may decrease depending on the varia-
tion of the probability that the single execution of the direct PAR

ystems and Software 89 (2014) 109– 127 119

d
e
d
t

4

t
e

P

i
c
b
t
d

E
0
a
t

t
n
P
i
R
h
b
a
t

p
t
A
s

Fig. 9. Algorithm 1: computation of ReliIU .
R. Mirandola et al. / The Journal of S

escendant nodes does not generate an inconsistent update. As an
xample, while changing the component C1’s features, if P(O10|I)
ecreases from 0.97 to 0.84, then P(O8|I) decreases from 0.943561
o 0.906042.

.2.2. Probability “P(O|I)” estimation
The overall expected probability P(O|I) depends on the type of

he root of the RDT and can be easily defined by the following
xpression:

(O|I) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 t(root) ∈
{
skip, update

}
(i)

P(Oroot |I) t(root) ∈
{
par, forall

}
(ii)

e�root t(root) ∈
{
if, seq

}
(iii)

(15)

If the root is a par rule (case (ii) in the formula (15)), then P(O|I)
s equal to P(Oroot|I) (see equation (10) in Sect. 4.2.1). In the last
ase (iii), P(O|I) is equal to �root (see formula (11) in Sect. 4.2.1)
ecause the updates are disjointed and thus P(O|I) depends only on
he probability P(Ov|I) that the root’s direct PAR descendant nodes
o not perform inconsistent updates.

xample 9 (ReliIU estimation). Starting from the value P(O8|I) =
.943561 obtained in the previous example, if for the par nodes 3
nd 15 the probabilities P(Ov|I) are equal to 0.87 and 0.62, respec-
ively, then the reliability ReliIU is equal to 0.557200.

The reliability ReliIU may increase depending on the variation of
he probability that the single execution of the direct PAR descendant
odes does not generate an inconsistent update. For example, if
(O15|I) increase to 0.87, then ReliIU increases to 0.781877. Finally,
f P(O3|I) and P(O15|I) increase to 0.94 and 0.98, respectively, then
eliIU increases to 0.922594. This highlights how our model may
elp to combine (and, in general, to reason about) the decisions to
e taken for each component. As we have shown in this case, the
rchitecture decisions might have to be modified while changing
he software features.

In order to provide an operational support to the model, we have

lugged the previous formulas into an algorithm that estimates
he reliabilities ReliIU . The algorithm is illustrated in Figs. 9 and 10.

 further algorithm for computing P(Cv|I) is straightforward. It is
imilar to a recursive procedure that selects the leaf nodes of the

Fig. 11. SCA assembly of th
Fig. 10. Algorithm 2: computation of P(Ov|I).

subtrees of the child nodes of v and searches in the collected update
sets for updates competing to write the same location.

Note that the computation of P(Ov|I) given by Algorithm 10 can
be optimized by exploiting a tree traversal algorithm and using the
notion of least common ancestor for the leaf nodes competing for
the update of the same location.

5. The Finance case study

In this section, we show the results of applying the SCA reli-
ability model to an application inspired by the “Finance case
study” of the EU project SENSORIA. Readers interested in the
application details, that we do not provide here, can refer to
Banti et al. (2008). Shortly, a credit (web) portal application of a
credit institute allows customer companies to loan from a bank.
Fig. 11 shows the SCA assembly of the finance application. It

consists of the following SCA components: Portal (c = 1), Authen-
tication (c = 2), InformationUpload (c = 3), Validation (c = 4),
InformationUpdate (c = 5), RequestProcessing (c = 6), and Con-
tractProcessing (c = 7). Actors supervisor, employee and the

e Finance case study.

120 R. Mirandola et al. / The Journal of System

c
a
t

S
P
o
F
A
v

(
t
s

t
I
r

of the application while varying the reliability of Authentication
Fig. 12. RDT for the AuthenticationPortalService service.

ustomer itself (that starts the overall services scenarios) appear
s external partners (see the promoted services and references of
he SCA composite Finance in Fig. 11).

We have taken into account two services provided by the core
CA-ASM component Portal. The first service, Authentication-
ortalService, allows users to register to the portal; the second
ne, InformationPortalService, allows users to request a loan.
ragments of the RDTs corresponding to the SCA-ASM models of the
uthenticationPortalService and InformationPortalSer-
ice are shown in Figs. 12 and 13, respectively.

After estimating the reliability of both services by the formula
2), the reliability of the whole application has been obtained by
he formula (3), under the hypothesis that probabilities of the two
ervice invocations yield 0.4 and 0.6, respectively.

The Portal component coordinates the components: Authen-

ication to allow the user registration, authentication and login,
nformationUpload to request a loan. For processing the credit
equest, this latter component interacts with the components: c = 2

Fig. 13. RDT for the Informatio
s and Software 89 (2014) 109– 127

for user authentication, c = 4 to involve a preliminary evaluation by
an employee, c = 6 to allow a supervisor to examine and draft a con-
tract by using the components c = 5 and 7. The Authentication
and InformationUpload components are SCA-ASM components.
Moreover, we assume that for these components the reliability
depends only on ASM failures (i.e., the invariant failures InvF and
the inconsistent updates failures IU). In order to obtain a trustwor-
thy estimation of the reliability model for the Finance case study
the ReliIU , ReliIM and ReliIenv in the formula (4) have to be considered.

We have conducted some experiments on the Finance case study
that differ mainly in the SCA-ASM reliability parameters – for the
probability to perform inconsistent updates and violate invariants
– of the single SCA components and of the core components. We
here focus on the exposed service AuthenticationPortalSer-
vice and on the core component Portal for the considered service.
We report below the results of three incremental experiments cor-
responding, respectively, to the following three configurations:

First configuration We assume the reliability of the component
Authentication depends only on invariants failures and its value
varies from 0.89 to 1. We also assume the reliability of the com-
ponent InformationUpload depends on IU failures and it varies
in the range [0,0.3].
Second configuration In addition to the first configuration scenario,
we consider also the reliability value of InformationUpload for
invariants failures fixed to 0.91.
Third configuration With respect to the previous two configu-
rations, the reliability of the core component Portal is also
considered by fixing its value to 0.92.

More details on the configuration parameters and on the formu-
las used in these experiments are reported in the paragraphs below
together with the experimental results.

First experiment: considering the InvF and IU failures separately for
elementary SCA-ASM components. We have observed the reliability
– assumed to be due only to InvF (i.e., ReliIenv and ReliIM) – and varying
the reliability of InformationUpload. We have assumed that this
last reliability is due, other than to InvF of Authentication, to IU

nPortalService service.

R. Mirandola et al. / The Journal of System

f
c
t
t
e
i

a
o
fi
i
n
h
v

p
i
p
i
c
t
t
c
i
e
m
n
o
I
d
l

this difference would have not been perceived by using the exist-
Fig. 14. Reliability analysis results for the first configuration.

ailures (i.e., ReliIU), which may be performed by the components
 = 4 and c = 6, and thus, consequently, by the components used by
hese components (i.e., c equal to 5 and 7). So, we assume that
he InvF and IU failures are considered only for the application’s
lementary SCA-ASM components and not for the core component
tself.

In Fig. 14 we report the results. Each curve represents the reli-
bility of the application while varying from 0.89 to 1 the reliability
f Authentication – due to InvF. Curves differ because a different
xed value for the parameter P(Croot|I) (where Croot is the event “an

nconsistent update is performed among the subtrees of the child
odes of the root node”, see Section 4.2.1) of InformationUpload
as been assigned for each curve. We have obtained the curves by
arying this last value from 0 to 0.3.

For a given value of the probability P(Croot|I) of InformationU-
load (i.e., for a given curve), the reliability of the application

ncreases while increasing the reliability of Authentication. This
rovides a first evidence of the relevance of the InvF and IU failures

n our SCA-ASM reliability model. In fact, the assumption of not
onsidering the InvF for Authentication, corresponds in Fig. 14
o the points of the curves where the reliability of Authentica-
ion on the x-axis equals 1. As opposite, the assumption of not
onsidering the IU failures for InformationUpload, corresponds
n Fig. 14 to the curve where P(Croot|I) of InformationUpload is
qual to 0. Such assumptions correspond, for each curve, to the
aximum values of the application reliability. This means that the

o consideration of failures brings to an overoptimistic prediction

f the application reliability. This result confirms that the InvF and
U failures analysis are a key factor for a trustworthy reliability pre-
iction, and its estimation leads in our model a more precise (and

ess optimistic) estimation of the reliability.

Fig. 15. Reliability analysis results for the
s and Software 89 (2014) 109– 127 121

On the other hand, for the same value for the reliability
of Authentication, the application reliability decreases while
increasing the value of P(Croot|I) for InformationUpload. This can
be observed by fixing a value on the x-axis and observing the values
on the curves while growing P(Croot|I).

Second experiment: considering both InvF and IU failures for an
elementary SCA-ASM component. As in the first configuration, we
observed the application reliability while varying the reliability of
Authentication, assumed due only to InvF, and varied this last
value from 0.89 and 1. Moreover, other than varying from 0 to
0.3 the value of P(Croot|I) for InformationUpload, we also con-
sidered the InvF for InformationUpload. We obtained the curves
by setting this last value (i.e., ReliIenv · ReliIM) to 0.91.

Fig. 15(i) reports the results. Each curve represents the reliability
of the application while varying the reliability of Authentication
due to InvF, and the value for P(Croot|I) of InformationUpload.

The introduction of the InvF for InformationUpload itself
allows obtaining a better estimation of the application reliabil-
ity. In fact, for corresponding values of the curves in the first and
second experiments, the application reliability is lower in the sec-
ond experiment than in the first one. This is because in the first
experiment we consider the InvF only for the Authentication
component, whereas in the second experiment we consider such a
kind of failures also for InformationUpload itself.

Third experiment: considering also the reliability of the core com-
ponent. Starting from the same initial configuration of the second
experiment, we have also considered the failures of the core
SCA-ASM component Portal for the service InformationPor-
talService provided by the application. In particular, we have
considered this last value (i.e., riMk in formula (1)) equal to 0.92.
Fig. 15(ii) reports the results. Each curve represents the reliability
of the application while varying the reliability of Authentica-
tion, and the value for P(Croot|I) of InformationUpload. A relevant
observation is that, for corresponding values of curves in the second
and third experiments, the reliability is higher in the second experi-
ment than in the third one. This is because in the second experiment
we consider the failures only for elementary SCA-ASM components,
whereas in the third experiment we consider such failures also
for the core SCA-ASM component of the application service. This
highlights the novelty and capabilities of our approach. In fact,
ing approaches that typically predict the application reliability by
only considering the reliability of single elementary components.
As opposite, we predict the application reliability by composing

second and the third configurations.

1 ystems and Software 89 (2014) 109– 127

s
a

6

w
s
fi
f
t

6

m
c
p
t
s
w
u
e
w
d
b
c
t

E
V
a

t
r
s
i
t
d
m
(
o
i

Table 2
Comparing SCA-ASM rule dependency trees and BPEL activity trees.

SCA-ASM rule tree RDTk = (Vk , Ek) BPEL activity tree DAGk = (Vk , Ek)

Vk rules in the SCA-ASM model Vk activities in the BPEL code
internal node rule constructor internal node structured activity
leaf node a basic rule for computation

(skip or
leaf node invoke activity

update rule) or a communication rule (corresponds to an elementary
service invocation)

wi prob. of executing rule i in a rule
constructor

pa prob. of executing activity a in a
structured activity

Table 3
Comparing the SCA assembly reliability model and BPEL-based reliability model

SCA assembly rel. model BPEL-based rel. model

K number of services provided K number of services provided
by the assembly by the service composition
pexeck probability that the service k pexeck probability that the service k
will be invoked will be invoked
nc
i

prob. that the component c is
invoked

invki number of time that the
service i is invoked

T
P

22 R. Mirandola et al. / The Journal of S

uch kind of application failures with the ones due to the nature
nd stateful behavior of the core component itself.

. Reliability model evaluation

In this section we compare the results that can be obtained
ith our reliability model and a state-of-the art model for the web

ervice composition based on the use of BPEL (Alves et al., 2006). We
rst briefly introduce the BPEL-based approach by outlining the dif-

erences and similarities with the proposed SCA-ASM method and
hen we illustrate some experimental results.

.1. BPEL-based reliability model

From the service oriented perspective, a business process is a
eans to have services interact to satisfy specific requests. This

an be achieved through BPEL (Alves et al., 2006) orchestration. In
articular, let S be a service-based system composed by n elemen-
ary web services (called abstract services), with si the ith abstract
ervice (1 ≤ i ≤ n). Through the composition of its elementary soft-
are services, the BPEL composition offers K external services to
sers. With pexeck we denote the probability that the k-th system
xternal service will be invoked. Following Cardellini et al. (2007),
e restrict the attention to a significant subset of the whole BPEL
efinition, focusing on its structured style of modeling. Specifically,
esides the primitive “invoke activity”, which specifies the syn-
hronous or asynchronous invocation of a Web service, we consider
he structured activities: Sequence, Switch, While and Flow.

A BPEL tree can be seen as a directed acyclic graph DAGk = (Vk,
k) representing the kth BPEL external service (1 ≤ k ≤ K). The nodes
k are BPEL activities, while the edges Ek reflect the relationships
mong the BPEL activities (Cardellini et al., 2007).

For each abstract service, several concrete services may exist
hat match their description but that may differ for cost and
eliability characteristics. We call Ji the set of instances for si, while
ij represents the jth instance of si in Ji. A service broker acts as an
ntermediary for the matching between the abstract services and
he concrete services - between service requestors and providers
iscovering and selecting the best concrete services in order to

inimize the costs and guarantee a given level of system reliability

Cardellini et al., 2007). Hereafter, for simplicity and brevity, we
nly consider the service selection task. Fig. 16 shows the reliabil-
ty model for the web service selection optimization problem. In

able 4
arameters of the available instances for the existing services.

Service ID Service altern. Reliability Num. of inv. fir
rij inv1i

s1 s11 0.9993 3

s12 0.9994
s13 0.99999

s2 s21 0.996 3

s22 0.9995
s3 s31 0.99985

s4 s41 0.999

s42 0.99985
s43 0.99999

s5 s51 0.9993 1

s52 0.9998
s53 0.99998

s6 s61 0.94

s62 0.9997
s63 0.9999

s7 s71 0.99 1

s72 0.992
s73 0.999999
RelMk reliability of the provided
service k

Relk reliability of the provided
service k

particular, the figure shows how to predict the reliability of an
external service, starting from its BPEL activity tree. Specifically, the
reliability of the concrete service sij is combined with the expected
number of times that the service si is invoked in the BPEL tree k.
This latter parameter can be easily estimated by parsing the BPEL
tree’s paths – having the service i as leaf node – and multiplying the
pa labels by the arcs along the path. As far as the system reliability
formulation is concerned, we have exploited the works in Cardellini
et al. (2007) and Zeng et al. (2004). For the sake of model linearity,
as in Zeng et al. (2004), when writing expressions, we will consider
the logarithm of the reliability rather than the reliability itself.

SCA-ASM vs BPEL-based
Table 5 summerizes the symbols of the SCA-ASM reliability

model. In Table 2, we compare the features of the RDT of the kth
service provided by the SCA assembly and the BPEL activity tree
of the kth service provided by the composite web service; while

Table 3 shows the features of the reliability model of the kth service
provided by the SCA assembly and the reliability model of the kth
service provided by the BPEL model.

st scen. Num. of inv. second scen. Num. of inv. third scen.
inv2i inv3i

2 2

2.084 3

1.2

1

1 1

1.084

1.084 1

R. Mirandola et al. / The Journal of Systems and Software 89 (2014) 109– 127 123

l using a BPEL-based approach.

6

t
t
t
r

6

fi
t
r
m
a
o
u
F
t
w
e
t
o
s

1
fi
c
h
v

e
n
o
s
fi
c
s
v

6

a
a
p

Table 5
Table of symbols used in the reliability model.

Symbol ID Symbol specification

RDT = (V, E) Rule Dependency Tree of an SCA-ASM M. V is the set of
nodes labeled by the rules in the main rule, and E are the
edges that reflect the nesting relationship among these
rules.

root Root of the RDT.
PAR Set of nodes corresponding to par rules.
Zenv Set of monitored invariants where functions updated by

env occur.
ZM Set of controlled invariants where functions updated by M

occur.
Aiz The event “The invariant z is violated at movi due to an

update by the env”.
RIM |V| × |ZM| matrix, where an element RIM[v, z] is equal to 1 if

the dynamic
functions occurring in the invariant z are modifiable by the
rule v, 0 otherwise.

wi Probability that the rule i is invoked.
pv′ Probability that the rule v′ is invoked from a rule v.
Bizv The event “Functions occurring in the invariant z are

correctly updated by M
executing v in the movi”.

Iiv The event “The values of monitored functions occurring in
the rule v are correctly
updated by the environment at movi”.

I Event “the input of the SCA-ASM is correct”.
O Event “no inconsistent update is ever performed”.
Ov Event “no inconsistent update is ever performed by the

par rule v ∈ PAR.

Cv Event “an inconsistent update is performed among the
subtrees of the child nodes of v”.

�v Conditional probability that a single execution of the rule v
does not fail.
Fig. 16. Reliability mode

.2. Experimentation

Hereafter we show the numerical results obtained by comparing
he SCA-ASM reliability model and the BPEL-based model referring
o the illustrated case study. We first describe the generation of
he model parameters and then we describe different experimental
esults.

.2.1. Model parameters
Following a standard approach for parametric evaluation, we

rst define a set of so-called “nominal parameters” which consti-
ute the starting point of the experimentation and then we generate
andom instances by perturbing the nominal values. The average,
aximum and minimum values of the different obtained results

re then considered. Table 4 shows the starting parameter values
f the available instances for the abstract services. The second col-
mn of Table 4 lists the set of alternatives for each existing service.
or each alternative: the reliability rij is given in the third column;
he expected number of times inv1i that the service i is invoked
ithin the first external service is given in the fourth column; the

xpected number of times inv2i that the service i is invoked within
he second external service is given in the fifth column; the number
f times inv3i that the service i is invoked within the third external
ervice is given in the sixth column.

Starting from the services’ nominal values, we have generated
86 different system configurations (here also called perturbed con-
gurations) by randomly changing the parameters. Two of these
onfigurations differ for concrete services’ reliabilities, which we
ave slightly decreased/increased (e.g., within 10% of the nominal
alues).

In order to generate the perturbed configurations, we have gen-
rated five concrete services bases. For each abstract service, the
umber of concrete services spans from 13 to 65 (i.e., related to one
f the five services bases). Two service bases differ for the number –
panning from 13 to 65 – and the parameters of the perturbed con-
gurations (i.e., one perturbed configuration corresponds to seven
oncrete services generated for the seven abstract services). For
ake of result robustness, the service bases’ parameters have been
aried.

.2.2. Numerical results

Case 1: In Fig. 17 we report the results obtained applying the SCA

ssembly model without orchestrators and the BPEL-based reli-
bility model to the perturbed configurations. We have fixed the
robabilities (i.e., pexeck) that the first, second and third external

Fig. 17. System reliability obtained with the BPEL reliability model and with the
SCA assembly without considering the orchestrators reliabilities.

124 R. Mirandola et al. / The Journal of Systems and Software 89 (2014) 109– 127

 assem

s
E
l
r

t
r

a
e
f
c
r
b
o
t
r
F
t
s
m
t
t

i

o
i
e
t
(
r

Fig. 18. System reliability obtained for the SCA

ervice will be invoked with probabilities 0.3, 0.3, 0.4, respectively.
ach bar – corresponding to one service base – contains the higher,
ower and the average value obtained for the system reliability. The
esults are the same for both models.

Case 2: In Fig. 18 we illustrate the results obtained considering
he SCA assembly taking into account also the service orchestrator’s
eliability.

For each perturbed configuration, we have applied our SCA
ssembly reliability model for a set of reliability values for the three
xternal services’ orchestrators. Each orchestrator reliability spans
rom 0.95 to 0.999 by steps of 0.005. Each group of seventeen bars –
orresponding to one service base – refers to the execution model
esults over the base’s perturbed configurations. In particular, each
ar – corresponding to one fixed reliability value for the reliability
f the three services orchestrators – contains the higher, lower and
he average system reliability. The lower (higher or average) system
eliability increases while increasing the orchestrators reliabilities.
or example, with a service base of 13 perturbed configurations, if
he reliability of the three orchestrators is equal to 0.95, the average
ystem reliability decreases from 0.984739 (average value esti-
ated without considering the orchestrators reliabilities in case 1)

o 0.963045, whereas if the reliability of all orchestrators increases
o 0.995, then the system reliability is about 0.982597.

These results show the relevance of the orchestrator’ reliability
n a reliability model.

Case 3: In order to compare the efficacy of considering the
rchestrators reliabilities, we have analyzed in Fig. 19 the gain
n reliability - in terms of a more precise (and less optimistic)

stimation - obtained in three different experiments. For a per-
urbed configuration s, we have estimated the profit as follows:
RelSysv(s) − RelSysv′ (s))/RelSysv(s), where RelSysv(s) and RelSysv′ (s)
epresent the system reliability returned by the SCA assembly

Fig. 19. Comparing the relative pr
bly considering the orchestrators reliabilities.

reliability model by considering the orchestrators reliabilities fixed
to v and v′, respectively.

The first experiment – corresponding to the curve with dia-
monds – refers to the execution of SCA assembly by considering
the reliability of all orchestrators (i.e., the results obtained in case
2). The second experiment – corresponding to the curve with rec-
tangles – refers to the execution of SCA assembly reliability model
by considering the reliability of the first service’s orchestrator equal
to 1. Finally, the third experiment – corresponding to the curve with
triangles – refers to the execution of SCA assembly reliability model
where the reliability of the third service’s orchestrator is equal to
1. The figure shows the results for the service base with 48 per-
turbed configurations. The x-axis represents the variation of the
orchestrator reliability. Specifically, each point – corresponding to
one reliability orchestrator’s value – contains the average relative
profit obtained for the system reliability.

A relevant observation is that for corresponding values of curves
in the three experiments, the average profit is higher in the first
experiment than in the second and third ones. This is because in the
first experiment we consider the reliabilities of all services orches-
trators, whereas in the second and third experiment we fix to 1 the
reliability of one of the service orchestrators. For example, for the
first experiment, with the reliabilities of the orchestrators equals
to 0.97, the (modulus) average profit is about 0.01332, whereas for
the second and third experiment, the (modulus) average profit is
about 0.00928 and 0.00795, respectively.

Case 4: Fig. 20 shows the results we obtain when in the SCA
assembly we explicitly model the reliability of an SCA-ASM com-

ponent considering the service base of 65 perturbed configurations.

Fig. 20(a) illustrates the results obtained by explicitly using for
s3 our SCA-ASM reliability model. We have observed the system
reliability while varying the reliability of s3 – assumed to be due to

ofit of the system reliability.

R. Mirandola et al. / The Journal of Systems and Software 89 (2014) 109– 127 125

eddin

I
r
s
p
�
s
w

t
v
(
t
0
i
a

e
s
a
a
o
v
t
b
s
T

c
m
e

7

t
t

Fig. 20. System reliability obtained by emb

U failures (see Eq. (10) in Section 4). We have predicted the system
eliability for a set of value for the parameter P(Croot|I). This latter
pans from 0.08 to 0.005 by steps of −0.005. We have varied the
arameter P(Croot|I) under two different setting of the parameters
v. In the first case, we have assumed that �v is fixed to 0.7. In the

econd case, we have assumed that �v is fixed to 0.4. In both cases
e have assumed the parameter �v fixed to ln(0.9992).

Once fixed one �v parameter setting, each bar - corresponding
o one P(Croot|I) value - contains the higher, lower and the average
alue obtained for the system reliability. As expected, the lower
higher or average) system reliability increases while decreasing
he P(Croot|I) value. For example, in the first case (i.e., �v equals to
.7), with P(Croot|I) equals to 0.04, the average system reliability

s about 0.97782, whereas if P(Croot|I) decreases to 0.01, then the
verage reliability increases, and it is about 0.982177.

Similarly, in Fig. 20(b) we illustrate the results obtained by
xplicitly using for s7 our SCA-ASM reliability model. The figure
hows the system reliability while varying the reliability of s7,
ssumed to be due to IU failures. A different behavior of the reli-
bility model can be observed by fixing a value on the x-axis and
bserving the values on two figures while increasing the P(Croot|I)
alue. This different behavior of the reliability model is mainly due
o the fact that services s3 and s7 have a different probability to
e invoked. In fact, the service s3 is only used in the third external
ervice, whereas the service s7 is used in all external services (see
able 4).

These results highlight how our reliability model combines spe-
ific features of an SCA-ASM component into the overall reliability
odel and leads to a more precise (and less optimistic) reliability

stimation.

. Related work
In this paper, we propose a reliability prediction method for
he SCA-ASM component model. Approaches for quality estima-
ion based on a specific component model are also being defined
g the reliability of an SCA-ASM component.

in the state-of-the-art literature (see, for example, Ding and Jiang,
2009; Brosch et al., 2012 detailed below).

The work in Ding and Jiang (2009) presents a reliability com-
putation for the SCA component model. It proposes a dynamic
behavior model for specifying the components interface behavior
by a notion of port and port activities. It defines failure behaviors
of ports through the Nonhomogeneous Poisson Process(NHPP). Thus,
the overall system reliability is computed on the reliability of port
expressions.

The work in Brosch et al. (2012) proposes a reliability predic-
tion method based on the Palladio Component Model (PCM), which
offers a UML-like modeling notation. In particular, a tool is defined
to automatically transform PCM models into Markov chains. On
the contrary, our reliability approach relies on a unique compo-
nent model (i.e. SCA-ASM), that is also used for static and dynamic
modeling of software.

In this paper, we leverage the ASM formal method, and propose
an approach for evaluating the reliability attribute for an archi-
tecture specified with SCA-ASM formal component model. Formal
methods, such as Petri Net, Automata and Process Algebra, are
also used by existing approaches for quality evaluation (see, for
example, the work in Cortellessa et al., 2011 for performance mod-
eling notations). Ad-hoc models (such as UML), used to describe the
static and dynamic aspects of a software system, are typically trans-
formed in formal quality models (such as Queueing Networks).
Thus, a major problem of these approaches may reside in the dis-
tance between notations for modeling the system and notations for
modeling qualities.

As far as the reliability is concerned, a quite extensive list of
approaches can be found in literature (e.g., see survey Immonen
and Niemelä, 2008). Most of these approaches (e.g., Cortellessa and
Potena, 2007; Brosch et al., 2012; Ciancone et al., 2011) use nota-
tions based on UML sequence and deployment diagrams annotated

with reliability properties, such as failure probabilities. Tools can
transform such high-level models into analysis models (such as
Markov models for state-based approaches), which then can be
evaluated.

1 ystem

m
d
c
m
a

i
I
c
N
c
t
n
i
f

s
R
o
m
f
A
f
I
b
p
m
p
b
(
a
b
i
a
T
c
t
e

8

o
m
a
m
m
t

r
s
l
e
p
c

s
u
a
w
(
S
f
p

26 R. Mirandola et al. / The Journal of S

As an example, the Klapersuite (Ciancone et al., 2011) is a
odeling framework (language, methodology, tools) for the pre-

ictive modeling and analysis of performance and reliability of
omponent-based systems. It uses model transformations to auto-
atically generate analysis models (queuing networks) out of an

nnotated UML design model.
As remarked in Ibrahim et al. (2011), the formal models typ-

cally focus only on the formal modeling of the service behavior.
n Ibrahim et al. (2011), the formal specification of services with
ontext-dependent contracts and their compositions is provided.
on-functional aspects are also taken into account, and the model
hecking technique is exploited to verify service properties w.r.t.
he composition specification. The verification of functional and
on-functional aspects based on a formal method is also performed

n Aldini et al. (2010), where process algebraic techniques are used
or architecture-level functional and performance analysis.

Regarding the novelty of our approach with respect to the
tate-of-art, we can remark the following points. (i) The work in
iccobene et al. (2012), which this paper is an extended version of, is
ne of the few papers proposing a reliability model for a component
odel, and (to the best of our knowledge) the first that relies on a

ormal and executable service-oriented component model, i.e. SCA-
SM, suitable for carrying out both architecture specification and its

unctional/non-functional properties analysis in an unified manner.
n comparison with Riccobene et al. (2012), where we provided the
ases of a reliability model for an SCA assembly of SCA-ASM com-
onents, this paper goes deeply into the details of the proposed
ethod, makes precise those definition left abstract (as the usage

rofile model), makes complete the computation of several proba-
ilistic parameters, and presents a deeper experimental evaluation.
ii) The framework we propose can facilitate the work of system
rchitects and/or maintainers. In fact, our approach reduces the gap
etween notations for system modeling and notations for model-

ng qualities, so, therefore, strongly reduces the incompatibilities
mong models for quality analysis and system specification. (iii)
he obtained experimental results support our intuition that the
ombination of the service orchestrator’s reliability with those of
he single service components may be a key factor for a trustworthy
stimation of a software reliability.

. Conclusions and future work

In this paper, we have defined a reliability model for service
riented applications developed using the SCA-ASM component
odel. In particular, we have presented a reliability model for

n SCA assembly involving SCA-ASM components that embed the
ain service orchestration. We have also introduced a reliability
odel of an SCA-ASM component by considering failures specific

o the nature of the ASMs.
We have pointed out the importance of the combination of the

eliability prediction of the service orchestrator with those of other
ervice components. To this extent, we have shown that our model
eads to a more accurate estimation of the reliability. The conducted
xperimental results have also shown the effectiveness of the pro-
osed approach with respect to BPEL-based approaches for service
omponent reliability.

We intend to apply our approach to other examples to further
tudy its scalability, and to compare its predicted reliability val-
es with existing data of real life experiments. In order to support
n automated application of the approach to large-sized problems,
e are extending a prototype tool, based on the SCA-ASM tool-set
Riccobene et al., 2011; Riccobene and Scandurra, 2013) and on the
CA runtime platform Tuscany, to support the prediction method
or a practical use. Besides, we intend to specialize our tool for sup-
orting particular aspects of a quality model, such as the estimation
s and Software 89 (2014) 109– 127

of quality at runtime – model parameters estimation like reliability
of components.

Other interesting research directions we intend to investigate
concern the consideration of other QoS attributes (e.g., perfor-
mance), and the introduction of dependency between failures of
single components and failures specific of the nature of the ASMs.

Acknowledgements

We would like to thank the anonymous referees for their com-
ments that helped to substantially improve the quality of the paper.

References

Abdelmoez, W., Nassar, D.M., Shereshevsky, M., Gradetsky, N., Gunnalan, R., Ammar,
H.H., Yu, B., Mili, A., 2004. Error propagation in software architectures. In: IEEE
International Symposium on Software Metrics, pp. 384–393.

Abdelmoez, W., Shereshevsky, M., Gunnalan, R., Ammar, H.H., Yu, B., Bogazzi, S.,
Korkmaz, M., Mili, A., 2005. Quantifying software architectures: an analysis of
change propagation probabilities. In: AICCSA, IEEE Computer Society, p. 124.

Abreu, J., Fiadeiro, J.L., 2008. A coordination model for service-oriented interactions.
In: COORDINATION. Lecture Notes in Computer Science, vol. 5052. Springer, pp.
1–16.

Aldini, A., Bernardo, M., Corradini, F., 2010. A Process Algebraic Approach to Software
Architecture Design. Springer-Verlag London Limited, ISBN: 978-1-84800-222-
7.

Alves, A., Arkin, A., Askary, S., Bloch, B., Curbera, F., Goland, Y., Kartha, N., Sterling,
D., König, V., Mehta, S., Thatte, D., van der Rijn, P., Yendluri, A., Yiu, May 2006.
Web services business process execution language version 2.0, OASIS Committee
Draft.

Arbab, F., 2004. Reo: a channel-based coordination model for component composi-
tion. Mathematical Structures in Computer Science 14 (3), 329–366.

Arcaini, P., Gargantini, A., Riccobene, E., Scandurra, P., 2011. A model-driven process
for engineering a toolset for a formal method. Journal of Software: Practice and
Experience 41 (2), 155–166.

The ASMETA toolset website, 2011, http://asmeta.sf.net/
Börger, E., Stärk, R., 2003. Abstract State Machines: A Method for High-Level System

Design and Analysis. Springer, Heidelberg.
Banti, F., Lapadula, A., Pugliese, R., Tiezzi, F., 2008. Specification and analysis of

SOC systems using COWS: a finance case study. Electronic Notes in Theoretical
Computer Science 235.

Brosch, F., Koziolek, H., Buhnova, B., Reussner, R., 2012. Architecture-based reliability
prediction with the Palladio component model. IEEE Transactions on Software
Engineering 38 (6), 1319–1339.

Brugali, D., Gherardi, L., Riccobene, E., Scandurra, P., 2011. Coordinated execution
of heterogeneous service-oriented components by Abstract State Machines. In:
FACS. Lecture Notes in Computer Science, vol. 7253. Springer.

Calinescu, R., Ghezzi, C., Kwiatkowska, M.Z., Mirandola, R., 2012. Self-adaptive soft-
ware needs quantitative verification at runtime. Communications of the ACM
55 (9), 69–77.

Cardellini, V., Casalicchio, E., Grassi, V., Presti, F.L., 2007. Flow-based service selection
for web service composition supporting multiple QoS classes. In: ICWS, IEEE
Computer Society, pp. 743–750.

Cardellini, V., Casalicchio, E., Grassi, V., Iannucci, S., Presti, F.L., Mirandola, R., 2012.
MOSES: a framework for QoS driven runtime adaptation of service-oriented
systems. IEEE Transactions on Software Engineering 38 (5), 1138–1159.

Cardoso, J., Sheth, A., Miller, J., Arnold, J., Kochut, K., 2004. Quality of service for
workflows and web service processes. Journal of Web Semantics 1 (3), 281–308.

Chandran, S.K., Dimov, A., Punnekkat, S., 2010. Modeling uncertainties in the estima-
tion of software reliability. In: 2010 Fourth International Conference on Secure
Software Integration and Reliability Improvement (SSIRI), IEEE Computer Soci-
ety, pp. 227–236.

Ciancone, A., Filieri, A., Drago, M.L., Mirandola, R., Grassi, V., 2011. KlaperSuite: an
integrated model-driven environment for reliability and performance analy-
sis of component-based systems. In: TOOLS (49). Lecture Notes in Computer
Science, vol. 6705. Springer, pp. 99–114.

Cortellessa, V., Potena, P., 2007. Path-based error propagation analysis in composi-
tion of software services. In: Software Composition. Lecture Notes in Computer
Science, vol. 4829. Springer, pp. 97–112.

Cortellessa, V., Marinelli, F., Potena, P., 2006. Automated selection of software com-
ponents based on cost/reliability tradeoff. In: EWSA. Lecture Notes in Computer
Science, vol. 4344. Springer, pp. 66–81.

Cortellessa, V., Marco, A.D., Inverardi, P., 2011. Model-Based Software Performance
Analysis. Springer-Verlag, Berlin, Heidelberg, ISBN: 9783642136214.

Ding, Z., Jiang, M., 2009. Port based reliability computing for service composition. In:
Proceedings of the 2009 IEEE International Conference on Services Computing,

SCC’09, pp. 403–410.

EU project SENSORIA, www.sensoria-ist.eu/
Filieri, A., Ghezzi, C., Grassi, V., Mirandola, R., 2010. Reliability analysis of component-

based systems with multiple failure modes. In: CBSE. Lecture Notes in Computer
Science, vol. 6092. Springer, pp. 1–20.

http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0005
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0005
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0005
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0005
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0005
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0005
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0005
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0005
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0005
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0005
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0005
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0005
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0005
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0005
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0005
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0005
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0010
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0010
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0010
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0010
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0010
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0010
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0010
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0010
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0010
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0010
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0010
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0010
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0010
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0010
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0010
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0010
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0015
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0015
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0015
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0015
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0015
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0015
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0015
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0015
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0015
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0015
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0015
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0015
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0015
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0015
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0015
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0015
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0015
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0015
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0015
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0015
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0020
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0020
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0020
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0020
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0020
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0020
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0020
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0020
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0020
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0020
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0020
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0020
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0020
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0020
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0025
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0025
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0025
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0025
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0025
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0025
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0025
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0025
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0025
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0025
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0025
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0030
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0030
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0030
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0030
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0030
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0030
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0030
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0030
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0030
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0030
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0030
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0030
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0030
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0030
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0030
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0030
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0030
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0030
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0030
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0035
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0035
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0035
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0035
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0035
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0035
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0035
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0035
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0035
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0035
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0035
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0035
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0035
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0035
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0035
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0035
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0035
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0035
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0035
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0035
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0035
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0035
http://asmeta.sf.net/
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0045
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0045
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0045
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0045
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0045
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0045
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0045
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0045
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0045
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0045
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0045
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0045
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0045
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0050
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0050
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0050
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0050
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0050
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0050
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0050
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0050
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0050
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0050
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0050
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0050
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0050
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0050
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0050
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0050
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0050
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0050
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0050
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0055
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0055
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0055
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0055
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0055
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0055
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0055
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0055
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0055
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0055
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0055
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0055
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0055
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0055
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0055
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0055
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0055
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0055
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0060
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0060
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0060
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0060
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0060
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0060
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0060
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0060
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0060
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0060
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0060
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0060
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0060
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0060
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0060
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0060
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0060
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0060
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0060
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0060
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0065
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0065
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0065
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0065
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0065
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0065
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0065
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0065
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0065
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0065
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0065
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0065
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0065
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0065
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0065
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0065
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0065
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0070
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0070
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0070
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0070
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0070
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0070
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0070
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0070
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0070
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0070
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0070
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0070
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0070
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0070
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0070
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0070
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0070
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0070
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0070
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0070
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0075
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0075
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0075
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0075
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0075
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0075
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0075
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0075
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0075
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0075
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0075
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0075
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0075
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0075
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0075
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0075
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0075
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0075
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0075
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0075
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0075
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0080
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0080
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0080
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0080
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0080
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0080
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0080
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0080
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0080
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0080
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0080
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0080
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0080
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0080
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0080
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0080
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0080
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0080
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0085
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0085
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0085
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0085
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0085
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0085
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0085
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0085
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0085
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0085
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0085
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0085
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0085
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0085
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0085
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0085
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0085
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0085
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0085
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0085
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0085
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0085
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0085
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0085
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0085
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0085
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0085
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0085
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0085
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0085
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0090
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0090
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0090
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0090
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0090
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0090
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0090
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0090
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0090
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0090
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0090
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0090
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0090
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0090
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0090
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0090
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0090
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0090
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0090
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0090
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0090
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0090
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0090
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0090
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0090
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0090
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0090
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0090
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0090
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0095
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0095
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0095
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0095
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0095
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0095
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0095
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0095
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0095
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0095
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0095
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0095
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0095
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0095
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0095
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0095
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0095
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0095
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0095
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0095
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0095
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0095
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0095
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0095
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0095
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0100
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0100
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0100
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0100
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0100
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0100
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0100
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0100
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0100
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0100
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0100
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0100
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0100
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0100
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0100
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0100
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0100
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0100
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0100
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0100
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0100
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0100
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0100
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0100
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0105
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0105
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0105
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0105
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0105
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0105
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0105
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0105
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0105
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0110
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0110
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0110
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0110
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0110
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0110
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0110
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0110
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0110
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0110
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0110
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0110
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0110
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0110
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0110
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0110
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0110
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0110
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0110
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0110
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0110
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0110
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0110
http://www.sensoria-ist.eu/
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0120
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0120
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0120
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0120
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0120
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0120
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0120
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0120
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0120
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0120
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0120
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0120
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0120
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0120
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0120
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0120
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0120
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0120
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0120
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0120
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0120
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0120
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0120
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0120

ystem

G

G

G

G

G

I

I

K

M

O
R

R

R

S

S

A
v

V

Y

R. Mirandola et al. / The Journal of S

argantini, A., Riccobene, E., 2001. ASM-based testing: coverage criteria and auto-
matic test sequence. Journal of Universal Computer Science 7 (11), 1050–1067.

argantini, A., Riccobene, E., Scandurra, P., 2008. A metamodel-based language and
a simulation engine for abstract state machines. Journal of Universal Computer
Science 14 (12), 1949–1983.

oseva-Popstojanova, K., Kamavaram, S., 2004. Software reliability estimation under
uncertainty: generalization of the method of moments. In: HASE, IEEE Computer
Society, pp. 209–218.

oseva-Popstojanova, K., Trivedi, K.S., 2001. Architecture-based approach to reli-
ability assessment of software systems. Performance Evaluation 45 (2–3),
179–204.

rassi, V., 2004. Architecture-based reliability prediction for service-oriented com-
puting. In: WADS. Lecture Notes in Computer Science, vol. 3549. Springer, pp.
279–299.

brahim, N., Mohammad, M., Alagar, V.S., 2011. An architecture for managing and
delivering trustworthy context-dependent services. In: IEEE SCC, pp. 737–738.

mmonen, A., Niemelä, E., 2008. Survey of reliability and availability prediction
methods from the viewpoint of software architecture. Software and System
Modeling 7 (1), 49–65.

rka, I., Edwards, G., Cheung, L., Golubchik, L., Medvidovic, N., 2009. A comprehen-
sive exploration of challenges in architecture-based reliability estimation. In:
Architecting Dependable Systems VI. Lecture Notes in Computer Science, vol.
5835., pp. 202–227.

ayer, P., Schroeder, A., Koch, N., 2008. A model-driven approach to service orches-
tration. In: IEEE SCC (2), pp. 533–536.

SOA. Service Component Architecture (SCA). www.osoa.org
iccobene, E., Scandurra, P., 2013. A formal framework for service

modeling and prototyping. Formal Aspects of Computing,
http://dx.doi.org/10.1007/s00165-013-0289-0 (on line first).

iccobene, E., Scandurra, P., Albani, F.,2011. A modeling and executable language for
designing and prototyping service-oriented applications. In: EUROMICRO-SEAA.
IEEE, pp. 4–11.

iccobene, E., Potena, P., Scandurra, P., 2012. Reliability prediction for service compo-
nent architectures with the SCA-ASM component model. In: EUROMICRO-SEAA,
IEEE Computer Society, pp. 125–132.

mith, C.U., Williams, L.G., 2002. Performance Solutions: A Practical Guide to Creat-
ing Responsive. Scalable Software. Addison-Wesley, Reading.

tandard Glossary of Software Engineering Terminology, STD-729-1991 ANSI/IEEE,
1991.

pache Tuscany [Online]. Available at: http://tuscany.apache.org/
an der Aalst, W.M.P., Pesic, M., 2006. DecSerFlow: towards a truly declarative

service flow language. In: The Role of Business Processes in Service Oriented
Architectures, Dagstuhl Seminar Proceedings, vol. 06291, Schloss Dagstuhl,
Germany.
oas, J.M., Miller, K.W., 1995. Software testability: the new verification. IEEE Soft-
ware 12, 17–28.

acoub, S., Cukic, B., Ammar, H., 1999. Scenario-based reliability analysis of
component-based software. In: 10th International Symposium on Software Reli-
ability Engineering, 1999. Proceedings, pp. 22–31.
s and Software 89 (2014) 109– 127 127

Zeng, L., Benatallah, B., Ngu, A., Dumas, M., Kalagnanam, J., Chang, H., 2004. QoS-
aware middleware for web services composition. IEEE Transactions on Software
Engineering 30, 311–327.

Raffaela Mirandola is Associate Professor in the Dipartimento di Elettronica, Infor-
mazione e Bioingegneria at Politecnico di Milano. Raffaela’s research interests are in
the areas of performance and reliability modeling and analysis of software/hardware
systems with special emphasis on: methods for the automatic generation of perfor-
mance and reliability models for component-based and service-based systems, and
methods to develop software that is dependable and can easily evolve, possibly
self-adapting its behavior. She has published over 90 journal and conference arti-
cles on these topics. She served and is currently serving in the program committees
of conferences in the research areas and she is a member of the Editorial Board of
Journal of System and Software, Elsevier. She has been involved in several national
and European research projects among which EU project CASCADAS (IST-027807),
Q-ImPreSS (FP7-215013) and SMScom (IDEAS 227077).

Pasqualina Potena received the degree in Computer Science from the Uni-
versity of L’Aquila (Italy) and the PhD degree in Science from the University
“G. D’Annunzio” Chieti e Pescara (Italy). Her research interests include: non
functional-aspects (reliability, performance, cost, . . .), architecture-based solutions
for self-adapting/evolving software systems, optimization models.

Elvinia Riccobene is associate professor in Computer Science at the University of
Milan. She received her degree in Mathematics and her PhD degree in Applied Math-
ematics from the University of Catania (Italy). She holds visiting position at the
Centre For High Assurance Computer System (Washington DC), at the Univ. of Bris-
tol (UK), at the Univ. of Karlsruhe (Germany), at Florida University. Her research
interests include formal methods and analyses techniques for software systems,
integration between formal and semi-formal methods, model-driven engineering.
She is the scientific coordinator of national research projects and she participated
to various European and Italian research projects. She serves as member of the
program committee of international conferences. She published several papers in
International journals and in proceedings of international conferences.

Patrizia Scandurra obtained the Laurea degree (cum laude) in Computer Science
in 2002 and a PhD in Computer Science in 2006, both from the University of Cata-
nia (Italy). After that, she got a Post-doc research position at the University of Milan
(Italy). Since 2009 she is an assistant professor at the Engineering Department of the
University of Bergamo. Her main research interests focused on the integration of for-
mal and semi-formal modeling languages, formal methods and analysis (validation
and verification) techniques, model-driven and component-based methodologies
for the design and analysis of Pervasive Systems and Embedded Systems on Chip
(SoC), Dynamic Software Architectures, and Service-Based Applications. She is a
member of the Abstract State Machines (ASM) formal method community. She par-

ticipated to different national and european research projects in the field of Software
Engineering for modeling and analysis of pervasive systems, embedded systems,
and robotic systems. She collaborated with companies such as STMicroelectronics,
Opera21, and Atego, and with the universities of Milan, Pisa, Politecnico di Milano,
Oxford, and Simula Research Laboratory in Oslo (Norway).

http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0125
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0125
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0125
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0125
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0125
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0125
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0125
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0125
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0125
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0125
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0125
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0125
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0125
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0125
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0125
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0125
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0125
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0125
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0125
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0130
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0130
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0130
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0130
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0130
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0130
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0130
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0130
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0130
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0130
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0130
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0130
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0130
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0130
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0130
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0130
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0130
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0130
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0130
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0130
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0130
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0135
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0135
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0135
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0135
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0135
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0135
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0135
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0135
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0135
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0135
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0135
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0135
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0135
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0135
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0135
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0135
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0135
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0135
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0135
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0135
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0140
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0140
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0140
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0140
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0140
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0140
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0140
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0140
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0140
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0140
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0140
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0140
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0140
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0140
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0140
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0140
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0140
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0140
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0145
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0145
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0145
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0145
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0145
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0145
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0145
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0145
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0145
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0145
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0145
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0145
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0145
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0145
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0145
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0145
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0145
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0145
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0145
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0145
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0145
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0150
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0150
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0150
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0150
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0150
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0150
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0150
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0150
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0150
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0150
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0150
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0150
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0150
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0150
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0150
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0150
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0155
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0155
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0155
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0155
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0155
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0155
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0155
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0155
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0155
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0155
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0155
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0155
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0155
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0155
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0155
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0155
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0155
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0155
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0155
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0155
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0155
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0155
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0160
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0160
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0160
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0160
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0160
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0160
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0160
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0160
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0160
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0160
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0160
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0160
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0160
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0160
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0160
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0160
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0160
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0160
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0160
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0160
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0160
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0160
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0160
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0160
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0160
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0160
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0165
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0165
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0165
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0165
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0165
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0165
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0165
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0165
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0165
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0165
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0165
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0165
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0165
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0165
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0165
http://www.osoa.org
dx.doi.org/10.1007/s00165-013-0289-0
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0180
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0180
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0180
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0180
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0180
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0180
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0180
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0180
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0180
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0180
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0180
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0180
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0180
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0180
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0180
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0180
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0180
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0180
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0185
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0185
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0185
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0185
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0185
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0185
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0185
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0185
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0185
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0185
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0185
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0185
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0185
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0185
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0185
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0185
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0185
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0185
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0185
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0185
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0185
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0190
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0190
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0190
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0190
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0190
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0190
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0190
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0190
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0190
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0190
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0190
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0190
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0190
http://tuscany.apache.org/
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0205
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0205
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0205
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0205
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0205
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0205
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0205
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0205
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0205
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0205
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0205
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0205
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0205
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0205
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0205
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0205
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0205
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0205
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0205
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0205
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0205
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0205
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0205
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0205
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0205
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0205
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0210
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0210
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0210
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0210
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0210
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0210
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0210
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0210
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0210
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0210
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0210
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0210
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0215
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0215
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0215
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0215
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0215
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0215
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0215
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0215
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0215
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0215
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0215
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0215
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0215
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0215
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0215
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0215
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0215
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0215
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0215
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0215
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0215
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0220
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0220
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0220
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0220
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0220
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0220
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0220
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0220
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0220
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0220
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0220
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0220
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0220
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0220
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0220
http://refhub.elsevier.com/S0164-1212(13)00266-5/sbref0220

	A reliability model for Service Component Architectures
	1 Introduction
	2 Background concepts
	2.1 Reliability prediction basics
	2.2 Service Component Architecture (SCA)
	2.3 The SCA-ASM component model

	3 Reliability of an SCA assembly
	3.1 SCA-ASM usage profile
	3.2 SCA-ASM rule dependency tree
	3.3 Reliability model formulation

	4 Reliability of an SCA-ASM component
	4.1 Invariant failures (InvF)
	4.1.1 Environment reliability in presence of invariant failures
	4.1.2 Machine reliability in presence of invariant failures

	4.2 Inconsistent update failures (IU)
	4.2.1 Probability “P(Ov|I)” estimation
	4.2.2 Probability “P(O|I)” estimation

	5 The Finance case study
	6 Reliability model evaluation
	6.1 BPEL-based reliability model
	6.2 Experimentation
	6.2.1 Model parameters
	6.2.2 Numerical results

	7 Related work
	8 Conclusions and future work
	Acknowledgements
	References

