
Domain-specific
Language engineering
PATRIZIA SCANDURRA – LINGUAGGI E COMPILATORI 2016-17

Outline

• Introduction on Domain-Specific Languages (DSLs) -- the 4th
generation languages

•Grammarware vs modelware approaches

•The Eclipse Modeling Framework (EMF) – Modelware approach

•The Xtext framework – Grammarware approach

Books and references
• Slides, documents and examples from my Dropbox repository
https://www.dropbox.com/sh/triz42yrp9eb7u1/AADDxORqn0YzN0CYdpqdE9Hza?dl=0

•EMF: Eclipse Modeling Framework, 2nd Edition. By Dave Steinberg, Frank Budinsky,
Marcelo Paternostro, Ed Merks. Published Dec 16, 2008 by Addison-Wesley
Professional. Part of the Eclipse Series series.

•Implementing Domain-Specific Languages with Xtext and Xtend Paperback – August
21, 2013 by Lorenzo Bettini

Introduction
PATRIZIA SCANDURRA – LINGUAGGI E COMPILATORI 2016-17

Domain-specific Languages (DSLs)

• Programming languages or modeling languages that target a specific problem
domain

• The goal is to automate development of software applications in a given domain,
solving that problem easier and faster by using that DSL instead of a general
purpose language like Java or C

•A program or model (or mogram) written in a DSL describes essential
characteristics of an application

• A mogram can then be interpreted or compiled into a general purpose language

• In other cases, the mogram can represent simply data that will be processed by
other systems

Examples of DSLs
•Main idea:

• Use mograms to describe essential characteristics of an application, and

• use code generation (model compilers/interpreters) to produce the application
automatically

•Examples of DLSs:

• SQL (for querying relational databases)

• Mathematica (for symbolic mathematics)

• HTML, and many others

Another DSL example
Google Protocol Buffers data modeling language aimed at flexible and efficient serialization
and persistence of structured data across multiple programming languages and platforms

It uses message as a metaphor for a data structure

An example of model in

the Google Protocol

Buffers DSL

DSLs versus XML
•Also XML allows you to describe data in a machine- and human- readable form

• But many people find that XML is machine-readable, but not so much human-readable

•Consider a very simple example of an XML file describing people:

XML
DSL for people

DSLs engineering
What does it take to design and implement a language?

1. Concrete syntax (textual, graphical, mixed)

2. Abstract syntax

3. Editing/Modeling environment for models

4. Serialization/Deserialization for models

5. Static semantics (mostly type checking)

6. Dynamic semantics (interpreter, model compiler, code generator)

Language engineering approaches

• Grammaware: grammar-dependent software language engineering

• “Grammarware comprises grammars and all grammar-dependent software.”
[Klint, Lämmel and Verhoef, 2005]

• Modelware: model-based software language engineering

• Modelware concerns the building of models and associated modeling tools
for software systems (e.g., UML)

• Useful for graphical DSLs!

Language engineering frameworks

•Frameworks are necessary for implementing a DSL together with its IDE
functionalities

•Common IDE functionalities

• syntax highlighting, auto-completion, background parsing, errors
markers, suggested quickfixes, automatic build, outline, etc.

•We will assume Eclipse as the underlying IDE

Language engineering: frameworks for
textual DSLs

• Xtext (approach grammarware): open source Eclipse framework
http://www.eclipse.org/Xtext/

• EMFtext (approach modelware): open source Eclipse plug-in for defining textual
DSLs starting by an EMF Ecore model (or metamodel)
http://www.emftext.org/index.php/EMFText

• EMF (Eclipse Modeling Framework) toolkit as standard de facto for modelware

• with modeling and code generation facility for building tools and other applications
based on a structured data model Ecore (the metamodel) of the DSL

Both adopt ANTLR in the background! They use the LL(*) parser generator of
ANTLR, allowing to cover a wide range of syntaxes

Modelware versus Grammarware

EMFText was built around EMF Ecore models and generate a language to parse
these models. You have to define an Ecore model (abstract syntax or metamodel)
first to start creating a DSL

Xtext instead focus on describing a textual concrete syntax for a language and
derives everything from the syntax itself, including an EMF Ecore model that
represents the AST (Abstract Syntax Tree)

Both tools offer more or less the same functionality and are well integrated into
the Eclipse platform, but each tool has its own workflow and has to be integrated
into the development process differently

Modelware versus Grammarware
A metamodel (abstract syntax) allows separating syntax design from concept selection (good thing)

DSL Design Guidelines
1 Visual vs Textual: subject matter experts vs programmers

2 Do not ignore the users! They need to understand your syntax. Adopt existing
notations, which are already understandable

3 Do not introduce new symbols needlessly; omit concepts not contributing to the well
defined purpose of the language (KISS)

4 Do not overload symbols with established semantics (use descriptive keywords)

5 Allow comments in your language

6 Keep abstract and concrete syntax close

7 Compose existing languages (REUSE principle!)
◦ Xtext provides Xbase and terminal grammars for this purpose

DSL engineering with a
modelware approach
PATRIZIA SCANDURRA – LINGUAGGI E COMPILATORI 2016-17

Topics

• EMF overview http://www.eclipse.org/modeling/emf/
• Metamodeling with Ecore: Specifying a DSL metamodel

• Deriving languages SW artifacts (generate language tooling)

•EMFtext (not in program!)

http://www.emftext.org/EMFTextGuide.php

Modelware steps for developing a DSL
(1) Specifying a Language Metamodel

(2) Specifying the Language’s Concrete Syntax (textual or visual or mixed)

(3) Generating the Language Tooling

(4) Optionally Customising the Language Tooling

These steps have to be carried out by a concrete DSL engineering framework, like
EMFText

Iterative EMFText language development
workflow

For textual DSLs only!

Metamodeling

In order to be able to process languages automatically we need to provide formal

definitions of them

Metamodeling is the practice of modeling (abstract) syntax of languages using UML-

like class diagrams

So metamodeling is modeling of languages, and a metamodel is a model of a

language

Model Driven Engineering (MDE)

21

Engineering approach for software/system development and analysis where
models play the role of first-class artifacts

◦ Beyond their use as documentation

◦ models can be used to generate software artifacts

All Software Engineering generative techniques based on the notions of

◦ models, metamodeling, and model transformation

MDE - standards & tools

Three ideas:

direct representation,

automation, and

standards
(languages and mappings)

Core
standard

s

Pervasiv
e

services

Vertical
Domains

Core
target

Platforms

MDE principles: first principle

Unification principle: “Everything is a model”

MDE principles:
the three-level metamodeling stack

or metalanguage

or language

The three-level model organization
stack in various technical spaces

Usually, every TS provides tools that check for the presence of the conformance relation

Model transformation and Technical Spaces
• Technical Spaces are similarly organized around a set of concepts

• Spaces may be connected via transformation bridges (model compilers!)

Program

Grammar

Data

Schema

Model

Meta-Model

Document

Schema

Ontology

Top Level O.

Syntax XML

MDE

DBMS Ontology

engineering

Common Transformation Pattern

engine

written in a general-purpose

programming language

MDE Transformation Pattern

engine

model

metamodel

Corollary: ``A model

transformation is a model''

conformsTo Ξ instanceOf

The OMG’s Metamodeling Framework

OT-based!

• Classes with attributes and operations, possibly
inherited from other classes by Generalization

• Associations (simple, composite) between classes, with cardinality and uniqueness

• Packages to group elements for modularizing

• Data types whose values do not have object identity

� primitive types: Boolean, Integer, and String

� data type constructors: Enumeration, Collection, etc.

• Constraints (well-formedness rules) in the Object Constraint Language (OCL)

a mix of Predicate Logic and set theory

• APIs for model manipulation/implementation

� Java Interfaces

� CMI (CORBA Metadata Interface), etc.

• Model serialization

� XMI (XML Metadata Interchange), HUTN (Human Usable Textual Notation), etc.

The MOF meta-language

Standard MOF

Projections to
handle models

The MOF meta-language: a metamodel example

"metalevel" boundary

The “automaton”
metamodel

Abstract Syntax (AS)

expressed by a metamodel

EMF: a EMF: a EMF: a EMF: a modeligmodeligmodeligmodelig framework for framework for framework for framework for MDEMDEMDEMDE

M0

M1

M2

M3

Mylang XMI

DTD/schema

conformsTo

Mylang

Ecore

data

Mylang model

Mylang Java

interfaces

Mylang

model

Java API

conformsTo

Mylang

model

textual spec.

Mylang

model

XMI file

MylangMylangMylangMylang
EBNF grammar

conformsTo

I II III

EcoreToJava EcoreToXML EcoreToEBNF

Modelware Javaware XMLware Grammarware

Technical Spaces

EMF framework (with Ecore the metalanguage as MOF)

…etc.

EMF Ecore

Ecore is a meta-language to define the abstract
syntax (metamodel) of a DSL in terms of an object
model

◦ EClass: represents a class, with zero or more
attributes and zero or more references

◦ EAttribute: represents an attribute which has a
name and a type

◦ EReference: represents one end of an association
between two classes. It has flags to indicate if it
represents a containment and a reference class to
which it points

◦ EDataType: represents the type of an attribute,
e.g., int, float, Estring, etc.

Ecore model

of a DSL Entity

Partial list of Ecore datatypes

Ecore datatypes are serializable

Support for custom datatypes

http://download.eclipse.org/modeling/emf/emf/javadoc/2.9.0/org/eclip
se/emf/ecore/package-summary.html

An ecore

model of

Ecore

Example: The FSM metamodel (abstract syntax)

an FSM model

conformsTo

The FSM metamodel (abstract syntax)

Example of OCL constraint for well-formedness of models:

context FSM

-- The following invariant checks that if there are no

states, there are no transitions

inv I0: self.states->isEmpty() implies

self.transitions->isEmpty()

Concrete syntaxes (or notations) for FSM

They can be: textual, graphical or both

Moreover they can be:

◦ Human-comprehensible for human use to edit models
conforming to the metamodel, and as

◦ Machine-comprehensible for model handling by
software applications

◦ Examples: an XMI (XML Metadata Interchange) format and
Java APIs

Human-comprehensible notations for FSM

conformsTo conformsTo

Machine-comprehensible notations for FSM

conformsTo

<?xml version="1.0" encoding="UTF-8"?>
<fsm:FSM xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"

xmlns:fsm="http://www.openarchitectureware.org/xtext/dsl/fsm"
name="evenFsm" outputAlphabet="eo" inputAlphabet="01">

<states name="even" isStart="true"/>
<states name="odd" isStart="true"/>
<transitions name="t1" input="0" to="//@states.1" from="//@states.0"

output="o"/>
<transitions name="t2" input="1" to="//@states.0" from="//@states.0"

output="e"/>
…
</fsm:FSM>

XMI format

Machine-comprehensible notations for FSM

conformsTo

Java API

Java annotated code

/**

* @model

* @generated

*/

public interface State extends NamedElement {

/**

* @model unique="false" ordered="false"

* @generated

*/

boolean isIsStart();

/**

* @param value the new value of the 'Is Start‘ attribute.

* @see #isIsStart()

* @generated

*/

void setIsStart(boolean value);

}

A human-comprehensible textual notation for FSM

conformsTo

conformsTo

FSM EBNF grammar

FSM metamodel

Transformation Languages

Two approaches for writing transformation definitions:

In general-purpose programming language

In domain-specific transformation language

OMG approach:

Domain-specific transformation Language

◦ Declarative, imperative or hybrid

MOF 2.0 Query/Views/Transformation (QVT) standard

◦ Not only transformation, but also for model query and view

Example: DSTC/IBM Proposal

Declarative language

Example: UML-to-Java transformation
◦ Example is taken from DSTC/IBM/CBOP QVT Submission

Source Meta-model
Simplified UML meta-model

Target Meta-model
Simplified Java meta-model

Transformation Rules

Example of transformation declaration and a transformation rule:

TRANSFORMATION uml2java(SOURCE UML, TARGET

Java)

TRACKING TModel;

RULE umlClassifierToJavaClass(X, Y)

FORALL UMLClassifier X

WHERE X.name = N

MAKE JavaClass Y,

Y.name = N

LINKING X, Y BY JavaClassFromUMLClassifier;

...

EMF installation
•Download EclipseModeling Tools (Release: Neon) corresponding to your operating
system from

http://www.eclipse.org/downloads/packages/eclipse-modeling-tools/neon1a

•Unzip it and run eclipse

•To test if everything works as expected, import the project Quiz-Model.zip

• Unzip it and use File -> Import. Select General and Existing Projects intoWorkspace.

• Browse for the folder where you unzipped the project, and then press Finish

See more details on the file EclipseModelingTools_installation.pdf (but do not
consider the Luna version; download the latest NEON)

