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Abstract Model-based development (MBD) aims at com-
bining modeling languages with model transformers and code
generators. Modeling languages, like profiles of the Unified
Modeling Language (UML), are increasingly being adopted
for specific domains of interest to alleviate the complex-
ity of platforms and express domain concepts effectively.
Moreover, system development processes based on auto-
matic model transformations are widely required to improve
the productivity and quality of the developed systems. In this
paper, we show how MBD principles and automatic model
transformations provide the basis for the unified process for
embedded systems (UPES) development process and its uni-
fied process for system-on-chip (SoC) (UPSoC) subprocess.
They have been defined to foster in a systematic and seam-
less manner a model-based design methodology based on
the UML2 and UML profiles for the C/SystemC program-
ming languages, which we developed to improve the current
industrial system design flow in the embedded systems and
system-on-chip area.
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1 Introduction

Model-based development (MBD) is an emerging paradigm
in software production that combines domain-specific mod-
eling languages (DSMLs) with model transformers, analyz-
ers, and generators. Metamodel-based modeling languages,
such as profiles or extensions of the Object Management
Group (OMG) standard Unified Modeling Language (UML),
are increasingly being defined and adopted for specific
domains of interest (telecommunications, embedded systems,
system-on-chip, real-time computing, aerospace, automotive,
etc.), addressing the inability of third-generation languages
to alleviate the complexity of platforms and express domain
concepts effectively [35].

MBD emphasizes that software systems should be
designed at a high abstraction level and then incrementally
refined to contain more specific and detailed information,
ending with the implementation of the system on a given
platform. MBD principles propose the automation of parts of
these refinements through automatic model transformations
in order to increase both the productivity and the quality of
the developed systems. Model transformations are currently
a key research topic in the MBD context. The main research
interest lies in vertical transformations, i.e., transformations
between models of different levels of abstraction such as
the platform-independent model (PIM) level, platform-spe-
cific model (PSM) level, and code level of the OMG model-
driven architecture (MDA) [17]. Another important aspect is
horizontal transformations, where models are translated into
other models at the same level of abstraction.

In [31], we presented a MBD-based methodology for
embedded systems that we defined according to the platform-
based design principles [15,45] and by exploiting the OMG
MDA as a framework for MBD. The design methodology is
based on UML2, on a SystemC UML profile for the hardware
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parts, and on a multithread C UML profile for the software
parts. Both of the UML profiles are consistent sets of model-
ing constructs designed to lift constructs (both structural and
behavioral) of the SystemC and C coding languages, respec-
tively, to the UML modeling level. The design methodol-
ogy, supported by a modeling environment, allows modeling
of the system at higher levels of abstraction from a func-
tional level to a register transfer level (RTL), handling both
the hardware architecture with the hardware-dependent soft-
ware (HdS)—i.e. all software that is directly dependent on
the underlying hardware—and the (hardware-independent)
application software. In [33], we presented the development
process unified process for embedded systems (UPES), as
an extension of the well-known software engineering uni-
fied process (UP) [2] from the authors of the UML, to fos-
ter our design methodology. UPES includes a subprocess,
called the unified process for SoC (UPSoC), which combines
all involved notations together in a systematic and seamless
manner for the HdS refinement flow.

In this paper, we show how the UPES/UPSoC processes
are based on vertical and horizontal model transformations
from abstract models toward refined (but still abstract) mod-
els and/or software code models. For the UPSoC subpro-
cess, we show how well-established abstraction/refinement
patterns from hardware or system engineering and until now
only used at code level, can be managed as model-to-model
transformation steps and therefore applied at the UML level,
by the use of the SystemC UML profile, along the model-
ing process from a high-functional-level model down to a
RTL model. We also show how MBD principles are applied
to provide the automation of model-to-code transformations
from abstract UML models toward detailed SystemC code.

The remainder of this paper is organized as follows.
Sections 2 and 3 describe the design process UPES and its
subprocess UPSoC, respectively. Section 4 gives an over-
view of the notations adopted in the UPSoC process, while
Sect. 5 provides a brief description of the design environ-
ment. Section 6 presents automatic model transformations
used in the UPSoC process. Section 7 provides some related
work. Section 8 concludes the paper and sketches some future
directions of our contribution.

2 The unified process for ES (UPES)

The UPES process drives designers during the UML model-
ing activity from the analysis of the informal requirements to
a high-level functional model of the system, down to a RTL
model, by supporting current industry best practice and the
platform-based design principles [45,15]. The UPES process
is an MDA-style Y-development cycle (Fig. 1). It consists on
one side of the conventional UP process for software devel-
opment to define a first executable model of the system (the

Fig. 1 The UPES Y-chart

application model or system model), and on the other side
of the selection process, an available hardware platform (the
platform model) modeled with an appropriate language (e.g.,
a particular UML extension for SoC design).

The intersection, which is intended as a model weaving
operation in the model-based context, is the mapping of the
application model on the given platform model to establish
semantic links between models at specific join points. As
input, this task requires also a reference model of the map-
ping (the mapping model or weaving model) to try, which
is specified in terms of UML component and deployment
diagrams to denote and annotate the partitioning of the orig-
inal system in hardware (HW) and software (SW) compo-
nents. This mapping model establishes the relationships (join
points) of the platform resources and services with the appli-
cation-level functional components. The UPSoC subprocess,
an UP extension for SoC design (see the next section), is then
followed to accurately refine the embedded system platform
from a functional level to the RTL level.

3 The unified process for SoC (UPSoC)

The UPSoC drives system designers during the refinement of
the embedded software, after the mapping phase, and there-
fore after the system components assigned to the HW par-
tition have been mapped directly onto the HW resources of
the selected platform. The UPSoC can also be adopted in a
stand-alone way also by platform providers to deliver offline
models of platforms1 by designing from scratch an abstract
hardware platform—from the analysis of informal require-
ments about the architecture elements (HW resources and
processing elements)—or to directly design it at a desired

1 Detailed platform models comprise a structural view (provided, e.g.,
by UML composite structure diagrams) and a behavioral one. Compo-
nent and deployment diagrams can be used then to provide a black-
box view of the application programming interface (API) layer and the
micro-architecture layer, respectively.
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level of abstraction. The model of this generic platform could
then be reused and targeted accordingly to implement a spe-
cific hardware platform on which to embed a given system.
In both cases, by using, e.g., the UML profile for SystemC
[30,34] that provides in a graphical way all modeling ele-
ments for the design of the hardware components, the hard-
ware platform can be modeled at different abstraction levels:
functional untimed/timed, transactional (TLM), behavioral,
bus cycle accurate, and RTL (Fig. 1).

The UPSoC adapts the UP to the SoC domain by
extending the design and implementation workflows, while
keeping the use case and analysis workflows.2 Useful con-
siderations about use-case analysis in the context of systems
engineering and SoC design can be found in [43]. The design
and implementation models in the UPSoC can be defined
at different abstraction levels and with different modeling
guidelines. Figure 2 shows the workflow schema for these
models using the SPEM [38] notation. The letter L in the fig-
ure denotes a specific level of abstraction from the set {func-
tional, TLM, behavioral, BCA, RTL}; therefore, there are
five design/implementation workflows. As in the UP, also a
testing model (not shown in the figure) can be provided by
creating test cases and test procedures housed outside of the
modeling tool, but traced back to the models.

From the TLM level to the RTL, previous refinement
guidelines [6,40] can be followed to bridge refined elements
with more abstract elements such as those regarding the intro-
duction of wrappers and adaptors, and to restrict the design
for the hardware modeling. A concise description of each of
the five workflows follows.

Functional design/implementation After analysis, the
design phase starts by defining the components of the plat-
form as a set of UML subsystems and interfaces. A subsystem
is a type of UML component whose functionality is exposed
to the outside environment in the form of one or more inter-
faces representing operational contracts (a message-based
interface communication concept). At the end of the design
phase, a draft architecture and its functionality is available.

The architectural design is performed in an incremental
way, by creating a subsystem that corresponds to each analy-
sis package (output of the analysis workflow) and then refin-
ing those subsystems. UML package diagrams can be used to
show the subsystems. Then details are added in each subsys-
tem, dividing each subsystem into a specification and a reali-
zation part. The former contains design use cases obtained by
refining the use cases of the corresponding analysis package.

2 Each UP phase (inception, elaboration, construction, and transition)
usually consists of a number of iterations. During each iteration, several
activities, called workflows, are performed in parallel. The core work-
flows of UP are requirements (or use cases), analysis, design, imple-
mentation, and testing.

Fig. 2 The UPSoC: L- design, implementation, and testing workflow

The latter contains design classes and interfaces coming from
the analysis classes and from an analysis of the design use
cases. UML class diagrams are built to show interfaces, clas-
ses, and relationships, and UML composite structure dia-
grams to represent structural hierarchies using parts with
ports as basic structural elements, and the notation of pro-
vided/required interfaces to denote interface usage/realiza-
tion dependencies.

The functional design is then performed by identifying
operations and dynamic behavior of each class. For this pur-
pose, UML state machine diagrams and UML activity dia-
grams are used, while UML interaction diagrams are useful
to get a better understanding of objects’ interactions. Finally,
subsystems are refined to ensure they are as cohesive and
loosely coupled as possible, and that they provide the func-
tionality denoted by their specification part.

The UML model developed in the design phase corre-
sponds to the initial functional untimed model of the embed-
ded system. It describes the pure system functionality, and the
structural elements do not correspond to blocks in the phys-
ical implementation, no time information is provided, and
communication is modeled point to point. In order to make
it executable and timed—i.e., a functional timed model—the
implementation phase has to be carried out, where a pre-
cise action semantics and time model have to be adopted.
An action (or surface) language can be used, supported by
a proper execution engine, and the behavioral diagrams can
be enriched with actions expressed according to the adopted
action and time semantics. Timing diagrams, and annotate
interaction diagrams with time-related constraints3 may also
be included. Typical execution engines for the SoC design
are those used for programming languages such as C/C++,
SystemC, etc. UML profiles targeted to these execution
engines and model-to-code transformations provide painless
and automatic paths toward these environments.

3 The SysML modeling language [39] and the MARTE UML profile
[37], e.g., provide a set of constructs for expressing time-related aspects.
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Transactional design/implementation At the TLM level, the
architecture is designed and validated in terms of function-
ality as characterized by high-level block input and output
events, and interblock data transfers. Communication details
among processing elements are separated from the details
of computation. Communication is modeled by channels,
while transaction requests take place by calling interface
functions of these channel elements. Transactions are pro-
tocols exchanging abstract data between blocks, with asso-
ciated timing information. Elements of a TLM model can
correspond or not to blocks in the physical implementation.
Channels’ interfaces encapsulate low-level details to enable
higher simulation speed than pin-based interfaces and also
to speed up the modeling task.

The SoC architecture is designed with Intellectual Prop-
erty (IP) blocks connected via application program interfaces
(APIs) to implementation-independent high-level bus mod-
els. System IP components and buses may be modified or
replaced with greater ease than at RTL, and simulated more
than 1,000 times faster. Thus designers can quickly optimize
the design to achieve what works best.

To make a transactional model executable (implementa-
tion model), UML profiles for languages such as SpecC and
SystemC supporting the transaction-level model can be con-
sidered. Similar considerations apply to the next levels.

Behavioral design/implementation A behavioral model is
pin-accurate and functionally accurate at its boundaries. It is
not cycle accurate, i.e., internal and input/output (I/O) events
are not scheduled in a cycle-accurate manner. There is a cer-
tain freedom left to implement the model in a certain number
of clock cycles.

BCA design/implementation A bus-cycle-accurate model is
pin-accurate and functionally accurate. It is also cycle-accu-
rate at its boundaries, i.e., in the number of clock cycles it
takes to perform its functionality (I/O interactions are sched-
uled at the proper clock cycle; internal events are not sched-
uled).

RTL design/implementation At RTL level the hardware is
described in terms of transfers among registers though
functional units like adders, multipliers, arithmetic logic units
(ALUs), etc. The RTL model is accurate at the clock cycle
level, both at the boundaries and internally (all actions are
scheduled at the appropriate clock cycle), and also pin-accu-
rate.

The RTL platform model serves as input to the lower-level
very-large-scale integration (VLSI) design flow, where logic
simulation and synthesis are performed, leading to the final
product.

4 UPSoC notations

A brief overview is provided here of the two main notations
adopted in the UpSoC subprocess: the SystemC coding lan-
guage as the target language of the model-to-code transfor-
mations, and the SystemC UML profile as the main modeling
notation used at different levels of abstractions and, there-
fore, source/target language of the model-to-model transfor-
mations.

4.1 SystemC overview

SystemC [1,21] is an IEEE standard controlled by the major
companies in the electronic design automation (EDA) indus-
try. It is a system-level design language intended to support
the description and validation of complex systems in an envi-
ronment completely based on the C++ programming lan-
guage.

SystemC is defined in terms of a C++ class library, orga-
nized according to a layered architecture, shown in Fig. 3
(taken from [40]). The core language and data types are the
so-called core layer (or layer 0) of the standard SystemC,
and consist of the event-based and discrete-timed SystemC
simulation kernel, the core design primitives and data types.
The primitive channels represents, instead, the layer 1 of Sy-
stemC; it comes with a predefined set of interfaces, ports and
channels for commonly used communication mechanisms
such as signals and FIFOs. Finally, the external libraries layer
on top of the layer 1 are not considered as part of the standard
SystemC language.

Figure 4 depicts a simplified metamodel (an abstract syn-
tax provided in terms of a class diagram) of the main SystemC
terms and concepts. The design of a system in SystemC is
essentially given by a containment hierarchy of modules. A
module is a container class able to encapsulate structure and
functionality of hardware/software blocks. Each module may

Fig. 3 SystemC language architecture
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Fig. 4 A simplified SystemC metamodel

contain variables as simple data members, ports for commu-
nication with the surrounding environment and processes for
performing module’s functionality and expressing concur-
rency in the system. Two kinds of processes are available:
method processes and thread processes. They run concur-
rently in the design and may be sensitive to events which are
notified by other processes. A port of a module is a proxy
object through which the process accesses a channel inter-
face. The interface defines the set of access functions for a
channel, while the channel provides the implementation of
these functions to serve as a container to encapsulate the com-
munication of blocks. There are two kinds of channels: prim-
itive channels and hierarchical channels. Primitive channels
do not exhibit any visible structure, do not contain processes,
and cannot (directly) access other primitive channels. A hier-
archical channel is a module, i.e., it can have structure, it can
contain processes, and it can directly access other channels.

In 2006, SystemC received a major revision (2.2) and
became an IEEE standard [1]. This last revision includes
new structural and behavioral features for transaction-level
modeling (TLM) according to the Open SystemC Initiative
(OSCI) TLM standard.

4.2 The SystemC UML profile

The UML2 profile for SystemC [34] is a consistent set of
modeling constructs designed to lift both structural and
behavioral constructs of the SystemC coding language
(including events and time features) to the UML modeling
level.

A UML2 profile is a set of stereotypes. Each stereotype
defines how the syntax and the semantics of an existing
UML2 construct (a class of the UML2 metamodel) is
extended for a specific domain terminology or purpose. A
stereotype can define additional semantic constraints—the
well-formedness rules expressed in the object constraint lan-
guage (OCL) [20] over the base metaclass—to enforce a
semantic restriction of the extended modeling element, as
well as tags to state additional properties. Figure 5 shows an
example of stereotype definition for the SystemC sc_port
together with an example of OCL constraint. At model level,

Fig. 5 sc_port stereotype

Fig. 6 Modules, ports, and interfaces

when a stereotype is applied to a model element (an instance
of a UML metaclass), an instance of a stereotype is linked to
the model element. From a notational point of view, the name
of the stereotype is shown within a pair of guillemets above
or before the name of the model element and the eventual
tagged values displayed inside or close as name–value pairs.
Examples of stereotypes application are provided here (see
Fig. 6, e.g., for the sc_port stereotype) and in Sect. 6.1.

The SystemC UML profile is defined at two distinct
levels—the SystemC core layer (or layer 0) and the
SystemC layer of predefined channels, ports and interfaces
(or layer 1)—reflecting the layered architecture of SystemC.

The core layer—the basic SystemC profile—is the foun-
dation upon which specific libraries of model elements or
also other modeling constructs can be defined. It is logically
structured as follows.

A structure and communication part defines stereotypes
for the SystemC building constructs (modules, interfaces,
ports, and channels) for use in UML structural diagrams such
as UML class diagrams and composite structure diagrams.
UML class diagrams are used to define modules, interfaces,
and channels. Figure 6 shows an example of a SystemC mod-
ule exposing a multi-port, an array port, and a simple port,
together with the port type and the interface definitions of
the simple port.

The internal structure of composite modules, especially
of the topmost-level module (representing the structure of
the overall system), is captured by UML composite struc-
ture diagrams. From these diagrams several UML object
diagrams can be created to describe different configuration
scenarios. This separation allows the (also partial) specifi-
cation of different HW platforms as instances of the same
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Fig. 7 A thread process pattern

parametric model (i.e., the composite structure diagram).
Concrete examples of composite modules are provided in
Sect. 6.1.

A behavior and synchronization part defines special state
and action stereotypes which lead to an extension of the UML
state machines, the SystemC process state machines [29].
This formalism has been appositely included in the profile
definition to model the control flow and the reactive behavior
of SystemC processes (methods and threads) within mod-
ules. A finite number of abstract behavior patterns of state
machines have been identified. Figure 7 depicts one of these
behavior patterns together with the corresponding SystemC
pseudocode for a thread that: (i) is not initialized, (ii) has both
a static (the event list e1s, . . . , eNs) and a dynamic sensitivity
(the wait state), and (iii) runs continuously (by the infinite
while loop). Note that the notation used for the wait state
in the pattern in Fig. 7 stands for a shortcut to represent a
generic wait(e*) call where the event e* matches one of
the cases reported in Fig. 8. Moreover, activities a1 and a2
stand for blocks of sequential (or not) code without wait
statements.

It should be noted that the state machine pattern depicted in
Fig. 7 can be more complex if one or more wait statements
are enclosed in the scope of one or more nested control struc-
tures. In this case, as part of the UML profile for SystemC, the
control structures while, if, etc. need to be explicitly rep-
resented in terms of special stereotyped junction or choice
pseudostates4 combined together in order to stand out the
state-like representation of the wait calls. The conditional
control and loop controls, e.g., can be modeled as shown in
Figs. 9 and 10, respectively. These stereotypes allow us to
generate code effectively from state diagrams in a style that
reflects the nature of constructs of the target implementation
language, despite well-know techniques (such as state pat-
tern, stable table pattern, etc.) currently used to achieve this
goal.

4 Choice pseudostates must be used in place of junction pseudostates
whenever the head condition of the while loop is a function of the
results of prior actions performed in the same run-to-completion step.

Fig. 8 Dynamic sensitivity of a thread

Fig. 9 Conditional controls

A data types part defines a UML class library to represent
the set of SystemC data types.

In addition, predefined channels, ports, and interfaces of
layer 1 of SystemC are provided either as a UML class library,
modeled with the basic stereotypes of the SystemC core
layer, or as a group of stand-alone stereotypes—the extended
SystemC profile—specializing the basic profile.

An extended version of the SystemC UML profile encap-
sulating some new structural and behaviural features
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Fig. 10 Loop controls

Fig. 11 Tool architecture

(i.e., dynamic processes and fork/join synchronization mech-
a-nisms) necessary to model a TLM library conforming to
the OSCI SystemC TLM library was presented in [3].

5 UPSoC design tool

For industrial application, the availability of appropriate tool
support is crucial. In order to cover the full spectrum of
UPSoC by using C/C++ and SystemC as action languages,
we developed a design tool working as front-end for consol-
idated lower-level co-design tools.

Figure 11 shows the tool architecture. Components visu-
alized inside dashed lines are still under development. The
tool consists of two major parts: a development kit (DK) with
design and development components, and a runtime environ-
ment (RE) represented by the SystemC execution engine.

The DK consists of a UML2 modeler supporting the
SystemC UML profile, translators for the forward/reverse
engineering to/from C/C++/SystemC, and an abstraction/
refinement evaluator to guarantee traceability and correct-
ness along the refinement process from the high-level abstract
description to the final implementation. A more detailed
description of the tool is provided in [32].

Initially, the UML2 modeler was based on the commercial
Enterprise Architect (EA) tool [10] by SparxSystems. Fig-
ure 12 shows a screenshot of EA. The SystemC data types
and predefined channels, interfaces, and ports are modeled
with the core stereotypes, and are available in the project
view with the name SystemC_Layer1.

Recently, we have implemented the UML2 modeler also
in the Papyrus framework [23], an open-source Eclipse-based
UML modeler which supports the UML2 standard as defined
by the OMG and allows the integration of model transfor-
mation services. The latter are handled by transformation
engines, such as the ATL engine [13] (the one we adopted),
developed within the Eclipse Modeling Project [12] as
implementation of the OMG Queries–Views–Transforma-
tions (QVT) [27] standard.

6 UPSoC model transformations

The MDA-style separation of models of UPES/UPSoC
demands automatic model transformations as support to
evolution activities [18] in general, such as refinement/
abstraction, model refactoring, model inconsistency manage-
ment, etc.

According to the classification given in [8], for refine-
ment/abstraction purposes we identify two main kinds of
model transformations to be adopted specifically in the
UPSoC process: model-to-model transformations and model-
to-code transformations. They are better explained in the
following sections by providing concrete examples.

6.1 Model-to-model transformations

Model-to-model transformations of UPSoC allow model
refinement along the (not necessarily successive) abstraction
levels: functional, transactional, behavioral, BCA, and RTL.
These transformations must be intended as vertical transfor-
mations as they imply a change of the level of abstraction.
Each model is here intended as an instance of the SystemC
UML profile metamodel, and therefore is an implementation
model with a fixed action semantics.

In the model-to-model category, we adopt a hybrid
approach based on both direct manipulation and structure-
driven approach [8]. The idea is to collect and reuse precise
abstraction/refinement transformation patterns, coming from
industry best practices. The transformation patterns are once
and for all proved correct and complete, and can be used to
guide the refinement process or to point out missing elements
in a refinement.

We have implemented some of these patterns in the
EA-based environment by using the EA MDA transform-
ers, and in the Papyrus-based environment using the ATL
engine. By applying the model transformations defined for a

123



42 E. Riccobene, P. Scandurra

Fig. 12 Generate SystemC
code from EA

given pattern, a UML system design may automatically and
correctly evolve to an abstract/refined model reflecting the
abstraction/refinement rules defined for the applied pattern.
Below, we provide an example of communication refinement
from functional level to RTL level based on model transfor-
mations.

6.1.1 Communication refinement

In general, in the refinement process we do not only refine the
model’s internal structure, its timing, or the data types being
used; we also need to think about how components com-
municate with their environment. Communication refinement
refers to mapping an abstract communication protocol into
an actual implementation related to a given target architec-
ture. To give an idea on how to perform refinement at UML
level by model-to-model transformations, we show here how
to apply communication refinement patterns to a functional
timed model leading to a RTL model.

We clarify the process of communication refinement in a
general way. To this purpose, we assume to have two high-
level modules M1 and M2 communicating over a channel C
via some abstract protocol. As suggested in [40], one possi-
ble approach to refining this basic communication scenario
toward an implementation consists of the following steps:

1. Select an appropriate communication scheme to
implement

2. Replace the abstract communication channel C with a
refined one CRefined realizing the selected communica-
tion protocol

3. Enable the communication of the modules M1 and M2
over CRefined by either:

(a) wrapping CRefined in a way that the resulting chan-
nel CWrapped provides the interfaces required by M1
and M2 (wrapping) or

(b) refining M1 into M1Refined and M2 into M2Refined

in order their required interfaces match the ones
provided by CRefined (adapter-merging)

The two cases (not the only ones) are similar. Both include
an intermediate step to build two further modules—i.e., two
hierarchical channels called adapters—to map one interface
to another: one, let us say A1, between M1 and CRefined, and
one, let us say A2, between CRefined and M2. In case (a),
the resulting channel CWrapped encloses CRefined and the two
adapters, while in case (b) these adapters are merged to the
calling modules M1 and M2, resulting in the refined modules
M1Refined and M2Refined. Deciding whether to use wrapping
or merging depends on the methodology and chosen target
architecture.

Example We show here how to apply the described com-
munication refinement strategy to a simple abstract (func-
tional timed) producer/consumer system taken from [40].
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Fig. 13 A producer/consumer
design

Fig. 14 Producer/consumer
modules communicating via a
primitive FIFO

Fig. 15 Clocked RTL HW
FIFO

The design of a producer/consumer module that writes and
reads characters to/from a FIFO channel is shown by the
UML composite structure diagram in Fig. 13. The top com-
posite module is defined to contain one instance of the con-
sumer module, one instance of the producer module, and one
FIFO channel instance. The FIFO channel permits to store
characters by means of blocking read and write interfaces,
such that characters are always reliably delivered. Two pro-
cesses, the producer and the consumer (see the thread pro-
cesses main within the producer and the consumer modules
in Fig. 14), respectively, feed and read the FIFO. The pro-
ducer module writes data through its out port into the FIFO
by a sc_fifo_out_if interface, and the consumer module reads
data from the FIFO through its in port by the sc_fifo_in_if
interface. These two interfaces are implemented by the FIFO
channel (see the sc_fifo channel in Fig. 14). Because of the
blocking nature of the sc_fifo read/write operations, all data
are reliably delivered despite the varying rates of production
and consumption.

Now, let us assume that the (abstract) FIFO instance above
is replaced with a (refined) model of a clocked RTL hard-

ware FIFO named hw_fifo<T> for an hardware implementa-
tion. The new hardware FIFO uses a signal-level ready/valid
handshake protocol for both the FIFO input and output
(Fig. 15). It should be noted that we cannot use hw_fifo
directly in place of sc_fifo, since the former does not provide
any interfaces at all, but has ports that connect to signals, i.e.,
has ports that use the sc_signal_in_if and sc_signal_out_if
interfaces.

Following the wrapper-based approach (3b) described
above, we can define a hierarchical channel hw_fifo_
wrapper<T> (CWrapped) implementing the interfaces sc_
fifo_out_if and sc_fifo_in_if and containing an instance of
hw_fifo<T> (CRefined). In addition, it contains sc_signal
instances to interface with hw_fifo<T> and a clock port
(since hw_fifo<T> has also a clock port) to feed in the clock
signal to the hw_fifo<T> instance (Fig. 16). Finally, we need
to add a hardware clock instance in the top-level design to
drive the additional clock port that is now on the hw_fifo_
wrapper<T> instance (Fig. 17). The hw_fifo_wrapper<T>
implements the required signal-level ready/valid handshake
protocol whenever a read or write operation occurs; this
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Fig. 16 The hw_fifo_wrapper hierarchical channel

Fig. 17 A clocked
producer/consumer design

protocol will properly suspend read or write transactions if
hw_fifo<T> is not ready to complete the operation. Details
on the SystemC code can be found in [40].

6.2 Model-to-code transformations

Model-to-code transformations are primarily aimed at pro-
viding executable models at a fixed abstraction level. They
must be intended as horizontal transformations creating pro-
gram text in the SystemC implementation language.

In the model-to-code category, we distinguish between
visitor- and template-based approaches. Visitor-based sim-
ply means that the model is navigated and code is generated
for each element visited according to specific rules describ-
ing for each metaconcept what code to generate and which
elements to visit next. Template-based approaches use target
text that includes place holders that are to be replaced with
concrete data in concrete template instances. Rules in such
template-based approaches usually access information in the
source model using the left-hand side of a rule and give a
template as right-hand side that incorporates this data in a
piece of target code.

We adopted a visitor-based approach for the EA-based
environment. The EA supports forward/reverse engineering

to/from C++. We developed an EA add-in (based on the EA
automation and scripting interface and on the Windows OLE
Automation ActiveX technology) which exploits the added
semantics in the SystemC UML profile to generate complete
SystemC code (full code generation) from input models (for
both the structural and behavioral views) developed with the
EA-based UML modeler.

The EA-based code generator traverses all class diagrams
and for every encountered class it produces a C++ header file
(.h); this happens for both the definition of SystemC classes
(modules, channels, and interfaces) and simple C++ clas-
ses, allowing a mixed design style. Classes contain fields
and methods. For each method it is possible to describe its
behavior either as an inline code description or as a SystemC
process state machine diagram. Each process state machine,
therefore, contributes to the generation and enrichment of a
body file (.cpp) containing the implementation code of all
methods of a class or module or channel.

Moreover, by an analysis of the composite structure dia-
gram associated to a module to describe its internal struc-
ture (especially the one of the topmost-level module, which
represents the structure of the overall system), it is possible
to determine how internal parts are connected to each other
in the module constructors in the header file. Finally, object
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Fig. 18 Producer’s main thread state machine and its SystemC code

diagrams may be seen as instances of the composite struc-
ture diagrams, useful to model particular initializations of the
system components for the construction of appropriate test
benches.

The header file producer.h, e.g., for the producer
module (Fig. 14) would contain the declaration of the pro-
ducer class together with the declaration of themain thread
process, as reported in Listing 1.

Listing 1 producer.h

#include "read_write_if .h"
class producer : public sc_module {
public :
sc_port<sc_fifo_out_if<char> > out ;

void main( ) ;
SC_HAS_PROCESS(producer ) ;
producer(sc_module_name mn): sc_module(mn)
{

SC_THREAD(main) ;
}

};

The body section (file producer.cpp in Fig. 18) is
determined by the thread state machine main (Fig. 18),
where the C++ notation is put on top of the UML action
semantics and the control structures are directly derived from
the stereotyped pseudostates while, if-then, etc., of the
state machine diagram.

We have been applying similar code engineering tech-
niques to the Papyrus-based environment, but following a
template-based approach by relying on JET and Acceleo
technologies. Compared with visitor-based approaches, tem-
plate-based approaches have the advantage of reusing pieces
of code and thus template-based tools are less error-prone
than visitor-based ones.

7 Related work

In this paper, we provide guidance on how to integrate a UP
style of software development into the overall process for
embedded systems. The UPES reflects current industry best
practices and follows the platform-based design principles

[15,45]. For the UPES definition, we have been taking in
consideration the work experiences in [11,15,44,46] as first
contributions to the definition of a development process for
the embedded systems domain based on abstract and execut-
able models and on the system-on-chip (SoC) paradigm for
software–hardware convergence.

The possibility to use UML 1.x for system design [16] has
emerged since 1999, but general opinion at that time was
that UML was not mature enough as a system design lan-
guage. Nevertheless significant industrial experience using
UML in a system design process soon started to lead to the
first results in design methodology, such as the one in [41]
that was applied to an internal project for the development
of an orthogonal frequency-division multiplexing (OFDM)
wireless LAN chipset. In this project SystemC was used to
provide executable models.

More integrated design methodologies were later devel-
oped. The authors of [28] propose a methodology using the
UML for the specification and validation of SoC design. They
define a flow, parallel to the implementation flow, which is
focused on high-level specs capture and validation. In [15],
a UML profile for a platform-based approach to embedded
software development is presented. It includes stereotypes to
represent platform services and resources that can be assem-
bled together. The authors also present a design methodology
supported by a design environment, called Metropolis, where
a set of UML diagrams (use cases, classes, state machines,
activity, and sequence diagrams) can be used to capture the
functionality and then refine it by adding models of compu-
tation.

Another approach to the unification of UML and SoC
design is the hardware and software objects on chip
(HASoC) [11] methodology. It is based on the UML-RT pro-
file [36] and on the Rational Unified Process (RUP) [14]. The
design process starts with an uncommitted model, after which
a committed model is derived by partitioning the system into
software and hardware, and then mapped onto a system plat-
form. From these models a SystemC skeleton code can be
also generated, but to provide a finer degree of behavioral
validation, detailed C++ code must be added by hand to the
skeleton code. All the works mentioned above could greatly
benefit from the use of UML2.

In [9], the authors present a model-driven framework
called model-driven design of embedded systems (ModES)
made of metamodels definition and APIs to integrate, by
model transformations, several model-based design tools.
However, this framework is more related to the design space
exploration at a high abstraction level than to model refine-
ment, model validation, and automatic code generation from
models, which are, instead, our main concerns.

SysML [39] is a conservative extension of UML 2.0 for
a domain-neutral representation (i.e., a PIM model as in
MDA [17]) of system engineering applications. It can be
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involved at the beginning of the design process, in place
of the UML, for the requirements, analysis, and functional
design workflows. So it is in agreement with our UML pro-
file for SystemC, which can be thought of (and effectively
made) as customization of SysML rather than UML. Unluck-
ily, when we started, the SysML specification was not yet
finalized and there were no tools yet supporting it. Similar
considerations apply also to the recent modeling and analysis
of real-time embedded systems (MARTE) profile initiative
[37].

The standardization proposal [42] by Fujitsu, in collabo-
ration with IBM and NEC, has evident similarities with our
SystemC UML profile, such as the choice of SystemC as a
target implementation language. However, their profile does
not provide building blocks for behavior modeling and any
time model.

Some other proposals already exist for extensions of UML
towards C/C++/SystemC. All have in common the use of
UML stereotypes for SystemC constructs, but do not rely
on a UML profile definition. In this sense, the work in [5]
attempting to define a UML profile for SystemC is appre-
ciable; but, as with all the other proposals, it is based on the
previous version of UML (UML 1.4). Moreover, in all the
proposals we have seen, except in [19], no code generation
from behavioral diagrams is considered.

Refinement, or in general model-to-model transformation,
is another key concept in MBD. However, compared with the
refinement techniques available for formal methods such as
Z, B, and Abstract State Machines (ASMs) [4], little work
has been carried out for modeling languages such as UML.
Some proposals that we are considering in our process can
be found in [7,22,24–26].

8 Conclusions and future directions

This paper describes aspects of reusable model-to-model and
model-to-code transformations in the context of the UPES/
UPSoC processes for embedded system development. This
aspect is vital for integrating, synchronizing or transforming
models for our design methodology based on the UPES/UP-
SoC processes.

Today, model transformations are mainly written from
scratch. This is in many cases a very time-consuming and
difficult task. According to the MBD vision, there must be
large libraries of reusable model transformations available.

In the future, we aim to identify characteristics of reusable
transformations and ways of achieving reuse by collecting in
a library precise abstraction/refinement transformation pat-
terns according to the levels of abstraction: functional, trans-
actional, behavioral, BCA, and RTL. In particular, we are
focusing on the TLM to model the communication aspects
at a certain number of TLM sublevels according to the OSCI

TLM 1.0 library [21]. We believe that the use of fine-grained
transformations that are being composed (chaining) would
be beneficial for increasing both the productivity and quality
of the developed systems.
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