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1. INTRODUCTION

Embedded system (ES) and system-on-chip (SoC) designs has to cope with short
product cycles and a steadily increasing system complexity. A SoC may involve
the mixing on a single integrated circuit of one or more microcontrollers, mi-
croprocessor or digital signal processor cores, memory blocks, timing sources,
peripherals, buses for the interconnection, and so on, but also of the software
that controls all these hardware components. Moreover, in the design of SoCs,
the availability of intellectual property blocks (IPs) shifts the focus of the de-
sign practice from the synthesis of the functionality, where the single hardware
block is synthesized, to the design of the platform where the final application
is going to be implemented.

A platform is a hardware artifact where the design emphasis is put on its
compositional architecture, rather than on deriving the whole functionality di-
rectly in hardware. In a platform-based design [Vincentelli 2002; Keutzer et al.
2000], the functionality of the application is implemented mostly via software
that is then mapped on the platform. The platform-based design is essentially a
meet-in-the-middle process where successive refinements of specifications meet
with abstractions of potential implementations. Therefore, during the develop-
ment process, parts that are in the software domain can move to be part of the
platform as hardware coprocessors and vice versa in order to refine the platform
template to the customers’ goal.

This novel development approach, based on the reuse of hardware and soft-
ware IPs, is driving fundamental changes in the design process. It is no more
possible to tackle the design of systems at a low level of abstraction: The hard-
ware behavioral and the register transfer level (RTL) are inadequate because
they deal only with hardware. The amazing rise in complexity of actual systems
requires a modular, component-based approach to both hardware and software
design. This leads to development techniques working at higher levels of ab-
straction and in a hardware-software codesign environment handling both the
hardware architecture and the application software.

A new way is needed to describe an entire system, including embedded soft-
ware, and to formalize a set of constraints and requirements. What is needed is
a “lightweight environment” where the application software is mainly described
in an algorithmic way, better by modeling than by coding, and the interactions
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between the software and the underlying platform can also be described in
the same environment. In this way, the description of the platform also has to
take care of the effects that the hardware resources induce on the application
software performance.

In Riccobene et al. [2005a, 2006a, 2007b], we tried to improve the cur-
rent industrial SoC and embedded system design by defining a model-driven
co-design methodology in accordance with the Object Management Group
(OMG) model-driven architecture (MDA) [MDA 2003]—a framework for model-
driven engineering (MDE) [Bézivin 2005; 2004], according to which models are
primary driving assets of system development, including system design, plat-
form, language definition, and automated mapping of models to implementa-
tions. The proposed codesign flow supports the platform-based design principles
in Vincentelli [2002], Lavagno et al. [2003], and Keutzer et al. [2000]. It involves
the OMG standard unified modeling language (UML) 2.1.2 [UML 2008], UML
profiles1 for the multithread C and the SystemC languages [Gröetker et al.
2002], and some other UML profiles related to the high-level modeling of the
system.

The UML profiles for SystemC and multithread-C are the key points of this
design methodology. The UML capability of unifying the specification and the
design of the hardware and software parts of systems allows the settlement
of the desired lightweight modeling environment, specifically tailored to early
stages of design as front-ends for consolidated lower level hardware-software
codesign tools.

In this article, we give a complete and detailed view of the proposed code-
sign flow for embedded systems based on the use of modeling languages
and model transformations to define and reduce abstract, coarse-grained and
platform-independent system models to fine-grained and platform-specific mod-
els. The improvement of the current industrial SoC and embedded system de-
sign methodology—obtained by joining the capabilities of the UML and the
SystemC/C programming languages to operate at system-level—has been
demonstrated through the application to industrial case studies of different
complexity. This is the first time that our work is described encompassing all
the involved aspects, namely methodology, design flow, modeling notations, and
tools, in a revised and integrated perspective.

The remainder of this article is organized as follows. In Section 2, we quote
some related work. In Section 3, we describe our model-based design flow. In
Sections 4 and 5, we present the two UML profiles for the hardware and the
application software description, respectively. Section 6 illustrates the notion
of model refinement (carried out at UML level) focusing, in particular, on the
communication refinement aspect. In Section 7, we present the architecture of
a design environment that we developed to assist the designer across the UML
modeling activity. In Section 8, we discuss some industrial case studies. Finally,
in Section 9, we conclude the article by sketching some future directions of our
contribution.

1Application-specific UML customizations.
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2. RELATED WORK

The OMG standard UML [UML 2008] has received wide acceptance in soft-
ware engineering during recent years. Meanwhile, significant investigations
on how to apply UML for real-time systems [Lavagno et al. 2003] and profes-
sional development environments with UML support became available in that
area.

Recently, the UML2 [UML 2008] and its extension mechanism are receiving
significant interest in the embedded system community, since it allows UML
customizations toward the definition of a family of languages (UML profiles) tar-
geted to specific application domains (telecommunications, aerospace, real-time
computing, automotive, SoC, etc.). This is confirmed by current standardiza-
tion activities controlled by the OMG such as the Schedulability, Performance,
and Timing Analysis (SPT) profile [SPT 2003]; the recent UML for SoC Forum
(USoC) [USoC 2006] founded by Fujitsu, IBM/Rational, and CATS to define a
set of UML extensions to be used for SoC design; the SysML proposal [SysML
2007], which extends UML toward the systems engineering domain; and the
recent modeling and analysis of real-time embedded systems (MARTE) profile
initiative [MARTE 2008]. Moreover, several reported experiences and contri-
butions to the theme UML for embedded systems exist in literature (see UML-
SoC Workshops [2008], Martin and Mueller [2005], and ECSI UML Workshop
[2006]) where different UML diagrams (to be intended as visual formalisms)
and their variations found their application in requirements specification, test
benches, architectural descriptions, and behavioral modeling.

The use of the UML 1.x for system design [Martin 1999] started since 1999,
but the general opinion at that time was that the UML was not mature enough
as system design language. Nevertheless, significant industrial experiences us-
ing the UML in a system design process soon started leading to the first results
in design methodology, such as the one in Moore et al. [2002] where the UML
was applied for the development of an OFDM Wireless LAN chipset. In this
project, SystemC was used to provide executable models.

Later, more integrated design methodologies were developed. In Zhu et al.
[2004], the authors propose a methodology using the UML for the specification
and validation of SoC design. They define a flow, parallel to the implementation
flow, which is focused on high-level requirements capture and validation ap-
proach to embedded software development is presented. It includes stereotypes
to represent platform services and resources that can be assembled together.
The authors also present a design methodology supported by a design envi-
ronment, called Metropolis, where a set of UML diagrams (use cases, classes,
state machines, activity, and sequence diagrams) can be used to capture the
functionality and then refine it by adding models of computation. Another ap-
proach towards the use of the UML for SoC design is the hardware and software
objects on chip (HASoC) [Edwards and Green 2003] methodology. It is based
on the UML-RT profile [Selic 2000] and on the RUP process [Kruchten 1999].
The design process starts with an uncommitted model; then a committed model
is derived by partitioning the system into software and hardware; finally, it is
mapped onto a system platform. From these models, a SystemC skeleton code
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can be also generated, but to provide a finer degree of behavioral validation,
detailed C++ code must be added by hand to the skeleton code. All the works
mentioned earlier could greatly benefit from the use of new constructs available
in the UML 2.x (or UML2).

SysML [SysML 2007] is a conservative extension of the UML2 for a domain-
neutral modeling of system engineering applications. It can be involved at the
beginning of the design process, in place of the UML, for the requirements,
analysis, and functional design workflows. Since SysML preserves the basic se-
mantics of UML2 diagrams (state formalism, e.g., are unchanged), our SystemC
UML profile can be also intended (and effectively made) a customization of the
SysML language rather than the UML. Similar considerations also apply to the
MARTE proposal [MARTE 2008]. The standardization proposal [USoC 2006]
by Fujitsu, in collaboration with IBM and NEC, has evident similarities with
our SystemC UML profile, like the choice of SystemC as target implementation
language. However, their profile deals only with structural modeling, and pro-
vides neither constructs/formalisms for behavior modeling nor does it adopt a
time model.

Some other proposals already exist about extensions of UML toward C/C++/
SystemC. All have in common the use of UML stereotypes for SystemC con-
structs, but they do not rely on a UML profile definition. In this sense, it is
appreciable the work in Bruschi and Sciuto [2002] attempting to define a UML
profile for SystemC; however, as all the other proposals, it is based on the obso-
lete version 1.4. of UML, making difficult and little scalable modeling systems
without the enhancements for structure/architecture modeling provided by the
next versions 2.x. Moreover, in all these works, no code generation, except in
Nguyen et al. [2005], from behavioral diagrams is supported. Some recent works
look at generating SystemC code from UML diagrams. In Mura et al. [2007], the
authors propose to derive RTL-SystemC code from UML statecharts. In Kreku
et al. [2007], a technique is presented for generating a work-load model in Sys-
temC from a UML model of the system for high-level performance analysis. In
Raslam and Sameh [2007], a mapping from SysML to SystemC is proposed. All
these approaches aim at obtaining a SystemC code that resembles the behavior
of the UML model, whereas we extend the UML accordingly to the SystemC
execution semantics.

In Zimmermann et al. [2008], a platform-based approach is proposed to model
an embedded distributed system in a holistic way. Starting from a component
description of microelectronic processor and interconnection resources in a stan-
dard IP-XACT format [IP-XACT 2007], the UML is adopted (similarly to our
approach) as an underlying common data model for the system modeling pro-
cess. By mapping the system behavior onto instances of the component library,
an abstract system model can be generated and refined to an executable model
in SystemC.

For the UML adoption in the context of multithread software applications
few references exist in the literature. Moreover, multithread object-oriented
programming languages, like Java [Leroux et al. 2003] or CORBA [Chen and
Cui 2004], which are commonly used in this context, are not so common in
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the embedded software area. Therefore, these languages are not integrated in
a comprehensive hardware-software codesign methodology for embedded sys-
tems with the goal of providing a high-level view of the application software
only. The MARTE initiative [MARTE 2008] is working toward this direction,
but it covers OSEK/VDX OS rather than the Posix specification. The Posix li-
brary is considered, instead, in another OMG standard, the UML Profile for
Software Radio [UML Profile for SWRadio 2007]. However, this profile is too
domain-specific, it deals with software radio applications only and is available
only in form of specification.

3. THE MODEL-DRIVEN CODESIGN FLOW

The proposed design methodology, originally sketched in Riccobene et al.
[2005a, 2007a] for the hardware components but here explained in the light of
a global hardware-software codesign view, aims at applying the MDA approach
to get for the embedded system development the same benefits as in software
development. A MDA-based system development process relies on the notion
of modeling and automated mapping of models to implementations. The basic
MDA pattern involves the definition of a platform-independent model (PIM)
and its automated mapping to one or more platform-specific models (PSMs).

Our model-driven codesign flow involves lightweight modeling notations
based on the UML to be applied as high-level system modeling languages
and operating in synergy with lower-level system languages for producing
PIMs and PSMs. The methodology handles both the hardware architecture
with the hardware-dependent software (HdS) components and the (hardware-
independent) application software. To foster the methodology in a systematic
and seamless way and combine all involved notations together, in Riccobene
et al. [2007b] a design process, called unified process for embedded systems
(UPES), is concisely presented as extension of the conventional unified process
(UP)2 [Arlow and Neustadt 2002]. UPES includes a subprocess, called unified
process for SoC (UPSoC), for the hardware refinement flow.

The UPES process drives designers during the UML modeling activity from
the analysis of the informal requirements to a high-level functional model of
the system, down to a RTL model by supporting current industry best prac-
tice and the platform-based design principles [Vincentelli 2002; Lavagno et al.
2003; Keutzer et al. 2000]. Figure 1 summarizes the most significative activ-
ities of the UPES, which is a Y-shaped development process. On one side, the
conventional UP process for software development is followed by adopting the
UML—or the SysML or the MARTE proposal—to provide a ground executable
PIM of the system (the application model) suitable for high-level functional
validation and, possibly, performance analysis. On the other side, a generic
hardware platform, modeled as PIM (the platform model) with an appropri-
ate language (e.g., a particular UML extension for SoC design), of the final
physical architecture is chosen among the available ones. Note that, since the
architecture template may be implemented by assembling reusable hardware

2The UP is an open software engineering process from the authors of UML. The RUP (Rational
Unified Process) is the most widely used commercial variant of UP.
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Fig. 1. UPES design flow.

and software IP components (possibly provided by third-party companies), the
platform selection process may imply also an IP integration step comprising a
set of tasks that are needed to assemble predesigned components in order to
fulfill the desired SoC requirements.

The intersection, which is intended as a model weaving operation in the
model-driven context, is the mapping of the application model on the given
platform model to establish semantic links between the two models at specific
joint points. As input, this task requires also a reference model of the map-
ping (the mapping model or weaving model) to try, which is specified—dictated
by the sense and experience of expert engineers—in terms of UML compo-
nent and deployment diagrams to denote and annotate the partitioning of the
original system in hardware and software components. This mapping model
establishes the relationships (joint points) of the platform resources and ser-
vices with the application-level functional components. This mapping phase is a
meet-in-the-middle process and is carried out through an iterative activity: The
platform model is iteratively configured according to a given hardware-software
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partitioning and executed to check whether the QoS requirements (delays,
power consumption, hardware resources, real-time and embedding constraints)
imposed by the system requirements are satisfied.

This high-level system model, obtained as a result of the mapping phase,
has a two-fold goal: (i) it can be used as proof of concept, so serving as reference
model for the implementation by providing some guidelines; or (ii) it can be the
starting point of a further model refinement phase down to the RTL and the
software object code. This decision may drive the level of abstraction, the inter-
face descriptions, and also the level of model granularity. In the UPES design
flow, the system model is used in the second way. Indeed, after the mapping,
two different refinement design flows start for the software and hardware parts,
respectively. The software parts are described with the UML profile for mul-
tithread C. In this phase,3 the software designer decides the thread partition
according to the inner application parallelism. The functionality is therefore
divided in threads running on a host machine—host functional simulation. For
the hardware parts, as better described below, the UPSoC subprocess can be
followed to refine the hardware and HdS components of the platform PIM into a
sequence of PSMs through different levels of abstraction by using the modeling
constructs of the UML profile for SystemC. This sequence of PSMs goes from
a high-level functional untimed/timed model of the system down to a transac-
tional model, to a behavioral model, to a bus-cycle accurate (BCA) model, to a
final RTL model suitable for the synthesis of an end-product integrated into a
chip.

These levels of abstraction should allow validating the correctness of the ap-
plication software on a high-level description of the hardware architecture fo-
cusing on the communication and on its performances. This cosimulation activ-
ity is performed by executing an appropriate cosimulation model within the Sys-
temC simulation and debugging environment. The cosimulation model (from
which the SystemC code is generated) is the UML PSM model of the hardware
combined with the UML PSM model of the application software at a fixed level
of abstraction. Essentially, the cosimulation can be carried out at transactional
or at instruction level, and depending on the level of abstraction that is used
for the model, synchronization and communication are handled in a different
way. At transactional level, the application software model works as a library
encapsulated in a SystemC UML module element; processes are associated to
the software functional description to sustain its concurrent activity within the
system, whereas communication is implemented by transactions that model
the interactions with the hardware architecture—transactional cosimulation.
At instruction level, instruction set simulators (ISSs) of the target processing
units are integrated within the SystemC environment to execute the object code
of the application software together with the SystemC coding of the hardware—
cycle-accurate cosimulation. In this last case, the application software can be
intended as organized in different layers on top of the architecture platform.
The lower layer provides the driver and the architecture controller: This layer

3This phase does not necessarily imply a software refinement path, but just a mapping on more
detailed platforms to better analyze the performances of the overall application.
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is the application programming interface (API) platform and it’s typically pro-
vided by the platform designer. The upper layer are the OS and the application
software developed by the software designer.

Currently, we support only the cycle-accurate cosimulation. To support the
transactional cosimulation, a (bidirectional) transformation bridge between the
software and the hardware perspectives is needed. This implies modeling of
complex concurrency aspects over threads and tacking model composition of
SystemC threads and POSIX C threads through automated hardware-software
interfaces (that essentially incapsulate C components in C++ components),
which are still challenging for us. The issues to cope are more at conceptual level
than at implementation level. At the implementation level, once identified, the
hardware-software communication patterns are realized in terms of composi-
tion/transformation of the two PSM UML models involved (one conforming to
the SystemC UML profile and the other one conforming to the multithread C
UML profile).

There is always a trade-off, whether it is better to extend a language or to
couple different languages with different abstraction levels. The described ap-
proach is in the middle. The involved UML profiles, in fact, must be understood
as consistent sets of modeling constructs that lift both the structural and be-
havioral features of the SystemC/C programming languages to the UML mod-
eling level, while providing “unification” in the overall UML modeling activity.
The UML profile for SystemC allows using UML at PSM level, provides uni-
fication between PIM and PSMs, and allows automatic encoding of PSMs into
final SystemC code. Similarly, for the software components, the UML profile for
multithread C provides modeling constructs, which combine the UML capabil-
ities to represent the ideas and the design concepts with the objects exported
by the Posix Library to represent the real software concurrent environment. It
gives a new graphical dimension to C, enforcing the designer to describe sys-
tems at “modeling level” rather than designing at a lower level by means of
“code.”

Using SystemC to link the system level SoC design flow to the consolidated
VLSI design flow is a well-known issue. What is innovative is the idea to rely on
low-cost customized (by a standard profiling technique) UML visual modeling
tools as front-ends of lower-level hardware-software codesign frameworks (the
last would be used therefore for the final exploration and synthesis only).

Model-Driven SoC Design Flow

The UPSoC drives system designers during the refinement of the embedded
software, after the mapping phase, and therefore, after the system components
assigned to the hardware partition have been mapped directly onto the hard-
ware resources of the selected platform. It is possible to create a pure functional
model (see Figure 2), or to add timing information in a functional-timed model.
A transactional model describes abstract communication by transactions, which
are protocols exchanging complex data with associated timing information. De-
tails of the implementation platform can be modeled by a behavioral model
(that is pin and functionally accurate), by a bus cycle accurate model (that is
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Fig. 2. SoC refinement flow.

also cycle accurate at its boundaries), or by a RTL model (the model is described
as transfer of information between registers).

The UPSoC can be also adopted in a stand-alone way by platform providers
to deliver off-line models of platforms4 by designing from scratch an abstract
hardware platform—from the analysis of informal requirements about the ar-
chitecture elements (hardware resources and processing elements)—or by as-
sembling reusable hardware and software IP components (possibly delivered
by third-party companies). The model of this generic platform can be then
delivered at a desired level of abstraction and then reused and targeted ac-
cordingly to implement a specific hardware architecture. Note that, as part
of the UPSoC refinement process, the designer may need to adapt each com-
ponent’s functionality (a step commonly called IP derivation) and synthesize
hardware and software wrappers to interconnect them (see Section 6). The
generation of hardware and software wrappers is usually known as interface
or communication synthesis. Besides this wrapper generation, application soft-
ware may also need to be retargeted to the processors and OS of the chosen
architecture.

The UPSoC process is based on model-to-code and model-to-model trans-
formations from abstract models toward C/C++/SystemC code models and/or
refined (but still abstract) models. Model-to-code transformations are primar-
ily aimed at providing executable models at a fixed abstraction level. They
must be intended as horizontal transformations creating program text in the
C/C++/SystemC implementation languages. Model-to-model transformations
allow model refinement along different (not necessarily successive) abstraction
levels (see Figure 2).

4Detailed platform models comprise a structural view (provided, e.g., by UML composite structure
diagrams) and a behavioral one. Component and deployment diagrams can be used then to provide
a black-box view of the API layer and the microarchitecture layer, respectively.
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These model transformations must be intended as vertical transformations
as they imply a change of the level of abstraction. Each model is here intended
as an instance of the SystemC UML profile metamodel (namely the UML meta-
model extended with the stereotypes and constraints of the given profile). Each
model is therefore a PSM model with a fixed action semantics.

The SystemC UML profile provides in a graphical way all modeling elements
for the design of the hardware platform with the HdS components, and exactly
resembles the modeling primitives of SystemC. However, system-level design
driven by models using the SystemC UML profile is more flexible and man-
ageable than code-oriented system-level design using SystemC. Indeed, well-
established abstraction/refinement patterns coming from hardware/system en-
gineering and until now only used at code level with great difficulty, can be
easily managed—possibly automatically by appropriate model transformation
engines—as model-to-model transformation steps and, therefore, applied at
UML level, by the use of the SystemC UML profile, along the modeling process
from a high functional level model down to a RTL model. Furthermore, proving
correctness of the refinement process and system properties is a very hard, and
we can say impressible, activity at code level, whereas it is feasible at the model
level.

Currently, we are working [Gargantini et al. 2008b; Carioni et al. 2008] on
complementing our model-driven design methodology with a formal analysis
process for high-level system validation and verification. We have developed
a method for simulation-based [Gargantini et al. 2009] and scenario-based
[Carioni et al. 2009] validation of embedded system designs provided in terms
of UML models. This approach is based on automatic model transformations
from SystemC UML graphical models into abstract state machine (ASM)
[Börger and Stärk 2003] formal models, and exploits ASM model validation
by simulation and scenario construction. A validation tool integrated into the
existing model-driven codesign environment [Riccobene et al. 2006b] to sup-
port the proposed validation flow is also available. It is based on the ASMETA
toolset [Gargantini et al.2008a; ASMETA 2009]—a set of tools around ASMs.

4. THE UML PROFILE FOR THE HARDWARE

Our model-driven codesign methodology involves a UML2 profile for SystemC
[Riccobene et al. 2005b, 2005c] as a modeling language for designing and re-
fining hardware components. More precisely, our methodology complies with
the latest version 2.1.2 of the UML [UML Superstructure 2007]; however, for
simplicity in the rest of the article, we always refer to UML2.

A UML profile is a set of stereotypes, each defining how the syntax and
the semantics of a specific UML metaclass (a class in the UML metamodel)
is extended for a target application domain. Therefore, the UML2 profile for
SystemC is a high-level visual language consisting of a set of modeling con-
structs designed to lift both structural and behavioral features of the SystemC
language (including events and time features) to UML level. Furthermore, the
profile allows us to model systems at different levels of abstraction (from a
functional executable level to RTL).
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Fig. 3. SystemC language architecture.

The choice of lifting SystemC at UML level was intentional and due to the
fact that SystemC [OSCI group 2008] is an open industry standard for the
system-level hardware description, controlled by the major companies in the
electronic design automation (EDA) industry. The main target of this profile
is to provide a means for hardware design with UML at system-level and a
direct encoding of this design in environment completely based on the C++
programming language.

Based on the UML2 specification and on the SystemC 2.1 specification, the
basic SystemC profile is logically structured to reflect the core layer (or layer
0) of SystemC5 according as the layered architecture of the language as shown
in Figure 3 [Gröetker et al. 2002].

A structure and communication part defines stereotypes for the SystemC
building constructs (modules, interfaces, ports, and channels) to be used in
various UML structural diagrams, such as UML class diagrams and composite
structure diagrams, to represent hierarchical structures and communication
blocks.

UML class diagrams are used to define modules, interfaces, and channels.
The internal hierarchical structure of composite modules, especially the one of
the topmost level module (representing the structure of the overall system),
is captured by UML composite structure diagrams; then, from these diagrams
several UML object diagrams can be created to describe different configuration
scenarios. This separation allows the specification (also partial) of different
hardware platforms as instances of the same parametric model (i.e., the com-
posite structure diagram).

A behavior and synchronization part defines state and action stereotypes,
which lead to a variation of the UML state machine diagram, the SC process
state machines. This formalism has been included in the profile definition to

5The Core Language and Data Types are the so-called core layer (or layer 0) of the standard Sys-
temC; it consists of the event-based and discrete-timed SystemC simulation kernel, the core design
primitives, and data types. The primitive channels represent, instead, the layer 1 of SystemC; it
comes with a predefined set of interfaces, ports, and channels for commonly used communication
mechanisms, such as signals and fifo channels. Finally, the external libraries layer on top of the
layer 1 are not considered as part of the standard SystemC language.
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Table I. UML Diagrams in the SystemC Profile

Diagram Purpose

Class diagram To define modules, channels, interfaces, and port types
Composite structure To describe how parts of modules and channels are connected
diagram to each other to form the internal structure of a container module
State machine Used as method state machine to describe the reactive behavior
diagram of processes/operations of modules and channels
Object diagram Derived from a composite structure diagram by instantiating parts

and connectors, to describe a configuration (also partial) of the system

model the control flow and the reactive behavior of SystemC processes (methods
and threads) within modules.

A data types part defines UML classes for representing the set of SystemC
data types as UML class library.

In addition, also the predefined channels, ports, and interfaces of the layer
1 of SystemC are considered. These concepts are provided either as a UML
class library, modeled with the basic stereotypes of the SystemC core layer, or
as a group of stand alone stereotypes—the extended SystemC profile—which
specializes the basic profile. Table I summarizes the UML diagrams used in the
profile.

The original UML profile definition for SystemC is in Riccobene et al. [2005b].
In the following sections, we briefly describe the most significant modeling el-
ements (i.e., the available stereotypes) of the basic SystemC profile giving the
semantics in an informal way and leaving out the OCL constraints, which usu-
ally complete a stereotype definition to add semantic constraints to its base
UML metaelements.

A modeling example—the Counter system—is provided in the Appendix A
to illustrate the notation, even if an idea of the modeling constructs is given
through the producer/consumer system presented in Section 6 as model re-
finement example. To these purposes, we assume the reader is familiar with
UML2.

4.1 Structure and Communication

Figure 4 shows the stereotypes definition using the standard notation of UML
profiles. A stereotype is depicted as a class with the keyword �stereotype�.
The extension relationship between a stereotype and its UML metaclass is
depicted by an arrow with a solid black triangle pointing toward the metaclass.
Tags may be added to a stereotype to state additional metaclass properties.

When applied to an element in a model, a stereotype is shown as a keyword
consisting in the name of the stereotype within a pair of guillemets, near the
symbol of the element or with the special icon defined for it (if one was defined
for it) in place of the conventional symbol for the element. Tagged values (if
any) are displayed inside or close as name-value pairs. Figure 5 shows some
examples of stereotypes application at model level.

A system design is essentially broken down into a containment hierarchy
of modules. A module is a container class that provides the ability to encapsu-
late structure and functionality of hardware/software blocks. Each module may
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Fig. 4. Structure stereotypes definition.

Fig. 5. Structure stereotypes notation.

contain variables as simple data members, ports for communication with the
surrounding environment, and processes for performing module’s functionality
and expressing concurrency in the system. Processes run concurrently in the
design and may be sensitive to events, which are notified by other processes.

The sc module stereotype defines a SystemC module as extension of a UML
structured class. As structured class, a composite structure (diagram) can be
further associated to a module to represent its internal structure (if any) made of
channel and other module parts.6 Furthermore, since modules contain reactive
processes, modules are considered active classes.

In SystemC, an interface defines the set of access functions (methods) for a
channel. The sc interface stereotype defines a SystemC interface as a UML
interface, and uses its (longhand/shorthand) notation.

A port of a module is a proxy object through which a process accesses to
a channel interface. The sc port stereotype maps the notion of SystemC port
directly to the notion of UML port, plus some constraints to capture the con-
cepts of simple, multi and behavior port. The tag max if defined for the sc port
stereotype specifies the maximum number of channel interfaces that may be
attached to the port. The type of a port, namely its required interface, is shown
with the socket icon attached to the port. Figure 6 shows an example of a Sys-
temC module having a multiport, an array port, and a simple port, together
with the port type and interface definitions of the simple port.

6A property (or part) denotes a set of instances (in case of a property multiplicity greater than 1)
that are owned by the structured module. These instances are instances (just a subset of the total
set of instances) of the classifier (a module or a channel) typing the property.
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Fig. 6. Examples of a module, ports and interfaces.

Since UML ports are linked by connectors, a SystemC connector (binding of
ports to channels) is provided as extension of the UML connector, by the sc con-
nector stereotype. A relay connector—the sc relay connector stereotype—is
also defined to represent the port-to-port binding between parent and child
ports.7

In SystemC, a channel provides the implementation of interface functions
and serves as a container to encapsulate the communication of blocks. There are
two kinds of channels: primitive channels and hierarchical channels. Primitive
channels do not exhibit any visible structure, do not contain processes, and
cannot (directly) access other primitive channels. A hierarchical channel is a
module, that is, it can have structure, it can contain processes, and it can directly
access other channels. The sc prim channel and sc channel stereotypes define,
respectively, a SystemC primitive and hierarchical channel as extension of a
simple UML class that implements a certain number of interfaces (i.e., the
provided interfaces of the channel). A hierarchical channel can further have
structure (including ports), it can directly access other channels, and it can
contain processes.

A composite structure diagram can be further associated to a module (or to
a hierarchical channel) to represent its internal structure (if any). In such a
diagram, channel instances and module instances can appear as parts of the
structured module. When an instance of the containing module is created, a set
of instances corresponding to its parts are created. An example of composite
structure diagram is given in Section A, Figure 30.

4.2 Behavior and Synchronization

Figure 7 shows the stereotypes definition for the SystemC constructs used to
model the behavioral aspects of a system. Processes are the basic mechanism
in SystemC for representing concurrent behavior. Two kinds of processes are
available: method and thread, both behaving like an operation with no argu-
ments and no return type. Clocked threads are a specialization of threads. Each
kind of process has a slight different behavior, but basically all processes: run
concurrently, are sequential, and are activated (if terminated or simply sus-
pended) on the base of their own sensitivity, which consists of an initial list of

7A port-to-port connection is the binding of a module port (parent port) to a lower-level module port
(child port).
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Fig. 7. Behavior stereotypes definition.

zero, one or more events (the static sensitivity of a process), and can dynamically
change at runtime realizing the so-called dynamic sensitivity mechanism.

The SystemC UML profile defines two processes stereotype sc method and
sc thread (see Figure 7); both extend the Operation and the StateMachineUML
metaclasses. This double extension allows us to associate an operation to its
behavior specified in terms of a (method) state machine.

Special state and action stereotypes are added to support the behavioral
features mentioned earlier. Our profile provides stereotype definitions (wait,
static wait, and, wait next trigger, next trigger action, dont initialize)
to model the static and dynamic sensitivity mechanism of a process behavior (a
thread or a method).

The sc event stereotype models a SystemC event in terms of a UML signal
(instance of the class SignalEvent).

The notify action stereotype can be applied to an UML action to model the
SystemC function notify used to notify events. The cancel action stereotype
can be applied to an UML action to model the SystemC function cancel used
to eliminate a pending notification of an event.

The sc time type is used to specify concrete time values used for setting
clocks objects, or for the specification of UML time triggers.

As part of the UML profile for SystemC, the control structures while,
if-then-else, and the like are represented in terms of stereotyped junction
or choice pseudostates.

All these stereotypes and their associated OCL constraints lead to a variation
of the UML state machine formalism called SystemC process state machines
[Riccobene and Scandurra 2004]. This formalism allows modeling the control
flow and the reactive behavior of processes (methods and threads) within mod-
ules, dealing with concurrency, synchronization and timing aspects, and allows
the generation of efficient and compact executable SystemC code.
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Fig. 8. A thread process pattern.

In addition to the stereotypes presented earlier, a finite number of abstract
behavior patterns of state machines have been identified and can be used for
modeling. Figure 8 depicts, for example, one of these behavior patterns together
with the corresponding SystemC pseudocode for a thread that: (i) is not initial-
ized, (ii) has both a static (the event list e1s, . . . , eNs) and a dynamic sensitivity
(the wait state), and (iii) runs continuously (by the infinite while loop).

Note that the notation used for the wait state in the state machine pattern
given in Figure 8 is a shortcut to represent a generic wait(e*) call where the
event e* matches several cases. Figure 9 shows how a wait(e*) call is modeled
in UML for all possible forms of the condition e*: a single timed event, a single
signal event, a single event with timeout, an AND-list of signal events, an OR-
list of signal events, an AND-list of signal events with timeout, an OR-list of
signal events with timeout, and the static sensitivity list. The stereotype and
labeling the outgoing transition of a wait state denotes an AND-semantics for
the list of events labeling the transition: The process leaves the state when all
events in the list have been triggered (not necessarily at the same time).

We adopted the state machines rather than other UML behavioral diagrams
(as the activity diagrams) because this kind of diagram provides a behav-
ioral pattern appropriate for modeling the reactive and hierarchical behavior
of SystemC processes, which are essentially activated by triggering external
synchronization events. Moreover, according to the UML specification, state
machines are sequential as far as their internal behavior is concerned, but any
state machine is concurrent with respect to the other state machines of the
system. Indeed, UML state machines can be used for modeling simple function
calls that execute under the control of SystemC processes, and it is also possible
to capture the SystemC synchronization mechanism for suspending/resuming
a process in terms of stereotyped wait states and events.

4.3 Profile Extension

In 2006, SystemC received a major revision and became IEEE Standard
[SystemC 2006]. This last revision includes new structural and behavioral
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Fig. 9. Dynamic sensitivity of a thread.

features required for modeling at the transaction-level toward hardware-
software implementation according to the OSCI (Open SystemC Initiative)
TLM 2.0 standard. An extension of the SystemC UML profile was, therefore,
necessary to align the profile definition with the standard IEEE.

Details on the structural enhancements (i.e., export and event queue) can
be found in Bocchio et al. [2008]. Later in the text, some enhancements con-
cerning the behavioral features are presented. In particular, we model dynamic
processes and fork/join synchronization mechanism, capturing the semantics as
specified in the IEEE 1666 SystemC standard and implemented in the SystemC
2.2 execution engine. Note that such enhancements are necessary to model the
OSCI SystemC TLM 2.0 library, which is, however, out of scope of this article
and has been planned as future work (see Section 9).

4.3.1 Enhanced Behavioral Features. We extended the SystemC process
state machines by adding specialized submachine states and orthogonal regions
within a state machine to model the notion of process hierarchy expressed
in SystemC in terms of dynamic processes. A dynamic process is a process
created at run-time during execution, as child process of a method process
or a thread process, or a clocked thread process. A dynamic process can, in
turn, create other processes dynamically. The SystemC 2.2 release supports the
notion of dynamic process by introducing the concept of spawned process, that
is, a process (a child process) created by another process (the parent process)
by invoking the predefined function sc spawn. In the SystemC UML profile, the
dynamic creation of such a process—a dynamic spawned process—is denoted
in the state machine diagram associated to the parent process by means of a
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Fig. 10. sc spawn stereotype.

Fig. 11. Dynamic spawn of a process.

submachine state8 labeled with the stereotype sc spawn (see Figure 10 for the
stereotype definition). The state machine referenced by the submachine state
specifies the functionality of that dynamic process.

After the creation of a spawned process, the parent process and the new child
process proceed in parallel, unless a specific synchronization schema is explic-
itly provided by the designer by means of notification of events. This natural
asynchronism is reflected at UML level in the state machine diagram of the
parent process by the use of orthogonal regions. To be precise, a process state
machine, which dynamically creates processes is represented by a state ma-
chine with two or more regions (Figure 11). One region contains the behavior
specification of the parent process, while the others contain exactly one sc spawn
submachine state each. The overall process creation (i.e., the invocation of the
SystemC sc spawn function) is denoted by a fork vertex in the parent region with
two outgoing transitions: one entering in the sc spawn submachine state of the
child process and one entering in some state of the parent region to continue the
specification of the parent process behavior after the process creation. There-
fore, the submachine state (and, therefore, its reference process state machine)
is exclusively entered via a fork vertex departing from the parent region and
can be exited either as a result of reaching its final state (normal case) or via
a join vertex in the parent region (in the case of a sc fork/sc join schema,
see below). No entry/exit points can be defined for a sc spawn submachine
state.

The sc spawn’s tagged values are used to specify some spawn options, which
determine certain properties of the spawned process instance. In particular, the

8In UML, a submachine state specifies the insertion of the specification of a submachine state
machine. The state machine that contains the submachine state is the container.
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Fig. 12. SC FORK and SC JOIN.

boolean tag spawn method being set to true indicates that the spawned process
is a method process, and therefore, the associated process state machine shall
be a method state machine. By default, this tag is set to false, that is, by default
a spawned process is a thread process.

SystemC 2.2 introduces also the macros sc fork and sc join to be used
in pairs within a thread process to enclose a set of calls to the function
sc spawn. The parent thread control leaves the fork-join construct when all
the spawned processes are terminated; this means that during the execution
of the spawned processes, the parent process is not running. We use the UML
fork/join pseudostates to model these macros, as shown in Figure 12: a pair
of fork/join for two spawned processes; both the fork/join bars are contained
within the region of the parent (thread) process. After termination of the two
spawned processes, the parent thread continues to execute.

5. THE UML PROFILE FOR THE SOFTWARE

We enhanced our embedded system design framework with the possibility to
model pure application software adding a UML profile for the C language, based
on the UML2 specification and on the Standard Posix Thread Library, as spec-
ified on the OpenGroup’s Web site [Open Group 2008]. The profile extends the
UML with the thread model and the structural/behavioral components sup-
ported by the Posix Thread library to represent resources and communication
scenarios of a software multithreading environment for creating and destroy-
ing threads, passing messages and data between threads, scheduling thread
execution, saving and restoring thread contexts, and so on.

The profile is defined at two main levels: the thread basic profile, a library-
neutral modeling of all thread aspects that are independent from the specific
library implementation, and the Posix thread profile, which specializes the basic
profile by adding the Posix thread specificity. This separation facilitates a pos-
sible future extension of the profile to others thread libraries, such as OpenMP
or MPI (Message Passing Interface) [OpenMP 2008]. The Posix thread profile
has been defined to cover the host functional simulation. The C code for the
application can be generated from the profiled UML model and simulated on
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Table II. UML Diagrams in the Multithread C Profile

Diagram Purpose

Class diagram To define pt modules, synchronization objects, and interfaces
Composite structure To describe how parts (modules and synchronization objects)
diagram are connected to each other
State machine Used as method state machine implementing the behavior of a thread
diagram or of a member function of modules and synchronization objects
Object diagran Derived from a composite structure diagram to provide the specification

(also partial) of values of structural features of entities

a host platform on a common OS (Linux) that provides the needed support for
multitasking.

The thread basic profile includes the minimum set of stereotypes that de-
scribe the structural and behavioral part of the application model. It is struc-
tured as follows. The structure and communication part defines stereotypes
for the basic and abstract thread model; that is, building blocks for describ-
ing threads, thread descriptors, and abstract synchronization objects. These
elements are used to derive implementation specific thread models. These con-
structs (and the ones derived when necessary) are used in various UML struc-
tural diagrams, like class and composite structure diagrams. The behavior and
synchronization part defines stereotypes that enhance the UML state machines
to allow high-level representation of threads behavior including thread life
management (create, join, and exit). A control structures part describes the
standard C control structures (if-else, switch, loops) by means of special UML
pseudostates.

Similarly, the Posix thread profile consists of: a structure and communication
part, which introduces specific stereotypes supporting Posix thread descriptors,
synchronization mechanisms (e.g., mutex, lockers, etc.), ports (like the mutex-
port stereotype, etc.); a behavior and synchronization part, which adds a few
stereotypes to represent some locking characteristics.

In addition, a UML class library, called UML Posix Thread Library, has been
defined to provide ready to use classes for structural elements (pthread t, spe-
cific synchronization objects like mutex, rwlock, etc.) and primitive data types.
The Posix Thread Profile and the UML Posix Thread Library depend on each
other, and are both built on the top of the thread basic profile. Table II summa-
rizes the UML diagrams used in the profile.

The complete profile definition can be found in Bocchio et al. [2007]. An
overview of the basic profile follows. A modeling example is also provided later
in the text to better illustrate the concepts.

5.1 The Thread Basic Profile

5.1.1 Structure and Communication. The thread execution model is repre-
sented by the stereotype pt module (see Figure 13). A pt module collects threads
represented by the stereotypes pt thread fun t and pt thread descriptor.
These last describe the static behavior (operation whose behavior can be de-
scribed by a state machine) and the actual state of the thread, respectively. The
concurrency level in a pt module is indicated by the tagged value concurrency.

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 4, Article 30, Publication date: July 2009.



30:22 • E. Riccobene et al.

Fig. 13. Basic stereotypes of the thread basic profile.

A 0 value indicates an unlimited number of simultaneous active concurrent
threads, while a positive value indicates an upper bound to the number of si-
multaneous active concurrent threads. A pt module can be seen as a C scope.
Moreover, a pt modulemay represent the basic software unit mapped on a single
computing unit of the hardware platform.

Synchronization objects are represented by the stereotype pt sync object
that provides a common behavior to access synchronization objects; each spe-
cialized synchronization object (mutex, read-write locker, etc.) must implement
this stereotype. The communication between threads and synchronization ob-
jects are modeled by ports: a pt module will have ports that require services
from defined interfaces, and these services will be provided by synchronization
objects.

5.1.2 Behavior and Synchronization. The behavior of threads relating to
management issues (like create, exit, and join primitives) and synchronization
(locking and unlocking primitives) is described by state machine diagrams.
Particular states that handle thread life cycles are stereotyped: pt create,
pt join, and pt exit state stereotypes are used in the profile to define, re-
spectively, a thread creation, the synchronization between two threads, and
the explicit termination of a thread. In particular, the pt create state requires
a pt thread descriptor object to act the creation of a new execution context,
which is placed into the parent execution context. The created child thread is
executed in the new context owned by the descriptor. The new context is repre-
sented by a thread descriptor and a new region of the state machine. After the
new context is created, the threadable function identified by the submachine
contained in the region is called.

Synchronization-related states are also stereotyped: lock, trylock,
timedlock, and unlock are state stereotypes used to enforce and formalize the
calls to the generic synchronization objects. However, these states do not for-
malize how the operating system manages the suspension and resuming of
threads, or which messages or events cause the transitions out these states.

5.2 A Modeling Example: The Adaptive Unsharper Image Filter

The Adaptive Unsharper Image Filter is a special filter that enhances the con-
trast of an input color image, as described in Thomas et al. [2007]. This algo-
rithm uses an adaptive filter that controls the contribution of the sharpening
path in such a way that contrast enhancement occurs in high detail areas and
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little image sharpening occurs in smooth areas. The filter is essentially com-
posed of the following functional units:

—read im reads the images from the input stream;
—split im divides the single frame in the three separate color components

(Red, Green, and Blue);
—unsharp im is a battery of three unsharper filters, one for each color compo-

nent;
—union im reassembles the three components into a single-color image frame;
—display im adapts the internal image representation to the external display-

ing engine.

The chain of modules implements a multilevel pipeline: The synchronization
between successive elaboration levels is important for functional correctness.
For this reason, every module is connected to the next one by a synchronized
channel based on an image buffer and a ready-acknowledge protocol. The pro-
ducer stores the result in the output buffer, then sends a ready signal to commu-
nicate the availability of the image data, and waits for an acknowledge signal
from the consumer module. On the other side, the consumer module waits for
a ready signal from the producer, then processes the image, and, upon comple-
tion, sends an acknowledge signal to the producer. This simple buffer access
protocol avoids that uncontrolled multiple accesses corrupt the data.

In the proposed system, the read im module is a producer component that
reads from a file the input stream; the split im, unsharp im, and union im mod-
ules are both consumer and producer components that read the input stream
from a preceding module(s) and produce an output stream for the next mod-
ule(s); the display im module is a consumer component that reads the stream
from the preceding module and stores the image frames on the disk or in a dis-
play device (not represented here). All modules are stereotyped with pt struct,
a specialization of the stereotype pt module, that allows creating C structs in-
stead of files. For example, Figure 14 shows the UML class for the unsharp im
module and Listing 1 reports the corresponding C code.

The master-slave protocol between adjacent modules is managed by two
semaphores (ready and acknowledge)9 to grant the synchronism on the elab-
oration pipeline. In general, each module implements a set of support meth-
ods and attributes. The behavior of a module is represented by means of a
threadable function (in this example named mainthread) stereotyped with the
pt thread fun t. Figure 15 shows a generic mainthread() implementation. It
is essentially an infinite loop where the thread waits for a new input, locking
one or more input ready semaphores; waits that the consumer is ready to ac-
cept new information, locking one or more output ack semaphores; performs
the operation to transform the input information into the output information;
signals to the consumer that a new information is ready, unlocking one or more

9It was decided to use semaphores because they allow a quite straightforward implementation
of the required master-slave communication. Other choices, like mutex or read-write-lock, would
require the support of variables that emulate semaphores.
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Fig. 14. The unsharp im module.

Listing 1. struct unsharp im

output ready semaphores; signals to the producer that the module is ready for
new input, unlocking one or more input ack semaphores.

The connections between consecutive objects can be implemented by unidi-
rectional point-to-point channels. Each channel consists of a buffer (the image to
be transferred) and two standard semaphores: the first represents a ready sig-
nal (the buffer contains valid data), the second represents the acknowledge sig-
nal (the buffer has been read, thus its contents can be over written). Figure 16
shows the two semaphores together with their corresponding C code. By nam-
ing convention, we identify by means of a ack suffix the acknowledge signals,
and by means of a ready suffix the ready signal. Note that at start-up time
every buffer is ready to receive data, thus all ack semaphores are initialized to
1 (contents can be overwritten), while no buffers are ready to be read (no new
content present), so all ready semaphores are initialized to 0. The tagged value
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Fig. 15. The mainthread().

Fig. 16. The acknowledge and ready semaphores and their C code.

value is used to denote the initialization values to pass to the constructors. The
C code generator will use the initial values to create the correct initialization
code.

The adaptive unsharper module (see Figure 17) defines the main() function,
that is, the entry point of the program. This function, after the creation of all
objects, creates a thread for each module, then waits (indefinitely) for their
conclusions, as shown in Figure 18; the created threads run in parallel. The
adaptive unsharper module is a composite class that defines the connection
of the different modules, connected by synchronization objects. In Figure 19,
a fragment of its composite structure is shown, representing the connection
between the unsharper filter for the red channel and the union image. For the
complete structure, see Figure 31 in Appendix B.

In conclusion, by means of the Posix thread profile, it was possible to model
the Adaptive Unsharper Image Filter at a relatively high-level of abstraction,
using the instruments provided by the library (for instance, the semaphores),
without the burden of dealing with code-level details. The structure of the sys-
tem was modeled in a very straightforward way (see the final resulting com-
posite structure diagram reported in Appendix B in Figure 31). The behavior
of the system was also described very easily: the state machine in Figure 15
gives a high-level intuitive definition of the behavior of a stage of the filter. This
behavior is reused by all the filter stages. The inherent parallelism of the filter
is also described in a rather straightforward way in Figure 18, again without
the need to write any code.
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Fig. 17. The adaptive unsharper module.

Fig. 18. The main() function.

6. MODEL REFINEMENT

Incremental abstraction/refinement patterns can be specified in terms of model-
to-model transformations and handled by model transformation engines. These
last can be integrated within the UML visual modeling tool to provide model
transformation services. The idea is to collect and reuse precise abstrac-
tion/refinement transformation patterns coming from industry best practices.
By applying the model transformations defined for a given pattern, a UML sys-
tem design may automatically and correctly evolve to an abstract/refined model
reflecting the abstraction/refinement rules defined for the applied pattern. The
automation of such refinement patterns at UML level brings more control and
flexibility on the model evolution process than operating directly at code level.

To clarify the concepts, we present some basic techniques adopted in partic-
ular in the communication refinement process. These refinement patterns can
be applied to different communication scenarios (usually between two modules)
of the design: hardware-hardware, software-software, hardware-software. For
example, we illustrate the application at UML level of these communication
refinement patterns to a hardware-hardware scenario.
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Fig. 19. A small fragment of the adaptive unsharper structure.

6.1 Basic Patterns for Communication Refinement

Typically, the model of the system is a set of concurrently executing components
(i.e., modules with inner processes) communicating with each other through ab-
stract communication channels. The communication between modules occurs,
therefore, through channels (possibly available as reusable components of a
protocol library) that implement a point-to-point communication scheme. Ac-
cess is given by interfaces, which can be accessed through ports defined in the
corresponding module. The advantage of this modeling method is the separa-
tion between communication and computation [Jerraya and Wolf 2004]. That
allows a separated refinement of communication and computation and thus an
independent development. With this separation, we are able to refine the com-
munication structure easily by removing the current channels and replacing
them by more detailed channels with the designated communication schema
implemented.

We assume to have two high-level modules M1 and M2 communicating over a
channel C via some abstract protocol. The basic approach to refining this basic
communication scenario consists of the following steps:

(1) Select an appropriate communication scheme to implement;
(2) Replace the abstract communication channel C with a refined one CRefined,

which realizes the selected communication protocol;
(3) Enable the communication of the modules M1 and M2 over CRefined by either:

(a) wrapping CRefined in a way that the resulting channel CWrapped provides
the interfaces required by M1 and M2 (wrapping), or
(b) refining M1 and M2 into M1Refined and M2Refined, respectively, so that their
required interfaces match the ones provided by CRefined (merging).
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Fig. 20. Producer/consumer modules communicating via a primitive FIFO.

The two techniques are similar. Both include an intermediate step to
build two further modules (i.e., two SystemC hierarchical channels), called
adapters,10 to map one interface to another: one, say A1, between M1 and
CRefined, and one, say A2, between CRefined and M2. In the case (a), the resulting
channel CWrapped encloses CRefined and the two adapters; while, in the case (b)
these adapters are merged to the calling modules M1 and M2 resulting in the
refined modules M1Refined and M2Refined. Deciding whether to use wrapping or
merging depends on the methodology and on the chosen target architecture.
The wrapping technique is helpful when targeting software implementations,
while the merging approach is typically required when refining an abstract
communication protocol (denoted by an abstract channel) toward a hardware
implementation based on a given target architecture (e.g., the refinement of a
transaction-level model to a pin-level model).

6.2 Example of Hardware-Hardware Communication Refinement

Here, we present a hardware-hardware communication refinement scenario of
a simple producer/consumer system taken from Gröetker et al. [2002]. We look
at the basic tasks involved in the refinement process moving from a functional
model to a RTL model. The modeling notation adopted to this purpose is the
SystemC UML profile.

The UML composite structure diagram in Figure 20 shows the overall de-
sign of the producer/consumer system. A top composite module contains two
functional modules, a producer prod inst and a consumer cons inst, communi-
cating via an abstract FIFO channel fifo inst by writing and reading characters
to/from it. The FIFO channel is an instance of the primitive channel sc fifo,
which permits to store characters by means of blocking read and write inter-
faces. Two processes, the producer and the consumer (see the thread processes
main within the producer and the consumer modules in Figure 21), respectively,
feed and read the FIFO. The producer module writes data through its out port
into the FIFO by a sc fifo out if interface, the consumer module reads data from
the FIFO through its in port by the sc fifo in if interface. These two interfaces
are implemented by the FIFO channel (see the sc fifo channel in Figure 21).
Because of the blocking nature of the sc fifo read/write operations, all data are
reliably delivered despite the varying rates of production and consumption.

10Adapters are components that can be easily reused. Typically, a finite number of different in-
terfaces are used, and, therefore, a small library of adapters is usually sufficient to cope with the
needs of even large designs.

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 4, Article 30, Publication date: July 2009.



SystemC/C-Based Model-Driven Design for Embedded Systems • 30:29

Fig. 21. Replacing a primitive FIFO with a clocked hardware FIFO.

Now, we aim at replacing the (abstract) FIFO instance above with a (refined)
model of a clocked RTL hardware FIFO named hw fifo for a hardware implemen-
tation (see Figure 21). The new hardware FIFO uses a signal-level ready/valid
handshake protocol for both the FIFO input and output. Data is read/written
at the rising clock edge if both the valid and ready lines are active.

It should be noted that we cannot use an hw fifo instance directly in place of
the sc fifo instance, since the former does not provide any interfaces at all, but
has ports that connect to signals, that is, has ports that use the sc signal in if
and sc signal out if interfaces. In order to connect prod inst and cons inst to an
hw fifo instance, we need a pair of adapters that convert the FIFO’s input and
output interfaces into pin-level accesses.

As explained earlier, the adapters can be integrated in the design by wrap-
ping or by merging. We illustrate in the sequel both the two communication
refinement techniques. The by-wrapping approach can easily be automatized
by model transformations, while the operations of the by-merging technique re-
quire a certain brain effort to be performed. Currently, we have implemented in
the EA-based environment only the by-wrapping refinement pattern by adopt-
ing an hybrid approach based on both direct-manipulation and structure-driven
approach [Czarnecki and Helsen 2003].

6.2.1 Adapter-Wrapping. Following the wrapper-based approach 3.b of the
refinement procedure described in Section 6.1, we can define a hierarchi-
cal channel hw fifo wrapper (CWrapped), which implements the sc fifo out if and
sc fifo in if interfaces and contains an instance of hw fifo (CRefined). In addition,
it contains sc signal instances to interface with hw fifo and a clock port (since
hw fifo has also a clock port) to feed in the clock signal to the hw fifo instance
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Fig. 22. The hw fifo wrapper hierarchical channel.

(Figure 22). Finally, we need to add a hardware clock instance in the top-level
design to drive the additional clock port that is now on the hw fifo wrapper in-
stance (Figure 23). Clearly, we had to replace the template argument (T) of the
adapter with the actual data-type being used (char).

6.2.2 Adapter-Merging. Following the merging-based approach 3.a of the
refinement procedure presented in Section 6.1, we need a pair of adapters,
fifo write hs and fifo read hs, to be merged into the calling modules (the pro-
ducer and the consumer, respectively). These adapters are hierarchical chan-
nels implementing the required interfaces. The fifo write hs adapter implements
the sc fifo out if interface and its implementation of the write operation closely
corresponds to that of the hw fifo wrapper. The fifo write hs adapter has four
ports; one for the data, one for the clock, and two for the control lines valid
and ready. When the write operation is invoked by the producer instance, the
adapter drives the data lines with the new sample and asserts the valid line; it
then waits until the consumer has read the sample. This happens on a rising
clock edge if both the valid and ready lines are active. The fifo read hs adapter
can be implemented similarly. Before merging, the adapters instances can be
inserted, as they are in the system for a preliminary validation.

In the process of merging an adapter into the calling module, the adapter’s
ports, attributes, operations and processes are copied into the original calling
module. This last is further refined by removing the original ports used to access
the adapter. The result is a refined pin-level module that replaces the original
module and adapter instances in the system. For the example under considera-
tion, the producer module is merged with the fifo write hs and the result is a new
module hw producer. Similarly, by merging the fifo read hs adapter into the con-
sumer modules, we obtain the refined module hw consumer. Clearly, in both the
two refined modules the template argument (T) of the adapters is replaced with
the actual data-type being used (char). Figure 24 shows the top-level composite
structure of this scenario.

7. THE CODESIGN ENVIRONMENT

We developed a prototype tool working as front-end for consolidated lower
level design tools. Figure 25 shows the tool architecture (components inside
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Fig. 23. A clocked producer/consumer design (by adapter-wrapping).

Fig. 24. A clocked producer/consumer design (by adapter-merging).

dashed lines are still under development). The tool consists of two major parts:
a development kit (DK) with design and development components, and a run-
time environment (RE) represented by the SystemC execution engine. The DK
consists of:

—A modeler supporting the UML2 profiles for SystemC and for multithread
C. It is based on the Enterprise Architect tool [Enterprise Architect 2008] by
SparxSystems.

—Two translators for the forward/reverse engineering to/from C/C++/
SystemC. For code generators, we followed a full generation approach, so
C/C++/SystemC are adopted as action languages at PSM level and the source
code is fully generated. The reverse engineering component translates Sys-
temC code into a UML model conforming to the SystemC UML profile, C++
code into UML classes, and C code into a UML model conforming to the
multithread C UML profile. Currently, the reverse facility is limited to the
generation of the design skeleton, that is, the static structure of the system.

—An abstraction/refinement evaluator (under development) to guarantee
traceability and correctness along the refinement process from the high-level
abstract description to the final implementation. This component supports
some model-to-model transformations defined for some predefined refine-
ment patterns and implemented by using the EA MDA transformers.

—A validation & verification toolset (under development), which is built upon
the abstract state machine metamodeling (ASMETA) toolset [ASMETA
2008], to be used to guarantee traceability and correctness along the UPSoC
design process from a UML high-level abstract description of the system to
the final SystemC implementation.
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Fig. 25. Tool architecture.

Further details of the developed components of the codesign environment are
given in Riccobene et al. [2006b].

8. INDUSTRIAL CASE STUDIES

For the hardware part, we have developed several different case studies, some
taken from the SystemC distribution like the simple bus design, and some
of industrial interest. The simple bus design is a well-known transactional
level example to perform also cycle-accurate simulation. It is made of 1,018
lines of code that implement a high performance, abstract bus model. The com-
plete code is available at OSCI group [2008]. We modeled the simple bus sys-
tem entirely in a forward engineering manner. The code generator has been
tested primarily on this example, and it produced an executable and com-
plete (i.e., including both structural and behavioral parts) SystemC code. In
this example, we performed also an evaluation about the benefits of modeling
with our UML-based methodology compared to coding. Even if our methodol-
ogy is oriented to the implementation and the modeling style strictly resem-
bles the structure of the target SystemC language, by analyzing the produced
SystemC code, we found out that 652 of the 1,018 lines are automatically in-
ferred from the description of the model, the remaining 366 lines of code are
produced from the actions inside the model (that are introduced manually)
or are derived from the description in the process state machines diagrams.
All in all, we unexpectedly concluded that there is a significant reduction in
the effort to produce the final code and there is also a benefit in documenta-
tion and reuse. For instance, one benefit compared with SystemC is that all the
header files are completely and consistently generated from the UML structural
diagrams.

To test the expressive power of the SystemC UML profile in representing a
variety of architectural and behavioral aspects, we modeled the On-Chip Com-
munication Network (OCCN) library [OCCN 2005]. The OCCN project focuses
on modeling complex on-chip communication networks by providing a highly-
parameterized and configurable SystemC library. This library is made of about
14.000 lines of code and implements an abstract communication pattern for
connecting multiple processing elements and storage elements on a single chip.
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The generic features of the OCCN modeling approach involve multiple abstrac-
tion levels, separation of communication and computation, and communication
layering. We used this example to test the reverse engineering flow. The OCCN
design skeleton has been imported automatically from the C++/SystemC code
into the EA-based modeler exploiting the reverse engineering facility, then it
was refined in the behavioral parts using the modeling constructs of the Sys-
temC UML profile. In this case study, we tested advantages and indispensability
of a round trip engineering—based on a synchronized cooperation between code
generation (forward engineering) and reverse engineering—in order to have a
complete description of a system design on both the UML abstract level and
the code level. Through this example, we also understood that the reverse en-
gineering component is useful in practice as a tool to inspect the structure of
a source code graphically. Starting from a bunch of source code header files,
it is possible to obtain immediately a graphical representation of the signi-
ficative design changes introduced at code level including structure, relations,
variables, functions, and so on.

In Bocchio et al. [2005], we present an application example related to an
802.11.a physical layer transmitter and receiver system described at instruc-
tion level. The hardware platform is composed of a VLIW processor developed
in STM, called LX, with a dedicated hardware coprocessor that implements a
fast fourier transform (FFT) operation. The processor acts as a master to the
hardware module and the memory components, where code and data are stored.
The communication is implemented by a system bus: We use the OCCN Sys-
temC model described earlier. The UML model of the application software is
a function library encapsulated in a UML class, which provides through ports
the I/O interface of the software layer to the hardware system. This class is
then translated to C/C++ code and the resulting application code is executed
by the LX ISS wrapped in SystemC to allow cycle accurate hardware-software
cosimulation. The UML wrapper of the LX ISS is modeled with the SystemC
UML profile, in order to generate a SystemC wrapper for the ISS and to allow
a hardware-software cosimulation at transactional or cycle-accurate level.

To give a feeling about the effective usage of the proposed design methodol-
ogy for modeling real cases, we recall that the effort for modeling the simple bus
was about one person per week, while the effort for modeling the OCCN and
the 802.11.a was about one person per month for each example. Of course, we
started the description of these case studies having their SystemC or C descrip-
tion available, so we cannot really perform an evaluation of the design effort of
“starting a design in SystemC from scratch” versus “starting the same design
with this methodology from scratch”. Our feeling is that the time and effort of
the two approaches are comparable. There are, indeed, a few benefits using this
UML-based approach: There is a big savings in the number of lines that are
written by hand (redundant lines of codes due to the C++ syntax are avoided,
see the numbers from the simple bus example), but the greatest benefits consist
in the model maintenance and its documentation.

All case studies mentioned above have not required any special refinement
strategy. Currently, we are defining a formal refinement methodology with
precise abstraction/refinement rules for the transactional-level modeling. To
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achieve this goal, we started by making a revision of the SystemC UML profile
to include the new features provided by the SystemC IEEE Standard 1,666,
which are the basis for modeling the the OSCI TLM 2.0 library [OSCI group
2008] and supporting a certain number of TLM sublevels. Moreover, a com-
plete hardware-software codesign case study that illustrates the use of both
profiles in a joined coherent design flow is under development. In this article,
we presented examples relating to the two separate domains.

9. CONCLUSIONS AND FUTURE DIRECTIONS

In this article, we show how UML and UML profiles can be effectively used
within a wider scope of application domains, such as the SoC and the embedded
system design. The work presented here is part of our ongoing effort to enact
the UPES/UPSoC design flow that starts with system descriptions using UML-
notations and automatically produce complete implementations of the software
and hardware components as well as their communication interfaces.

We extended the UML2 for SystemC and for multithread C in order to provide
a means for software and hardware engineers to improve the current industrial
embedded systems design flow joining the capabilities of UML, SystemC, and
C to operate at system level. Whereas the UML profile for SystemC allows
modeling resources and concurrency from the hardware perspective, the UML
profile for multithread C (inspired by the POSIX-pthread library) permits to
model the concurrency and the access to the resources as they are seen from
the software perspective.

Currently, we have been working on implementing a (bidirectional) transfor-
mation bridge between the software and the hardware perspectives in order to
facilitate the mapping process. It would be desirable to have a single SystemC-
based environment for both architecture exploration and the application soft-
ware implementation, eliminating the need to create two separate validation
contexts. However, more planning and analysis must be conducted. The model-
ing of complex concurrency aspects over threads, and the model composition of
SystemC threads, and POSIX C threads through automated interfaces is still
a challenging issue.

In the future, we aim also at identifying characteristics of reusable model
transformations and ways of achieving reuse by collecting in a library precise
abstraction/refinement transformation patterns according to the levels of ab-
straction: functional, TLM, behavioral, BCA, and RTL. In particular, we are
focusing on the TLM level to model the communication aspects at a certain
number of TLM sublevels according to the OSCI TLM standard [OSCI group
2008]. We believe the use of fine-grained transformations that are being com-
posed (chaining) would be beneficial, both increasing the productivity and the
quality of the developed systems.

Recently [Gargantini et al. 2008b; Carioni et al. 2008], we are also tack-
ling the problem of formally analyzing UML visual models. We aim at com-
plementing the proposed design methodology with a formal analysis process
for high-level system validation and verification (V&V), which involves the ab-
stract state machine (ASM) [Börger and Stärk 2003] formal method. Formal
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methods and analysis tools have been most often applied to low-level hardware
design. However, these techniques are not applicable to embedded system de-
scriptions given in system-level design languages (like SystemC, SpecC, etc.)
[Vardi 2007], since such languages are closer to concurrent software than to
traditional hardware description. We propose to address the problem of for-
mally analyze high-level UML-like embedded system descriptions by joining
UML-like modeling languages with the ASM formal method and its related
techniques for formal model analysis. Our overall goal is to provide a design en-
vironment where both the application software and the hardware architecture
are described together by a multiviews UML model representing the mapping
of the functionality (of the application software) onto an architecture. Moreover,
through a formal analysis process the system components can be functionally
validated and verified early at high-levels of abstraction, and even in a trans-
parent way (i.e., no strong skills and expertise on formal methods are required
to the user) by the use of the ASM formal method and supporting analysis
tools.

ELECTRONIC APPENDIX

The electronic appendix for this article can be accessed in the ACM Digital
Library.
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GRÖETKER, T., LIAO, S., MARTIN, G., AND SWAN, S. 2002. System Design with SystemC. Kluwer
Academic, Amsterdam.

IP-XACT. 2007. SPIRIT Consortium, IP-XACT schema v1.4. http://www.spiritconsortium.org.
JERRAYA, A. A. AND WOLF, W. 2004. Multi-Processor Systems-on-Chips. Elsevier, San Francisco, CA.
KEUTZER, K., NEWTON, A. R., RABAEY, J. M., AND VINCENTELLI, A. S. 2000. System-level design:

Orthogonalization of concerns and platform-based design. IEEE Trans. CAD Integr. Circu. Syst.
19, 12, 1523–1543.

KREKU, J., HOPPARI, M., AND TIENSYRJA, K. 2007. SystemC workload model generation from UML
for performance simulation. In Proceedings of the Forum on Specification and Design Languages.

KRUCHTEN, P. 1999. The Rational Unified Process. Addison Wesley, Reading, MA.
LAVANGNO, L., MARTIN, G., VINCENTELLI, A. S., RABAEY, J., CHEN, R., AND SGROI, M. 2003. UML and

platform-based design. In UML for Real Design of Embedded Real-Time Systems. Kluwer Aca-
demic Publishers, Dordrecht, The Netherlands.

LEROUX, H., MINGINS, C., AND REQUILE-ROMANCZUK, A. 2003. JACOT: A UML-based tool for the run-
time-inspecton of concurrent Java programs. In Proceedings of the 1st Workshop on Advancing
the State-of-the-Art in Run-Time Inspection. Elsvier, Amsterdam.

MARTE. 2008. OMG, UML Profile for Modeling and Analysis of Real-Time and Embedded Sys-
tems (MARTE), ptc/08-06-08.

MARTIN, G. 1999. UML and VCC. White paper. Candence Design Systems. Inc.
MARTIN, G. AND MUELLER, W. 2005. UML for SoC Design. Springer, Berlin, Germany.
MDA. 2003. OMG, the Model Driven Architecture. Guide V1.0.1. http://www.omg.org/mda/.
MOORE, T., VANDERPERREN, Y., SONCK, G., VAN OOSTENDE, P., PAUWELS, M., AND DEHAENE, W. 2002. A

design methodology for the development of a complex system-on-chip using UML and executable
system models. In Proceedings of the Forum on Specification and Design Languages.

MURA, M. PAOLOIERI, M., NEGRI, L., AND SAMI, M. 2007. StateCharts to SystemC: A high-level
hardware simulation approach. In Proceedings of the 17th ACM Great Lakes Symposium on
VLSI. ACM, New York, 505–508.

NGUYEN, K. D., SUN, Z., THIAGARAJAN, P. S., AND WONG, W. F. 2005. Model-driven SoC design: The
UML-SystemC bridge. In UML for SoC Design, Martin, G. and Mueller, W. Springer, Berlin,
Germany.

OCCN. 2005. OCCN Project. http://occn.sourceforge.net/.
OPEN GROUP. 2008. The Open Group Consortium. http://www.opengroup.org.
OPENMP. 2008. OpenMP Application Program Interface. http://www.openmp.org.
OSCI GROUP. 2008. The Open SystemC Initiative. http://www.systemc.org.
RASLAM, W. AND SAMEH, A. 2007. Mapping SysML to SystemC. In Proceedings of Forum on Spec-

ification and Design Languages.
RICCOBENE, E. AND SCANDURRA, P. 2004. Modelling SystemC process behavior by the UML method

state machines. In Proceedings of the 1st International Workshop on Rapid Integration of Software
Engineering Techniques. Springer, Berlin.

RICCOBENE, E., SCANDURRA, P., ROSTI, A., AND BOCCHIO, S. 2005a. A SoC design methodology based
on a UML 2.0 profile for SystemC. In Proceedings of the Conference on Design Automation and
Test in Europe (DATE’05). IEEE, Los Alamitos.

RICCOBENE, E., SCANDURRA, P., ROSTI, A., AND BOCCHIO, S. 2005b. A UML 2.0 profile for SystemC:
Toward high-level SoC design. STMicroelectronics Tech. rep., AST-AGR-2005-3.

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 4, Article 30, Publication date: July 2009.



SystemC/C-Based Model-Driven Design for Embedded Systems • 30:37

RICCOBENE, E., SCANDURRA, P., ROSTI, A., AND BOCCHIO, S. 2005c. A UML 2.0 profile for SystemC:
Toward high-level SoC design. In Proceedings of the 5th ACM International Conference on Em-
bedded Software. ACM, New York, 138–141.

RICCOBENE, E., SCANDURRA, P., ROSTI, A., AND BOCCHIO, S. 2006a. A model-driven co-design flow for
embedded systems. In Proceedings of the Forum on Specification and Design Languages.

RICCOBENE, E., SCANDURRA, P., ROSTI, A., AND BOCCHIO, S. 2006b. A model-driven design environ-
ment for embedded systems. In Proceedings of the 43rd Annual Conference on Design Automation.
ACM, New York, 915–918.

RICCOBENE, E., SCANDURRA, P., ROSTI, A., AND BOCCHIO, S. 2007a. A model-driven co-design flow for
embedded systems. In Advances in Design and Specification Languages for Embedded Systems.
Springer, Berlin, Germany.

RICCOBENE, E., SCANDURRA, P., ROSTI, A., AND BOCCHIO, S. 2007b. Designing a unified process for em-
bedded systems. In Proceedings of the 4th International Workshop on Model-based Methodologies
for Pervasive and Embedded Software. IEEE, Los Alamitos, CA.

SELIC, B. 2000. A generic framework for modeling resources with UML. Computer 33, 6, 64–69.
SPT. 2003. OMG, UML Profile for Schedulability, Performance, and Time, formal/03-09-01.
SYSML. 2007. OMG, SysML, formal/2007-09-01. http://www.omgsysml.org/.
SystemC. 2006. SystemC Language Reference Manual. IEEE Std 1666.
THOMAS, F., GERARD, S., DELATOUR, J. AND TERRIER, F. 2007. Software real-time resource modeling.

In Proceedings of the Forum on Specification and Design Languages.
UML. 2008. OMG, the Unified Modeling Language (UML). http://www.uml.org.
UML PROFILE FOR SWRADIO. 2007. OMG, UML Profile for SWRadio. V1.0, formal/07-03-01.
UML-SOC WORKSHOPS. 2008. UML for SoC Design Workshops. http://www.c-lab.de/uml-soc.
USOC. 2006. OMG, UML Profile for SoC Specification, v1.0.1.
VARDI, M. Y. 2007. Formal Techniques for SystemC Verification; Position Paper. In Proceedings

of the 44th annual conference on Design automation. IEEE, Los Alamitos, CA.
VINCENTELLI, A. S. 2002. Defining platform-based design. EEDesign of EETimes.
ZHU, Q., OISHI, R., HASEGAWA, T., AND NAKATA, T. 2004. System-on-chip validation using UML

and CWL. In Proceedings of the 2nd IEEE/ACM/IFIP International Conference on Hard-
ware/Software Codesign and System Synthesis (CODES+ISSS). IEEE, Los Alamitos, CA, 92–97.

ZIMMERMAN, J. BRINGMANN, O., GERLACH, J., SCHAEFER, F., AND NAGELDINGER, U. 2008. Holistic sytem
modeling and refinement of intern-connected micro-electronic systems. In Proceedings of the
Conference on Design, Automation, and Test in Europe. IEEE, Los Alamitos, CA.

Received April 2008; revised April 2008; accepted September 2008

ACM Transactions on Embedded Computing Systems, Vol. 8, No. 4, Article 30, Publication date: July 2009.


