
An ASM-based executable formal model of
service-oriented component interactions and orchestration∗

Elvinia Riccobene
Università degli Studi di Milano

DTI, via Bramante, 65 - Crema (CR), Italy
elvinia.riccobene@unimi.it

Patrizia Scandurra
Università degli Studi di Bergamo

DIIMM, via Marconi, 5 - Dalmine (BG), Italy
patrizia.scandurra@unibg.it

ABSTRACT
Formal design methods, that might serve as a basis for spec-
ifying and analyzing abstract models of service orchestra-
tions, are needed to complement the wide range of domain-
specific languages (mainly based on graphical notations) that
are currently being defined for engineering service-oriented
systems. This paper presents a formal and executable se-
mantic framework for UML4SOA models of service-oriented
systems. The UML4SOA language is a UML profile de-
veloped in the EU SENSORIA project for modeling services
behavior focusing on service orchestration aspects. We com-
plement the graphical model of a service orchestration sce-
nario with a formal description that is suitable for rigorous
execution-platform-independent analysis. We map the be-
havioral primitives of UML4SOA activity diagrams into a
particular class of Abstract State Machines (ASMs) able to
model notions of service interactions and orchestrations.

Keywords
Service-oriented Computing, Service behaviour modeling,
UML4SOA, Abstract State Machines

1. INTRODUCTION
Service-oriented computing (SOC) is an emerging paradigm

for developing loosely coupled, interoperable, evolvable sys-
tems and applications relying on the basic unification prin-
ciple that “Everything is a service”. Services are loosely
coupled computational entities available in a distributed en-
vironment. On top of these services, business processes
and technical workflows can be (re-)implemented as com-
positions of services – service orchestration. The architec-
tural foundation for SOC is provided by the Service-Oriented
Architecture (SOA), which states that applications expose
their functionality as services in a uniform and technology-

∗This work was partially supported by the Italian Govern-
ment under the project PRIN 2007 D-ASAP (2007XKE-
HFA)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
The Second Workshop on Behavioural Modelling - Foundations and Appli-
cation (BM-FA 2010) 15 June 2010, Paris, France
Copyright 2010 ACM ISBN 978-1-60558-961-9 ...$10.00.

independent way such that they can be discovered and in-
voked over the network. This new programming style relies
on interface-based design, composition and reusability.

In order to support software engineers with intuitive and
easy to adopt design and implementation techniques for service-
oriented software, modeling notations specific to the SOA
domain are required.

Among existing ones [19, 20], within the european project
SENSORIA [18], the UML4SOA profile [22] has been devel-
oped as a UML 2 extension for the SOA domain. It provides
a conservative extension of UML 2 activity diagrams for
modeling service orchestrations on a high-level of abstrac-
tion, and allows a fully automated, model-driven approach
for transforming orchestration down to code [21].

Besides domain-specific notations, appropriate design me-
thodologies are also required in the context of SOA. Indeed,
service-based systems usually have requirements like, e.g.,
service availability, functional correctness, protection of pri-
vate data. Implementing services satisfying these require-
ments demands the use of rigorous software engineering me-
thodologies that encompass all phases of the software devel-
opment process, from modeling to deployment, but also ex-
ploit formal techniques for qualitative and quantitative ver-
ification of systems [2]. An appropriate design methodology
should therefore combine a development process, consisting
into initially specifying the services by high-level modeling
languages and then transforming the specification towards
the final deployment, with an analysis process able to guar-
antee the properties of the implementation code by means
of the application of formal methods to verify the behavioral
and quantitative properties of the specification.

The UML4SOA models have great value for communicat-
ing the orchestration workflow. However, even a fully au-
tomated transformation of the orchestration down to code
is guaranteed by the authors of the profile [22], UML4SOA
models are not yet executable and the use of this profile
should be integrated within a precise engineering methodol-
ogy for SOA, which, for analysis purposes, requires a formal
counterpart of the graphical UML4SOA description. This is
a first result of our ongoing work towards the development
of a back-end framework, based on the Abstract State Ma-
chines (ASMs) formal method, for the specification and anal-
ysis of service-oriented component systems in a high level of
abstraction and technology agnostic way (i.e. independently
of the hosting middleware and runtime platforms and of the
programming languages in which services are programmed).

In this paper, a transformational semantic mapping is pro-
vided to transform a UML4SOA description of a services

orchestration into a formal executable description based on
the Abstract State Machines (ASMs) formal method [9].
Here, we focus on the workflow describing the orchestra-
tion for services, and we leave abstract the specification of
the services internal behavior, which is addressed as future
work. In particular, for modeling services interaction, we
exploit the precise high-level models for eight fundamental
service interaction patterns, given by Barros and Boerger
[5] in terms of the ASMs. They model arbitrarily complex
interaction patterns of distributed service-based (business)
processes, that go beyond simple request-response sequences
and may involve a dynamically evolving number of partici-
pants. The UML4SOA interaction primitives can be viewed
– in accordance with the authors’ claim – as “combinations
of refinements of” some of “the eight bilateral and multilat-
eral service interaction pattern ASMs defined” in [5].

ASM expressiveness and executability allow for the defini-
tion and analysis of complex structured services interaction
protocols in a formal way but without overkill. The ASM de-
sign method is supported by several tools [13] for validation
and verification which can be used to analyze ASM-based
models of services.

This paper is organized as follows. Some background con-
cerning the UML4SOA profile and the ASM formal method
are given in Sect. 2 and 3, respectively. The semantic map-
ping from the UML profile to the formal executable descrip-
tion in terms of the ASMs is presented in Sect. 4, together
with an illustrative case study taken from the literature.
Sect. 5 provides a description of related work along the
same direction. Finally, Sect. 6 concludes the paper and
outlines some future directions of our work.

2. MODELING SERVICE ORCHESTRATION
IN UML4SOA

The UML4SOA [22] is a conservative extension of the
UML for modeling service orchestrations on a high level of
abstraction, and allowing an automated, model-driven ap-
proach for transforming orchestrations down to code [21].
UML4SOA builds on the basic structural notions of another
OMG UML profile, named SoaML, and adds behavioral de-
scriptions. The idea is to specify orchestrations (workflows)
in detail trough UML2 activity diagrams and their required
and provided services only as protocols to be fulfilled by
(externally) implemented services.

2.1 Service orchestrations as UML Activities
The UML4SOA profile extends the UML2 activity dia-

grams with service-specific model elements, providing spe-
cial elements for service interactions, long running trans-
actions and their compensation1. A brief description of
the UML4SOA stereotypes (extended UML modeling con-
structs) follows.

An orchestration is a specialized UML Activity for mod-
eling service orchestrations. Each orchestration contains a
root «scope»(or «serviceActivity»). A scope (or serviceAc-
tivity) is a UML StructuredActivityNode that contains ar-
bitrary ActivityNodes, and may have an associated com-
pensation handler.

Specialized actions for service interactions have been de-
fined for sending and receiving data. In particular, a «send»action

1Compensation handling is the process of rolling back suc-
cessfully completed actions.

is an UML CallBehaviourAction that sends a message with-
out blocking (typically used to invoke an operation of a part-
ner asynchronously). A «receive»action is a UML Accept-

CallAction, receiving a message (typically used to receive
an operation call request from an external partner); it blocks
until a message is received. Service interaction actions may
have interaction pins for sending or receiving data. In par-
ticular, «lnk»is an UML Pin that holds a reference to the
service involved in the interaction, «snd»is a Pin that holds a
container with data to be sent, and «rcv»is a Pin that holds
a container for data to be received. A «replay»action is a
UML ReplyAction that sends out data in reply (as result
value of a certain functional activity) to the request point of
a previous receive action. Finally, a «send&receive»action
is a complete synchronous operation call execution with a
partner. Some data (stored in the send pins) is sent, then
the action waits for data to be sent back, which is stored in
the receive pins.

Specialized edges connecting scopes with handlers are also
supported in UML4SOA. For example, compensation is mod-
eled by using compensation handlers, which are activities or
structured activity nodes themselves and are attached with a
«compensation»edge (a UML ActivityEdge) to an element
(an activity, a service interaction action, a structured ac-
tivity node) to be compensated. A «compensateAll»action
stereotype is also supported to invoke all compensation han-
dlers nested in the current activity node. In this case, the
inner elements with compensation handlers are compensated
in reverse order of their completion, i.e. the last completed
element first. The profile also contains elements for event
and exception handling. For a complete overview, see [22].

Remark. UML4SOA adopts Protocol State Machines to
specify the (declarative) externally visible behavior of ser-
vices, as provided to or required from a partner. Stereo-
typed transitions with «receive», «send», «send&Receive»,
and «replay», are used to denote operations of a participant
a UML4SOA protocol state machines belongs to. We here
to not tackle the specification of services internal behavior
which can be captured by a particular class of ASMs, the
control-state ASMs. They would allow modeling the (possi-
bly external) agent life cycle when engaged in service inter-
actions. In particular, service operations could be modeled
by turbo transition rules executed by the provider agent.
This is address as future work.

2.1.1 Orchestration example
As orchestration example in UML4SOA, Fig. 1 (adapted

from [17]) shows an UML 2 activity diagram for the orches-
tration of services in the On road assistance scenario case
study of the SENSORIA project. UML 2 stereotyped ac-
tions indicate the type of interactions («send», «receive»,
etc.). In addition, stereotypes are used to model compensa-
tion of long running transactions: «compensate»and «com-
pensationEdge». Actions match operations of required and
provided interfaces of the services, which are defined as ports
of UML 2 components. Action names include the name
of the provider separated by a dot from the action name.
The process starts with a request from the Orchestrator to
the Bank to charge the driver’s credit card with the secu-
rity deposit payment, which is modeled by an asynchronous
«send»action RequestCardCharge that takes the card num-
ber as an input parameter other than the specific amount.
In parallel to the interaction with the bank, the orchestrator

initiates a synchronous interaction to get the current posi-
tion of the car from the GPS service. The current location
is modelled as input of the «sendAndReceive»action and
subsequently used by the FindLocalServices action which
retrieves a list of services. In case no local services are avail-
able, an action FindServices on the RemoteDiscovery is
started. If services cannot be found an action to compensate
the credit card charge will be launched. For the selection of
services, the Orchestrator synchronizes with the Reasoner to
obtain the most appropriate (best) services. Service order-
ing is modeled by the actions OrderGarage, OrderTowTruck
and RentalCar following a parallel and sequential process,
respectively.

3. ABSTRACT STATE MACHINES
Abstract State Machines (ASMs) are an extension of FSMs,

where unstructured control states are replaced by states
comprising arbitrary complex data [7]. Although the ASM
method comes with a rigorous mathematical foundation [9],
ASMs provides accurate yet practical industrially viable be-
havioral semantics for pseudocode on arbitrary data struc-
tures. This specification method is tunable to any desired
level of abstraction, and provides rigor without formal overkill.

The states of an ASM are multi-sorted first-order struc-
tures, i.e. domains of objects with functions and predicates
(boolean functions) defined on them, while the transition re-
lation is specified by rules describing how functions change
from one state to the next.

Functions are classified as derived functions, i.e. those
coming with a specification or computation mechanism given
in terms of other functions, and basic functions which can be
static (never change during any run of the machine) or dy-
namic (may change as a consequence of agent actions or up-
dates). Dynamic functions are further classified into: mon-
itored (only read, as events provided by the environment),
controlled (read and write), shared and output (only write)
functions.

Basically, a transition rule has the form of guarded up-
date “if Condition then Updates” where Updates are a set
of function updates of the form f(t1, . . . , tn) := t which are
simultaneously executed when Condition is true. f is an ar-
bitrary n-ary function and t1, . . . , tn, t are first-order terms.

To fire this rule in a state si, i ≥ 0, all terms t1, . . . , tn, t
are evaluated at si to their values, say v1, . . . , vn, v, then the
value of f(v1, . . . , vn) is updated to v, which represents the
value of f(v1, . . . , vn) in the next state si+1. Such pairs of
a function name f , which is fixed by the signature, and an
optional argument (v1, . . . , vn), which is formed by a list of
dynamic parameter values vi of whatever type, are called
locations. They represent the abstract ASM concept of ba-
sic object containers (memory units), which abstracts from
particular memory addressing and object referencing mech-
anisms. Location-value pairs (loc, v) are called updates and
represent the basic units of state change. Locations are up-
dated by rule firing only when no inconsistent updates occur,
namely for any location loc and all elements v, w, it is true
that if (loc, v) and (loc, w) are simultaneously updates, then
v = w.

The (unique) main rule is a transition rule and represents
the starting point of the machine program (i.e. it calls all the
other ASM transition rules). Initial values for domains and
functions are defined in a set of initial states. Executing an
ASM means executing its main rule starting from a specified

initial state.
A computation of an ASM M is a finite or infinite sequence

S0, S1, . . . , Sn, . . . of states of M , where S0 is an initial state
and each Sn+1 is obtained from Sn by firing simultaneously
all of the transition rules which are enabled in Sn.

These is a limited but powerful set of rule constructors
that allow to express simultaneous parallel actions (par) of a
single agent self, either in an atomic way, Basic ASMs, or in
a structured and recursive way, Structured or Turbo ASMs,
by sequential actions (seq), iterations (iterate, while, rec-
while), and submachine invocations returning values. Ap-
propriate rule constructors also allow non-determinism (ex-
istential quantification choose) and unrestricted synchronous
parallelism (universal quantification forall). Furthermore,
it supports a generalization where multiple agents interact in
parallel in a synchronous/asynchronous way, Synch/Asynch
Multi-agent ASMs.

The increasing application of the ASM formal method for
academic and industrial projects has caused a rapid devel-
opment of tools [13] around ASMs of various complexity and
goals: tools for mechanically verifying properties using the-
orem provers or model checkers, and execution engines for
simulation and testing purposes.

4. ASM-BASED SERVICE-ORIENTED COM-
PONENTS BEHAVIOR

A service-based system is a distributed system: a system
made of collection of distributed computational components
(computers, software applications, devices, etc.) perceived
by a user as a single system. However, compared with classi-
cal distributed systems, service-based systems are open sys-
tems, and therefore rather unpredictable as many parts may
be unknown at a given time. Indeed services are volatile
distributed entities; they may be searched, discovered, and
dynamically linked with the remained part of the system
environment, and unlinked at a later moment. A business
process may be provided that acts as an orchestrator, i.e.
an active entity that invokes available services according to
a given set of rules to meet some business requirements. A
service orchestration is a composition specification showing
how services are composed in a workflow.

We represent in ASM a service-based system exploiting
the notion of distributed multi-agent ASMs. Essentially, each
business participant (or partner role) has an associated ASM
agent with a program (a set of transition rules) to execute.
A service-oriented component is an ASM endowed with (at
least one) agent able to be engaged in conversational interac-
tions with other external agents by providing/requiring ser-
vices to/from other (partner) service-oriented components.
The notion of service (operation) is captured in ASM by
the notion of named turbo rule defined in an ASM for a
service-oriented component. In this way we provide atomic
(zero-time) parallel execution of entire (sub)machines as ser-
vices whose computations, analyzed in isolation, may have
duration and may access the needed state portion (inter-
face), thus combining the atomic black box and the durative
white box view of service-oriented components. Moreover,
we assume that in our ASM component model there is an
agent that acts as “orchestrator”, the orchestrator agent, by
executing (as its own program) an ASM rule capturing the
behavior of the overall orchestration workflow.

We distinguish three basic kinds of service activities:

Figure 1: Service orchestration example adapted from [17]

(i) functional activities: they deal with data manipulation;
(ii) communication activities: they deal with patterns of
service interactions pertaining to orchestration [4];
(iii) fault activities: they deal with faults or exceptions, and
error recovery (by compensation or exception handlers).

The resulting system is therefore an asynchronous multi-
agent ASM that will behave accordingly to the behavior of
each service (ASM agent) involved in. This main ASM also
provides the necessary initialization (such as appropriated
component bindings) and initial startup of all agents’ pro-
grams (in the main ASM rule) to make the system model
executable.

In the following subsection, a transformational semantic
mapping [12] is provided to transform UML4SOA descrip-
tions of services orchestrations into formal executable de-
scriptions based on the ASMs.

4.1 Service orchestration
The UML4SOA orchestration activity is semantically map-

ped into a structured ASM rule to be executed by the or-
chestrator ASM agent. The transformation patterns used
to map each modeling element of the UML4SOA activity
diagram into ASM concepts are reported in Fig. 2.

Services are invoked through communication activities of
the orchestration workflow. We here focus only on bilat-
eral interactions (or two-party interactions); however, ad-
ditional communication patterns can be supported in ASM
(e.g. multilateral interactions or multi-party interactions) as
formalized in [5] allowing therefore more expressiveness also
in the service interactions specification. Moreover, other
control flow nodes (not reported here) can be easily sup-
ported in ASM as formalized in [8]. For example, the fork
and merge nodes can be used separately. The fork node is
to be intended as an asynchronous parallel split that spawns
finitely many sub-agents using as underlying parallelism the
concept of asynchronous ASMs. In addition, other ASM
rule constructors may be used to allow for more expres-
siveness in describing orchestration workflows; for example,
the choice rule can be used to define non deterministic se-
lection patterns [8]. Moreover, more complicated workflow
patterns like those introduced in the recent OMG initiative
Business Process Management Notation (BPMN)[23] nota-
tion on business process modeling can be captured by ASM
rule-patterns as well [10].

A detailed description follows on how communication ac-
tivities and fault activities are represented in terms of ASMs.
Functional activities do not require a special treatment as
they can be intuitively captured by means of ASM rules with
no special rule constructor or rule patterns.

4.1.1 Communication activities
For mapping communication actions, we take advantage of

the precise high-level models for fundamental bilateral ser-
vice interaction patterns, given by Barros and Boerger in [5]
in terms of the ASMs. They define turbo ASM rules Sends,
Receivet, SendReceives,t and ReceiveSends,t to cap-
ture the semantics of both asynchronous and synchronous
message passing (the non-blocking and blocking mode) and
the semantics of service interactions beyond simple request-
response sequences by involving acknowledgment, resending,
etc. All these variants are denoted by parameters s ∈ Send-

Type = {noAck, ackNonBlocking, ackblocking} ∪ {noAckResend,

ackNonBlockingResend, ackBlockingResend} and t ∈ ReceiveType

= {blocking, buffer, discard} ∪ {noAckBlocking, noAckBuffer,

ackBlocking, ackBuffer} .
These mentioned communication patterns are more gen-

eral than those of the UML4SOA, but the semantics of the
UML4SOA interaction actions send, receive, send&receive,
and replay, can be captured by ASM submachines defined
as wrappers of the turbo rules already formalized in [5]. We
report below the definition of these wrapper rules. Each
of these rules describes one side of the interaction and re-
lies on a dynamic domain Message that represents message
instances managed by an abstract message passing mecha-
nism. Each message is characterized by dynamic context-
dependent information provided by the following dynamic
functions:

recipient:Message → Agent denoting the recipient agent;

sender:Message → Agent denoting the sender agent;

serviceOp:Message → Rule denoting the service operation;

serviceData:Message→ D denoting data of some generic type

D to be send or received.

The requirement that two messages have to be unequivocally
related to one another when one is a request message and
the other one is its response message, is captured (as in [5])
by two dynamic predicates2 RequestMsg and ResponseMsg
with a function requestMsg, which identifies for every m ∈
ResponseMsg the requestMsg(m) ∈ RequestMsg to which m
is the responceMsg.

The wrapper rule WSend.
The wrapper rule WSend uses a simplified version of

the pattern Sends in [5] resulting from the instantiation
of the parameter s = noAck so denoting a non-blocking
action with no ack. An abstract machine BasicSend(m)
has the intended interpretation that the message m is sent
to recipient(m). Possible faults at the sender’s side dur-
ing an attempt to send message m are captured by a ma-
chine HandleSendFault(m) typically triggered by a con-
dition not OkSend(m). Both these two machines use as
guards the abstract monitored predicates SendMode(m) and
SendFaultMode(m), respectively. As typical assumption Send-
Mode(m) and not OkSend(m) implies SendFaultMode(m).
Note that as in [5], for notational succinctness we assume the
firing of the rules FirstSend(m) and HandleSendFault(m)
is preemptive. This means that the guard SendMode(m)
(resp. SendFaultMode(m)) automatically becomes false after
firing the FirstSend(m) (resp. HandleSendFault(m))
rule.

rule WSend(lnk, RA, snd) =
extend Message with m do

seq
par

recipient(m):= lnk
sender(m):= self
serviceOp(m):= RA

serviceData(m):= snd
RequestMsg(m):= true
SendMode(m):= true

endpar
Send(m)noAck

rule SendnoAck(m) =
par

FirstSend(m)
HandleSendFault(m)

endpar

2We identfy sets with unary predicates.

Figure 2: From UML4SOA to ASMs

rule FirstSend(m) =
if SendMode(m) and OkSend(m)
then BasicSend(m)

rule HandleSendFault(m) =
if SendFaultMode(m) then SendFaultHandler(m)

The wrapper rule WReceive.
This wrapper uses a simplified version of the pattern Re-

ceivet in [5] resulting from the instantiation of the param-
eter t = noAckBlocking so denoting a blocking action with
no ack.

rule WReceive(lnk, RA, rcv) = ReceivenoAckBlocking(m)
where recipient(m) = self and sender(m) = lnk and

serviceOp(m) = RA and ResponseMsg(m)

rule ReceivenoAckBlocking(m) =
if Arriving(m) and ReadyToReceive(m)
then Consume(m)

Note that the submachine Consume(m) left abstract in [5],
is here refined as

Consume(m) ≡ rcv := serviceData(m)

in order to store in the location rcv the received data em-
bedded in the received message.

The wrapper rule WReplay.
This wrapper uses the pattern SendnoAck to return values

to a request point within a message which is the response of
a previous message of service request.

rule WREPLAY(lnk, RA, snd) =
let msg = m′ ∈ Message | RequestMsg(m′) and

serviceOP(m′) = RA in
extend Message with m do
seq

par
recipient(m):= lnk
sender(m):= self
serviceOp(m):= RA

serviceData(m):= snd
ResponseMsg(m):= true
requestMsg(m):= msg
SendMode(m):= true

endpar
responseMsg(msg):= m
SENDnoAck(m)

The wrapper rule WSendReceive.
This wrapper uses a simplified version of the pattern SendsRe-

ceivet in [5] resulting from the instantiation of the param-
eter s = noAck and t = noAckBlocking so denoting a non-
blocking send action with no ack of a service request, fol-
lowed by a blocking receive action with no ack of a service
response.

rule WSendReceive(lnk, RA, snd, rcv) =
extend Message with m do

seq
par

recipient(m):= lnk
sender(m):= self
serviceOp(m):= RA

serviceData(m):= snd
RequestMsg(m):= true
SendMode(m):= true

endpar
SendReceivenoAck,noAckBlocking(m)

rule SendReceivenoAck,noAckBlocking(m) =
par

SendnoAck(m)
ReceivenoAckBlocking(m′)

endpar
where m′ ∈ Message and ResponseMsg(m′) and

recipient(m′) = self and serviceOp(m′) = RA and
requestMsg(m′) = m

4.1.2 Fault activities
UML4SOA compensation handlers can be also specified in

terms of rules to be executed in case of fault. More precisely,
executing a «compensate»action (not shown in the mapping
table) for a certain (named) service activity A, that is given
as a parameter, corresponds to invoke an ASM compensa-
tion rule associated to the corresponding service rule RA

through a predefined function compensate(RA) (denoting
the «compensation»edge of UML4SOA). In order to support
also «compensateAll»actions of the UML4SOA with the se-
mantics of invoking all installed compensation handlers that
are nested in the current service activity node, we require
that an appropriated rule compensateAll(RA) is explicitly
defined. The body of such a rule must consist of the se-
quential invocations of all compensation handlers rules for
all service actions inner in the scope, in reverse order of their
completion, i.e. the last completed element first. UML4SOA
event (exception) handling mechanism is treated similarly.

4.1.3 Orchestration example
As example of the application of our mapping from UML4SOA

to the ASMs, we here report the resulting ASM rule (the
orchestrator agent’s program) from the UML4SOA orches-
tration model in Fig. 1:

rule Orchestration() =
seq

par
CardCharge()
seq

WSENDRECEIVE(gps,«requestLocation»,undef,location)
WSENDRECEIVE(localDiscovery,«findLocalServices»,

(serviceType,location),services)
if noServAvailable
then WSENDRECEIVE(remoteDiscovery,«findServices,

(serviceType,location),services)
endpar
if noServAvailable then compensate(«cardCharge»)
else seq

WSENDRECEIVE(reasoner,«SelectServices»,
candidates,best)

OrderServices()

where compensate(«cardCharge») ≡ WSENDRECEIVE(bank,

«revokeCharge»,chargeID,revokeOK).
The encoding for the sub-activities CardCharge and Or-

derServices is straightforward.

5. RELATED WORK
In this paper we provided an ASM-based executable for-

mal description of the UML4SOA models. The UML4SOA
language is a UML 2 extension for SOA, namely, a high-
level domain-specific modeling language service orchestra-
tions as an extension of UML2 activity diagrams. In order
to make UML4SOA models executable, some code genera-
tors for low level target languages (such as BPEL/WSDL,
the Jolie language, and Java) already exist [21]; however the

target languages do not provide the same rigor and precise-
ness of a formal method necessary for early design execution
and analysis.

Other lightweight notations for service modeling have been
proposed such as the OMG SoaML UML profile [19]. SoaML
profile is more focused on architectural aspects of services
and relies on the standard UML 2 activity diagrams for be-
havioral aspects without further specialization. Another ex-
ample is the Service Component Architecture (SCA) stan-
dard [20]. This is an XML-based metadata model that de-
scribes the relationships and the deployment of services; it
is a joint collaboration between major software vendors with
the goal of delivering a language independent programming
model for SOA. The SCA standard is supported by a visual
notation and runtime environments (like Apache Tuscany
and FRAscaTI) that enables developers to create service
components that can be assembled into composite applica-
tions. However, it does not provide behavioral modeling
abstractions.

Within the EU project SENSORIA [18], another high-
level modeling notation specific to the SOA domain, named
SRML [24], has been developed. SRML is a declarative
modeling language for service-oriented systems with a com-
putation and coordination model. We believe it is worth
to study the feasibility of defining an encoding from SRML
into ASMs, but we leave it as a challenge for future work.
The goal of this activity would be the definition of an exe-
cutable operational semantics of SRML models in terms of
the ASMs.

Several process calculi for the specification of SOA sys-
tems have been recently designed (see, e.g., [16, 14, 15, 6]).
They provide linguistic primitives supported by mathemat-
ical semantics, and analysis and verification techniques for
qualitative and quantitative properties. In particaulr, in [3]
an encoding of UML4SOA in COWS (Calculus for the Or-
chestration of Web Services), a recently proposed process
calculus for specifying and combining services while model-
ing their dynamic behavior, is presented.

Within the ASM community, the ASMs have been used
in the SOA domain for the purpose of formalizing business
process modeling languages and middleware technologies re-
lated to web services [10, 8, 11, 1].

6. CONCLUSION AND FUTURE WORK
We proposed an ASM-based executable specification for

service orchestrations modeled with the UML4SOA profile.
The application of our semantic mapping from UML4SOA
to ASMs provides a formal counterpart of the graphical
UML4SOA description. The resulting rigorous model is
useful for analysis purposes, at first instance for platform-
independent executability of models. The specification here
provided has to be intended as a foundational model not
specifically tight to current web services technologies.

As future work, we plan to integrate the orchestration
modeling with the specification of service behaviors, so inte-
grating intra- and inter-component behavior. Moreover, we
want to address the behavioral aspects of service discovery
(for the lookup of service provider interfaces and service lo-
cations) and self-adaptability.We plan to specify and reason
about “classes of properties” of services models through the
analysis (validation and verification) tools supporting the
ASMs; for example, for checking that the services result-
ing from a composition meet desirable correctness properties

and do not manifest unexpected behaviors. We aim also at
defining and developing synthesis patterns to generate code
automatically (at least for some critical parts) from ASM
models of services.

7. REFERENCES
[1] M. Altenhofen, A. Friesen, and J. Lemcke. Asms in service

oriented architectures. Journal of Universal Computer
Science, 14(12):2034–2058, 2008.

[2] C. Attiogbé. Can component/service-based systems be proved
correct? CoRR, abs/0910.1901, 2009.

[3] F. Banti, R. Pugliese, and F. Tiezzi. Automated Verification of
UML Models of Services. Tech. Rep., di Sistemi e Informatica,
Univ. Firenze. Submitted for pubblication, 2009.

[4] A. Barros, M. Dumas, and A. ter Hofstede. Service Interaction
Patterns: Towards a Reference Framework for Service-Based
Business Process Interconnection. Technical Report
FIT-TR-2005-02, Faculty of IT, Queensland University of
Technology, April, 2005.

[5] A. P. Barros and E. Börger. A compositional framework for
service interaction patterns and interaction flows. In K.-K. Lau
and R. Banach, editors, ICFEM, volume 3785 of LNCS, pages
5–35. Springer, 2005.

[6] M. Boreale, R. Bruni, R. D. Nicola, and M. Loreti. Sessions and
pipelines for structured service programming. In G. Barthe and
F. S. de Boer, editors, FMOODS, volume 5051 of LNCS, pages
19–38. Springer, 2008.

[7] E. Börger. The ASM method for system design and analysis. A
tutorial introduction. In B. Gramlich, editor, Frontiers of
Combining Systems, 5th International Workshop, FroCoS
2005, Vienna, Austria, September 19-21, 2005, Proceedings,
volume 3717 of LNCS, pages 264–283. Springer, 2005.

[8] E. Börger. Modeling Workflow Patterns from First Principles.
In C. Parent, K.-D. Schewe, V. C. Storey, and B. Thalheim,
editors, ER, volume 4801 of LNCS, pages 1–20. Springer, 2007.

[9] E. Börger and R. Stärk. Abstract State Machines: A Method
for High-Level System Design and Analysis. Springer Verlag,
2003.

[10] E. Börger, O. Sörensen, and B. Thalheim. On defining the
behavior of or-joins in business process models. J. of Universal
Computer Science, 15(1):3–32, 2009.

[11] R. Farahbod, U. Glässer, and M. Vajihollahi. A formal
semantics for the business process execution language for web
services. In S. Bevinakoppa, L. F. Pires, and S. Hammoudi,
editors, WSMDEIS, pages 122–133. INSTICC Press, 2005.

[12] A. Gargantini, E. Riccobene, and P. Scandurra. A semantic
framework for metamodel-based languages. J. of Automated
Software Engineering, 16(3-4), 2009.

[13] ASMs web site. http://www.eecs.umich.edu/gasm/, 2008.

[14] C. Guidi, R. Lucchi, R. Gorrieri, N. Busi, and G. Zavattaro. :
A calculus for service oriented computing. In A. Dan and
W. Lamersdorf, editors, ICSOC, volume 4294 of LNCS, pages
327–338. Springer, 2006.

[15] I. Lanese, F. Martins, V. T. Vasconcelos, and A. Ravara.
Disciplining orchestration and conversation in service-oriented
computing. In SEFM, pages 305–314. IEEE, 2007.

[16] A. Lapadula, R. Pugliese, and F. Tiezzi. A calculus for
orchestration of web services. In LNCS, pages 33–47. Springer,
2007.

[17] EU project SENSORIA, ist-2 005-016004. tech. rep. d8.2.a,
automotive case study: Requirements modelling and analysis of
selected scenarios. www.sensoria-ist.eu/.

[18] EU project SENSORIA, ist-2 005-016004 www.sensoria-ist.eu/.

[19] OMG. Service oriented architecture Modeling Language
(SoaML), ptc/2009-04-01, april 2009
http://www.omg.org/spec/soaml/1.0/beta1/.

[20] OSOA. Service Component Architecture (SCA) www.osoa.org.

[21] P. Mayer, A. Schroeder, and N. Koch. A model-driven approach
to service orchestration. In IEEE SCC (2), pages 533–536.
IEEE, 2008.

[22] P. Mayer, A. Schroeder, N. Koch, and A. Knapp. The
UML4SOA Profile. In Technical Report, LMU Muenchen,
2009.

[23] OMG, Business Process Management Notation (BPMN).
www.bpmn.org/, 2008.

[24] SRML: A Service Modeling Language.
http://www.cs.le.ac.uk/srml/, 2009.

