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Abstract. The SystemC UML profile is a modeling language designed to lif
features and abstractions of the SystemC/C++ class libwahe UML level with
the aim of improving the current industrial System-on-Citggsign methodology.
Its graphical syntax and static semantics were definedviollp the “profile”
extension mechanism of the UML metamodel, while its behaVgemantics was
given in natural language. This paper provides a preciseaacltable semantics
of the SystemC Process State Machitleat are an extension of the UML state
machines and are part of the SystemC UML profile to model thetiee behavior
of the SystemC processes. To this purpose, we used the mekah approach of
the ASM-based semantic framework, which allows the definitif the dynamic
semantics of metamodel-based languages and of UML profiles.

1 Introduction

The SystemC UML profile [28, 24] is a modeling language devetbto improve the
conventional industrial Systems-on-Chip (SoC) desigrhmgblogy with a model-driven
approach [25-27]. It is a consistent set of modeling coegtrdesigned to lift both
structural and behavioral features (including events amd features) of SystemC [32]
to the UML [33] level. It was defined by exploiting the UML prigimechanism that
requires the specification of UML extension elements (stgpes and tagged values)
and of new constraints as Object Constraint Language (OZ2])r[iles.

The profile, while provides a complete description of the alimd) syntax and static
semantics, suffers from the lack of a precise behavioralas¢ios that is given in
natural language. Indeed, in the OMG framework used to ddfiaerofile, as well
as in other metamodeling environments (like Eclipse/Ec@®E/MetaGME, AM-
MA/KM3, XMF-Mosaic/Xcore, etc.), the way to define the larageabstract syntax
in terms of a metamodel and #taticsemantics as OCL rules is well established, while
no standard and rigorous support is given to providedgremicsemantics that is usu-
ally expressed in natural language. This lack has negatimeerjuences, as often re-
marked in the past since the first UML version. Moreover, dedja precise semantics
of UML extensions is widely felt, especially now that UML isrhing into a “family of
languages” (see the OMG standardization activities of UMtfites in [33]).

* This work is supported in part by the PRIN project D-ASAP (Pegable Adaptable Software
Architecture for Pervasive computing).



The definition of a means for specifying rigorously the seticarof UML profiles,
as well as of metamodel-based languages, is therefore amampkcrucial issue in the
model-driven context.

In [11], a formal semantic framework based on the ASM (Aldt&tate Machine)
formal method [2] is presented, which allows us to expresseaigpe and executable
semantics of metamodel-based languages using differennitgues. We here adapt
one of the techniques in [11], theeta-hookingfor UML profiles, and we show its
application to the SystemC UML profile. This implies to prdeia rigorous semantics
of the SystemC Process (SCP) state machfoemalism of the SystemC UML profile
used to model the reactive behavior of SystemC processes.

This paper is organized as follows. Some background on teeB8\ UML profile
is given in Sect. 2. Sect. 3 presents the meta-hooking tquendf the ASM-based
semantic framework. Sect. 4 shows the application of thearhebking technique to
the OMG metamodeling framework for the semantics spedifinatf the SCP state
machines. Some related work is presented in Sect. 5, whie &eoncludes the paper.

2 The SystemC UML profile

SystemC [32] is an open standard in the EDA (Electronic Dre8igtomation) industry.
Built as C++ library, SystemC is a language providing alzstoas for the description
and simulation of SoCs. Typically, the design of a systenpécHied as a hierarchical
structure of modules and channelsn#duleis a container class able to encapsulate
structureandfunctionalityof hardware/software blocks, whilechannel(primitive or
hierarchical) serves as a container to encapsulatedhenunicatiorfunctionality of
blocks. Each module may contaattributesas simple data membergsrts (proxy ob-
jects) for communication with the surrounding environnmamdprocessefor executing
module’s functionality and expressing concurrency in tretem. Fig.1 shows a module
examplecount _st i m containing a thread processi ngen, two input portdout
andcl ock, and two output portsoad anddi n, in the SystemC UML profile.

We here skip the details concerning the structural modelorgtructs, as the focus
is on the behavioral aspects of the profile. Some basic comeslerlying the SCP
state machines are reported below as defined in the SystemiCgodfile [28]. This
formalism is to be considered a conservative extensionefiiL methodstate ma-
chiné defined through the UML extension mechanism of “profilesd.(istereotypes,
tags, and constraints)[33].

SystemC Process State Machin@socesses are the basic unit of execution within Sys-
temC and provide the mechanism for simulating concurrehbier. Three kinds of
processes are availabkc et hod, sc_t hr ead andsc_ct hr ead. Each kind of
process has a slight different behavior, but in general fiyacess is declared within
the scope of a class (a module or a hierarchical channel) teyeoty/ped operation
with no return type and no arguments (see, for example, Fi¢jillall processes run

3 A UML “method” state machine specifies the algorithm or phae for a behavioral feature
(such as a class’s operation).



concurrently (iii) the process code is ndiierarchical i.e. no process can directly in-
voke another process (processes can cause other procesgesute only by notifying
events); and (iv) a process is activated depending ostatsc sensitivitythat is an ini-

tial list (possibly empty) of events that can dynamicallyange at run-time realizing
the so calledlynamic sensitivitynechanism. Finally, (v) all processes are usually acti-
vated at the beginning of the simulation, but a process cagxpkcitly notinitialized
—by means of dont _i ni ti al i ze statement —, so it does not execute immediately
when the simulation starts, but after a first occurrence gfadrihe events in its static
sensitivity.

«sC_modules

count_stim
wsC_interfaces ‘;fﬁfurb) 1 | | «sc_]ﬁog? «sC_interfaces
o ] [ —C
st_signal_in_if <T->int> ] [T =c_signal_inout_if <T-=int=
«SC_port: «Stjfﬂ;b) wst_interfaces

wsC_interfaces cloek [.] [.]

sC_signal_in_if =T->baool> sC_signal_inout_if <T-=int>
_maxcount: int = maxcount

+oount_stim(nm:sc module name, maxcount:int)
<80 threads> stimgeni): void {dont initialize,
sensitives << clock. posedge event ()}

Fig. 1. Thecount _st i mmodule

In this paper, we focus on ttee _t hr ead process type. Fig.2 (A) shows the UML
schema of a SC thread state machine. This diagram correspo@dSystemC thread
that: (i) has both a static (the list,...,exs) and a dynamic sensitivity (the state
WAI TI NG FOR e* with the stereotyp@ai t ), (ii) runs continuously (by an infinite
whi | e loop), and (iii) is notinitialized (the state with tlont _i ni ti al i ze stereo-
type follows the top initial state). Activitieal anda2 stand for structured blocks of
sequential (or not) code withowtai t statements. The wait-state denotes a generic
wai t (ex) statement where the eveat matches one of the cases described in Fig.3.
The pattern in Fig.2 (A) can be more complex in caseaift statements within the
scope of nested control structures. In this case, as pdre@ystemC UML profile, the
control structureshi | e,i f - el se, etc., need to be explicitly represented in terms of
special stereotyped junction or choice pseudostates.

Fig.2 (B) shows the state machine for iei mgen thread of the module shown in
Fig.1. It is an instantiation of the pattern in Fig.2 (A). @ftinitializing thel oad and
di n ports, thest i ngen thread runs continuously: at each clock cycle (by the waiit fo
the positive clock edge event of the static sensitivity) listhecks the received value
from thedout port and may restart the counter in case it reaches thexcount
attribute’s value. Actions are specified using SystemC/@s-action language.

The stereotypec_t hr ead labels both the operation indicating the thread process
in the class of the container module (see, e.g., Fig.1) amdttte machine defined for
the process (see Fig. 2 (B)). The tagnsi ti ve (see Fig.1) is used to declare the
static sensitivity list of the thread (if any) using the for e;; < .. < ens, Where
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Fig. 2. A thread state machine pattern (A) and a (concrete) thredel stachine (B)

e1s, -, €Ns are event types. The boolean tagged valoat i niti al i ze, whose
default value if al se, represents the Systendont i ni ti al i ze statement. The
dont _initi ali ze stereotypeis also applied to a simple state (see Fig.2)sarsbd

to capture at state machine level the behavioral semarittbedont _i niti al i ze
statement. Adont _i ni ti al i ze state has only one outgoing transition with possibly
no explicit triggers; it is assumed that the static serigjtilist of the process are the
implicit trigger event list of this transition.

The dynamic sensitivity of a thread is captured at behalleval in the state ma-
chine associated to the thread by the use of the sterecdy@dd ¢_wai t andwai t .
These stereotypes are applied to simple states. They nfmi8yistemGrai t () and
wai t (ex) statements for resuming a waiting process depending otatis and dy-
namic sensitivity, respectively. At ati c_wai t state has only one outgoing transi-
tion, thestatic resuming transitionwith no explicit triggers since it is assumed that
the events of the static sensitivity list of the process aeeimplicit triggers of this
transition. The parameter of awai t (e*) statement is the trigger of the outgoing
transitions, thelynamic resuming transitionsf awai t state (see Fig.3).

3 ASM-based semantic framework

The semantic framework presented in [11] is based on the A@¥hdl method and
allows to link the abstract syntax (metamodel) of a languaie its executable be-



SystemC UML Notation
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Fig. 3. Dynamic Sensitivity of a Thread

havioral semantics expressed in terms of ASM transitioes.uh the sequel, we recall
from [11] some basic concepts.

A language metamodd@ has a well-defined semantics if a semantic donfais
identified and a semantic mappidds : A — S is provided [13] to give meaning to
syntactic concepts ofl in terms of the semantic domain elements. In the ASM-based
semantic framework, the mappings is defined in terms of the ASM metamodel,
AsmM and its semantic domaifiasmyi'. The semantics of a “terminal modeI[15]
conforming toA is therefore expressed in terms of an ASM model.

By assuming the semantic domaiasmm as the semantic domaty the semantic
mappingMs : A — Sasmmis defined as

MS = MSAsmMO M

WherEMSAsmM : AsmM — Sasmmis the semantic mapping of the ASM metamodel
and associates a theory conforming to #$emm logic with a model conforming to
AsmM and the functiol’M : A — AsmM associates an ASM to a terminal model
m conforming toA. Therefore, the problem of giving the metamodel semangics-

4 Sasmmis the first-order logic extended with the logic for functiopdates and for transition
rule constructors formally defined in [2].

5 A terminal model is a representation, that conforms to areefee metamodel, of a real world
system (or portions of it).



duced to define the functial/ between metamodels. The complexity of this approach
depends on the complexity of building the functibh

Different ways of defining/ were presented in [11], classifiedtianslationaland
weaving depending on the abstraction level of the metamodelliagksf15]. Going
up through the metamodeling levels, these techniques afloreasing automation in
defining model transformations, increasing reuse and dsitrg dependency of the fi-
nal ASM with respect to the terminal model. Among them, weshesmmit with the
translationameta-hookin@pproach that works at meta-metamodel level, and allows us
to exploit the definition of the function : MOF — AsmM (see below for details)
defined in [11] and suitable for all languages whose metalrisdiefined in terms of
MOF. Here is adapted to handle also UML profiles, as the SystemC UML Ierofi

Meta-hooking for MOF-based metamodels This technique aims at automatically
deriving (most of the part of) the signature of the resul®M from the source meta-
model A and MOF. This resulting algebra is then endowed with ASMdition rules
to capture the behavioral aspects of the underlying langu@igally, by navigating a
specific terminal modeh, the initial state is determined.

Formally, the function : A — AsmM for a MOF-based metamoddl(such as
UML or a UML profile) is defined as

M(m) = 1(w(m))(ra(v(w(m))),m)

for all m conforming toA, where:
—~v: MOF — AsmM provides sighature (domain and function definitions) of the
final machineM (m) from the metamodel(m) to whichm conforms to,
— 74 AsmM— AsmM provides the ASM transition rules capturing the behavioral
aspects of4,
—1: MOF — (AsmM x A —s AsmM) is an HOT (High Order Transformatidh)
and establishes, for a metamodglthe transformation(A) that computes the initial
state of the final machin&/(m) by extracting initial values for data structures of the
machine from the source modeling elementsin

Mappingsy and. areuniversal i.e. once defined for the MOF, they are applicable
to all metamodels conforming to MOF, and therefore to theeSy€ UML Profile.

4 Meta-Hooking for the SystemC Process state machines

We here exploit the meta-hooking technique of the ASM-basdantic framework
to provide the operational semantics of the SCP state meshifo this purpose, as
domain A of the functionM, we do not need to consider the whole SystemC UML
metamodel, but only its portion related to the abstractaymdr modeling state ma-
chines. Figures 4 and 5 shows a simplifigabrtion of the UML metamodel (related

8 An HOT is a transformation taking as input or producing apouanother transformation.
" The effect of some OCL constraints of the SystemC UML proSlgriaphically emphasized
by circles. They show that multiplicities have been restddrom many to exactly 1.



to the state machines) together with the stereotypes defiaifonly some elements)
capturing specific features of the SCP state machines.

The semantics specification of the SCP state machines isredgiy an ASM model
obtained in three steps: (1) themapping (see the MOFtoAsmM transformation rules
provided in [11], Table 1) is applied to the portion of the UMietamodel related to
the state machine formalism and to its extension throughatgpes to obtain the ASM
signature; (2) the operational semantics of the SCP stathimes is then defined by
ASM transition rules as form of pseudo-code operating onathtract data derived
from step 1; finally, (3) the initial state of the ASM model faterminal model (later
referred SC-UML) conforming to the SystemC UML profile is pided by an HOT.
similar to the one defined in [11], Table 2.

Note that to fulfill step 1, thee mapping provided in [11] is further extended here
to handle the stereotypes of the UML profile mechanism. Tophrpose, atereotype
is treated similarly to a class, and therefore mapped intoraaih that is subset of the
domain corresponding to the (extended) base cleg.definitionof stereotypes are
attributes of the stereotype class, and therefore they appad to ASM functions hav-
ing as domain the ASM domain corresponding to the stereptymeas codomain the
ASM domain corresponding to the attribute type. Genertitimaelationships between
stereotypes are mapped as for generalization relationbleifpveen classes.
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Fig. 4. SCP state machines metamodel (Part 1)
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Fig. 5. SCP state machines metamodel (Part 2): some stereotypes
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The ASM model described here is an adaptation of the ASM mardslented in [1]
where an ASM semantics of the UML 1.x state machines is daesgriAlthough there
are common parts, the model provided here takes into actbetdML2 version and
the restrictions and the specific behavioral features oBysemC UML profile. Due
to the lack of space, only a subset of the entire set of ASMsttiam rules is reported.
The reader can find more details in the preliminary work [19] & the implementa-
tion available at [16] using the ASMETA/Asmetal langué&gdoreover, the reader is
assumed to be familiar with the semantics of the UML statehimas.

4.1 ASM signature

From the class diagram in Fig. 4 and the stereotypes in Fig. SCP state machine
is asequentiaktate machine made up of just oRegi on, which in turn consists of
(control) states and transitions belonging to the classes ex andTr ansi ti on.

By applying~y to the SCP state machines metamodel, classes are mappédito
domains, generalization relationships are mapped intsetudlomain relations, and
class attributes and associations are mapped into ASMitunscsuitable defined on
the domains corresponding to the related classes. For dgathpSt at e class (see
Fig. 4) is mapped in a subdomain @ér t ex. PredicatessSimple isCompositeand
isSubmachinare defined on the domai® at e to distinguish among UML simple
states, (sequential) composite states, and submachias.dtaparticular, simple states
are of the fornstatg name, container, incoming, outgoing, entry, exit, doAstjwhere
the parametenameis the name of the statepntainerdenotes the region containing
the stateincoming/outgoingspecify the transitions enteriideparting from the state,
entry/exitdenote actions that are performed as soon as the stateried/stéteddoAc-
tivity denotes the internal behavior (if any) that must be execaseldng as the state
is active. All these parameters induced from the associstdd theSt at e class (or
from the super classafert ex andNamedEl enent ) are encoded in terms of ASM
functions according to the mapping rules in [11].

8 The ASMETA toolset http://asmeta.sf.net/



Stereotypes are mapped into domains, and their corresppmags are mapped
into functions, as well. OCL constraints of the SystemC UMufite, not reported
here, state some restrictions on the stereotypes. Thisgempbme constraints on the
resulting ASM model. For example, thei t stereotype is mapped into a simple state
that has ncentry, exit, and doActivity behaviof. The outgoing transitions of wait
state are dynamic resuming transitions of fdramgcontainer, source, target, trigger
wherecontainerdenotes the region that contains the transitgmyrce/target provide
the source/target vertices of the transitimigger is the label denoting the events (a time
eventor a signal event or an OR-list of signal events) whiely enable the transition to
fire. In case of an AND-transition — i.e. the dynamic resuniiagsition is stereotyped
with and and labeled with a list of signal events —, the transition A®-semantics:
it may fire when all the events in the list have been notified,nmezessarily all in the
same delta-cyclé or at the same time. To manage the history of the event octeese
of an AND-transition (sedransition Selection rulen Sect. 4.2), the controlled func-
tion andHis(t,trang is therefore introduced in the ASM signature and returndigtte
of events of an AND-transitiohwhich have already been notified. Moreover, we dis-
tinguish wait-states using the predicé&®/aiton State and AND-transitions using the
predicatésAndon Transition

Control flow Further signature elements not directly induced from theamedel are
added to represent the nesting structure of a state maafmihitsacontrol flow. Suitable
functions to encode anhvigatenested states, like the functiodp/DownChairtsy, s2)
denoting ascending/descending sequences of nestedistate®n states, ands,, are
defined similarly to the ones used for the same scope in tg@atiASM model in [1].
These functions can be formulated by composition of ASM fiams derived from the
metamodel.

In the sequel, elements of the dom&a_t hr ead are referred to athreads A
threadt moves through a SCP state machine diagtaaseStateMachirfg), executing
what is required for itgurrently active stateAs effect of calling an operatiosp (that
is not a SC process), during its lifetime a thread can temppraoves from its base
state machine to the state machimethodop) associated to the invoked operatign
and then come back after completing the execution of theadiperbehavior. The state
machine currently executed bys given by

currStateMachine Sc_thread— StateMachine

9 Some other OCL constraints state that concurrent (or ocihaly composite states (i.e. com-
posite states with more than one region) and other pseudsgtike deepHistory, shallowHis-
tory, entryPoint, join, fork, and exitPoint) of the UML2 amnet allowed in the SystemC UML
profile. Moreoverjnternal transitions andlieferredevents are also not allowed.

10 A delta cycle is a very small step of time within the simulatievhich does not increase the
user-visible time.

11 The mechanism for determining the method (behavior) tokevas effect of an operation
call is unspecified in the UML. In the SystemC UML profile [28}ate machines designed
similarly to the SCP state machines are associated to ipesats behaviors to invoke when
the operations are called. We assume, therefore, thatdhteenporarily execute such a kind
of state machine diagram.



initially set tobaseStateMachirig, while the calling state machine is provided by
callMachine: Sc_threadx StateMachine~ StateMachine

In the current state machine of a thread, a state becomes adten it is entered as
result of some fired transition, and becomes inactive whisreitited. All the composite
states that either directly or transitively contain theacstate are also active. The
current configuratiorof active states w.r.t. the running state machine is given by

currState: Sc_threadk StateMachine—~ P(VerteX

The functiondeepest Sc_threadk StateMachine— Vertexyields the last (innermost)
active state reached by a thread running its current statbima

Event handling In the UML, the semantics of event occurrence processingsed
on therun-to-completiorassumption [33]. Since the event delivering and dispatchin
mechanisms are open in the UML, here they are explicitly nemtlaccording to the
discrete -absoluteandinteger-valued- time model of SystemC [32].

First, time is represented by an increasing monotonic fan@t. The domairEvent -
Cccurr represents the observable event occurrences (or evefitakitins) resulting
from the execution of the processes. A functigpe: EventOccurr— Eventreturns
the event type of a particular event occurrence. Event oenaes are collected in the
global setpendingEventand they are ordered by their time compontmige) with
respect to the current simulation tiriig.

Second, each threadis endowed with a queuaventQueug), of event occur-
rences. One event is processed at a time by each thread. bomibext of a thread
execution, an event is dispatched when it is taken from tlael loéthe event queue. At
this point, the event is considered consumed and referras the current event.

Third, as delivering (or resuming) mechanism, it is assuthatithe threads’event
queues are also updated bgchedulemodeled as a separate agent. This special agent
has the responsibility to place the events, upon their seoge, into the queues of
the processes that are sensitive to them. Threads’ eveneguee therefore shared
functions. The behavior of the scheduler agent is not fomadlhere (though we are
recalling here the ASM functions adopted for the interactioth the scheduler). For
an in depth description, we refer the reader to [20], wherd8M formalization of
the SystemC 2.0 scheduler is given, and to its implememtatid\smetal. available at
[16]. According to the scheduler formalization in [20], as&d functiorstatugt) rang-
ing over the enumeratiorREADY, EXECUTING, SUSPENDEDR used to manage a
thread life cycle. A thread is selected for execution by ttfeesluler, one after the other,
from the set ofeadyprocesses. The set of all processes sensitive to an event tgp
given by the functiorprocesse®) : Event— Sc_threadUpon an event occurrence,
the scheduler examines the process list of the event typettdine the processes
(threads) to which deliver the event occurrence and turmtready in case they were
waiting for that event. An event occurrence can be expjicgquired to be immediate
in the current delta cycle, or for future time cycles.

In the SystemC UML profile, events can essentially be sigrahts (theSi gnal -
Event class in the UML metamodel) or time events (fliemeEvent class). Signal
events represent the receipt of asynchrorsmugvensignals (as stereotyped), and are
generated as a result of sometify actions (stereotypefiendSi gnal Act i on) exe-
cuted by other processes (other threads or methods prege#ber within the context



module (or a hierarchical channel) or in the surroundingremvnent. Time events are
timeouts caused by the expiration of a time deadline alwelgive to the time of entry

of the thread into a wait-stat€ompletion eventévhich originate from UML rather

than SystemC) are directly handled by threads.

Finally, a functiordispatchedt) yields for a thread the head element of the thread’s
event queue to indicate the dequeued event to be procééséedny moment, for a
threadt the only transitiontrans that is eligible to fire when an eveatoccurs is the
one departing from the deepest active statg wfith an associated guard (if any) eval-
uating to true évalg,trang = true),and withe triggeringtrans. This is expressed by
the following function:

trans if triggering(trans,e,t)

enabled(e,t) = {undef otherwise

wheretriggering(trans, e, t) is a derived predicate defined as follows:

triggering(trans, e, t) = sourcétrans) = deepest, currState Machine(t)) &
evalguard(trans),trans) & \/, pi(trans, e, t)

Eachp;(trans,e,} formalizes a different case of the semantics of dynamicmésy
transitions (ranging, see Fig. 3, over timeout, events, AN®D/OR lists of events),
static resuming transitions, and completion transititmsasetrans, for example, is an
AND-dynamic resuming transitiop; (trans,e,} holds if and only ifeis in trigger(trans)
and all the other events inigger(trans) have already been notified to

isAndtrans) & (3 ¢’ € trigger(t) : evenfe’) = type(e) &
(V e” € trigger(trans), evente’”) # type(e): evente”) € andHis(t,trans))

4.2 ASM transition system

This section describes the ASM semantics ofrtireto completion stepf the SystemC
thread state machines. The behavior of a thread consistedivo rulesTransition-
Selectionand GenerateCompletionEvefar simultaneously (i) selecting the machine
transition to be executed next, and (ii) generate completi@nts. The next paragraph
defines the exact meaning of “executing a state machine” lyanpeterized macro rule
stateMachineExecution

In the TransitionSelectionule, a check is done in parallel to the machine execution
for treatingdynamic resumingransitions with an AND-semantics (the OR-semantics
is the default): an AND-transition may fire when all the labgltriggers have been
effectively triggered — not necessarily all in the sameadeitcle or at the same time —,
and in this case the history of the occurrences of its ANDeligvents is reset to empty.
If a dispatched event does not trigger any transition in tivesnt state of a thread, it is
lost unless (thelsebranch) it must be collected in the history of an AND-traiogit

rule TransitionSelectioft) =
if statugt) = EXECUTING
then let e =dispatchedt), trans =enablede,t), s =deepedt,currStateMachine(})

121t should be noted that at this point the ASM model differsnirthe one in [1] since the
mechanism here for selecting the event to consume is detistii



in if trans# undef
then par
stateMachineExecutidtrans)
if isAndtrans) then andHis(t,trans) := [|
else ifisAndWaits,e then andHis{t,trans) := add(e,andHisft,trans))

whereisAndWait s, e)= isWait(s) & (3 trans € outgoinds) | isAndtrans) & e € trigger(trans))

Completion events are generated by a thread when an aatesssttisfies theom-
pletion condition[33]. This is formalized similarly as in the ASM model in [1}a
rule GenerateCompletionEveparameterized with, with the only difference that the
completion event generated is added to the head of the tlexesd queue.

The rule macros This paragraph reports only a very small subset of the rulerosa
used in the top level rules. The subrdtateMachineExecutiois described first. It
formalizes the run-to-completion semantics which cossigb sequentially executing:
(a) the exit actions of the source state and of any enclosatg 8p to, but not including,

the least common ancestb€A (i.e. the innermost composite state that encloses both

the source and the target state), innermost first (see nexé®tatg; (b) the action on
the transition; (c) the entry actions of any enclosing stgté¢o, but not including, the
least common ancestor, outermost first (see maoterStatg finally, (d) the “nature”
of the target state is checked and the corresponding opesadre performed.

macro rule stateMachineExecutigntrans) =
seq
exitStatésourcétrans),ToS,}
executéeffecttrans),t)
enterStaté~romsS, targetrans),t)
casetarget(trans)
isSimple enterSimpleStafearget(trans),t)
isComposite, isSubmachinenterCompositeStat@rgettrans),t)
isWait enterWaitStat@arget(trans),t)
isStatic_wait, isDont_initializeenterStaticWaitStafeargef(trans),t)
isFinal, islf, isEndif, isEndswitctenterNextStaigarget(trans),t)
isSwitch enterSwitchStatgarget(trans))
isWhile, isDowhile, isFarenterLoopStatgargettrans),t)
isReturn enterReturnStatéarget(trans),t)
isBreak enterBreakStatgargettrans),t)
isContinue enterContinueStatéargef(trans),t)
isExit enterExitStatgargef(trans),t)
endcase

whereToSis the direct sub-state of théCAin the nested state chain frasourcétrans)
to LCA; while, FromSis the direct sub-state of tHeCA in the nested state chain from
LCAto targettrans).

MacrosexitStateand enterStatare formalized similarly as in [1]. The exits from
nested states should be performed in an order that respectsdrarchical structure
of the machine. Starting from the deepest state up to, buti@ixg, the source/target



least common ancestor state, innermost first, a thread sgajle(i) executes the exit
actions (if any)3, and (i) removes those states from the thread’s curretet ated, when
states are exited, their enclosed final state (if any).

macro rule exitStatés,v,) =
loop through S e UpChain(s,v)
seq
if - isPseudoState&) then executéexit(S),t)
currStatét, curr StateMachine(t)) := removéS,currStatét, currState M achine(t)))

Similarly, for entering nested states, any state enclogiegarget one up to, but
excluding, the least common ancestor will be entered inesecg) outermost first. En-
tering a state means that (a) the state is activated, i erté@wsincurrStatet, currState-
Machine(t), (b) its entry action (if any) is performed, and (c) the siaternal activity
(if any) is started.

macro rule enterStatés, v, =
loop through S € DownChair{sv)
seq
enterNextStai(S, )
if - isPseudoState)
then seq
executéentry(S),t)
executédoActivity(S),t)

whereenterNextStats,t) = currStatét, currStateMaching)) := insert(s,currStatét,
currStateMaching))).

Macros for entering vertices depending on their specifianeaare completely de-
fined in [10]. We here report only that for entering a waittastaVhen the target state
of the triggered transition is a wait state, the thread ipended as follows. The thread
inserts itself in the process list of all evematappearing as triggers in the outgoing tran-
sitions of the wait-state, and changes its statusugpendedrhe thread will be turned
readyby the scheduler when an event that the thread is waiting flbbes notified. In
case of timeout, i.e. an outgoing transition with a time ¢vibre thread creates an event
occurrence with timéimeout+- 7, and adds it to the set of pending events.

macro rule enterWaitStates,t) =
if 3¢’ € trigger(outgoings)) : isTimeEver(e")
then extendEventOccurwith e
time(e) := T.+ evalwher{evente')))
type(e) := evente’)
pendingEvents= add pendingEvents)e
forall e € trigger(outgoings)) do processe@vente)) := add processe@vente)),t)
status(t) := SUSPENDED

wherewhen(eYor a time event is an expression specifying a relative instant in time.

13 Note there is no reason to stop the internal ongoing aei(if any) before exit, since the
only outgoing transitions from a non stereotyped state angptetion transitions.



4.3 ASM initial state

The initial state is the result of the mappin@C-UML), defined by the HOT applied

to a terminal SystemC-UML model. It provides the initial was of domains and of
(dynamic) controlled functions of the ASM signature neeeg$o execute each process
state machine (like thet i ngen thread machine shown in Fig. 2) appearing in the
terminal model. For the lack of space, the result of this fatep is not reported here.

5 Related work

There are different ways currently used to specify the sé¢icenf metamodel-based
languages, and therefore of UML profiles. They mainly fatbithe following cate-
gories.

(I) Using natural language® describe language semantics informally.

(1) Using the OCL [22]and its extensions, see [4, 8, 7] to name a few, to specify
static semantics through invariants and behavior througkppst-conditions on opera-
tions; however, being side-effect free, the OCL does natnathe change of a model
state, though it allows describing it.

(1) Weaving behavioRecent works like Kermeta [19], XOCL (eXecutable OCL)
[34], approaches in [29, 31], to name a few, propose ways @figing executability
natively into metamodeling frameworks. A minimal set of extable actions is usually
defined to describe (create/delete object, slot updataitonal operators, loops, local
variables declarations, call expressions, etc.) behalvgmmantics of metamodels by
attaching behavior to classes operations Some approashésperative or objected-
oriented (sub)languages, other use abstract pseudofeodbermore, [9] provides an
executable subset of standard UML (the Foundational UMLs8t)ldo define the se-
mantics of modeling languages such as the standard UML ensixns.

Although, these action languages aim to be pragmatic, siktienand modifiable,
some of them suffer from the same shortcomings of traditipregramming languages;
indeed, a behavioral description written in one of suchoackhnguages has the same
complexity of one (a program) written in a conventional pgogming language. More-
over, not all action semantics proposals are powerful enaagpecify the model of
computation (MoC) underlying the language being modeledl anprovide such a
specification with a clear formal semantics. As shown in £Bl, when we illustrate
a similar technique, theveaving techniqueof our ASM-based framework, the ASMs
formalism itself can be also intended as an action languapeith a concise and pow-
erful set of action schema provided by different ASM rule stonctors.

(IV) Translational semantiggonsisting in defining a mapping from the language
metamodel to the abstract syntax of another language tisapisosed to be formally
defined. In [3], metamodels aemchoredto formal models of computation built upon
AsmL, a language to encode ASM models. In [6], the semanfitsedAMMA/ATL
transformation language is specified in XASM, an open soA$# dialect. Similar
approaches based on thianslationaltechnique are UML-B [30] using the Event-B
formal method, those adopting Object-Z like [17,5], etcnf@oprevious works us-
ing ASMs to provide an executable and rigorous semantics ML lgraphical sub-
languages (statecharts, activity diagrams, etc.) [24,81ifall in this category. These



approaches can be intended as exemplifications of otheslatamal techniques of the
ASM semantic framework, as better described in [11]. Thaneue used here is also
translational, but it is more general as it works at the “rhketeel leading more automa-
tion, and therefore less user effort, and more reusable mgpand specifications.

(V) Semantic domain modellingshere a metamodel for the “semantic domain” —
i.e. to express also concepts of the run-time executiorremvient — is defined, and
then OCL rules are used to map elements of the language me¢hindo elements
of the semantic domain metamodel. This approach was usatdd@MOF Abstract
Semantic$18] and for the OCL [22]. We postponed as future step theuatan of
the effectiveness of the joint-use of this technique with A&8M formal method, as it
requires a certain effort in modeling, at metamodel levish the semantic domain.

6 Conclusions

This paper presents an executable formal semantics for@festate machines of the
SystemC UML profile by exploiting the meta-hooking approattthe ASM-based
semantic framework in [11]. Executability allovemantics prototypingp examine
particular behavioral features of the profile and to checthé provided extensions
of the UML metamodel areonservativei.e. if their semantics does not contradict the
UML semantics, and fix explicitly theemantics variation pointatentionally left in the
UML as leeway for the definition of domain-specific UML pro§ler'he comparison in
[10] between the ASM model for the UML state machines in [1d #me ASM model
for the SCPs described here shows that SCPs are effecticelyservative extension.

Formal ASM models obtained from graphical SystemC-UML nis@an poten-
tially drive practical SoC model analysis like simulati@rchitecture evaluation and
design exploration [12].
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