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Abstract. The SystemC UML profile is a modeling language designed to lift
features and abstractions of the SystemC/C++ class libraryto the UML level with
the aim of improving the current industrial System-on-Chipdesign methodology.
Its graphical syntax and static semantics were defined following the “profile”
extension mechanism of the UML metamodel, while its behavioral semantics was
given in natural language. This paper provides a precise andexecutable semantics
of the SystemC Process State Machinesthat are an extension of the UML state
machines and are part of the SystemC UML profile to model the reactive behavior
of the SystemC processes. To this purpose, we used the meta-hooking approach of
the ASM-based semantic framework, which allows the definition of the dynamic
semantics of metamodel-based languages and of UML profiles.

1 Introduction

The SystemC UML profile [28, 24] is a modeling language developed to improve the
conventional industrial Systems-on-Chip (SoC) design methodology with a model-driven
approach [25–27]. It is a consistent set of modeling constructs designed to lift both
structural and behavioral features (including events and time features) of SystemC [32]
to the UML [33] level. It was defined by exploiting the UML profile mechanism that
requires the specification of UML extension elements (stereotypes and tagged values)
and of new constraints as Object Constraint Language (OCL) [22] rules.

The profile, while provides a complete description of the modeling syntax and static
semantics, suffers from the lack of a precise behavioral semantics that is given in
natural language. Indeed, in the OMG framework used to definethe profile, as well
as in other metamodeling environments (like Eclipse/Ecore, GME/MetaGME, AM-
MA/KM3, XMF-Mosaic/Xcore, etc.), the way to define the languageabstract syntax
in terms of a metamodel and itsstaticsemantics as OCL rules is well established, while
no standard and rigorous support is given to provide thedynamicsemantics that is usu-
ally expressed in natural language. This lack has negative consequences, as often re-
marked in the past since the first UML version. Moreover, defining a precise semantics
of UML extensions is widely felt, especially now that UML is turning into a “family of
languages” (see the OMG standardization activities of UML profiles in [33]).

⋆ This work is supported in part by the PRIN project D-ASAP (Dependable Adaptable Software
Architecture for Pervasive computing).



The definition of a means for specifying rigorously the semantics of UML profiles,
as well as of metamodel-based languages, is therefore an open and crucial issue in the
model-driven context.

In [11], a formal semantic framework based on the ASM (Abstract State Machine)
formal method [2] is presented, which allows us to express a precise and executable
semantics of metamodel-based languages using different techniques. We here adapt
one of the techniques in [11], themeta-hooking, for UML profiles, and we show its
application to the SystemC UML profile. This implies to provide a rigorous semantics
of theSystemC Process (SCP) state machinesformalism of the SystemC UML profile
used to model the reactive behavior of SystemC processes.

This paper is organized as follows. Some background on the SystemC UML profile
is given in Sect. 2. Sect. 3 presents the meta-hooking technique of the ASM-based
semantic framework. Sect. 4 shows the application of the meta-hooking technique to
the OMG metamodeling framework for the semantics specification of the SCP state
machines. Some related work is presented in Sect. 5, while Sect. 6 concludes the paper.

2 The SystemC UML profile

SystemC [32] is an open standard in the EDA (Electronic Design Automation) industry.
Built as C++ library, SystemC is a language providing abstractions for the description
and simulation of SoCs. Typically, the design of a system is specified as a hierarchical
structure of modules and channels. Amoduleis a container class able to encapsulate
structureandfunctionalityof hardware/software blocks, while achannel(primitive or
hierarchical) serves as a container to encapsulate thecommunicationfunctionality of
blocks. Each module may containattributesas simple data members,ports (proxy ob-
jects) for communication with the surrounding environmentandprocessesfor executing
module’s functionality and expressing concurrency in the system. Fig.1 shows a module
example,count_stim, containing a thread processstimgen, two input portsdout
andclock, and two output portsload anddin, in the SystemC UML profile.

We here skip the details concerning the structural modelingconstructs, as the focus
is on the behavioral aspects of the profile. Some basic concepts underlying the SCP
state machines are reported below as defined in the SystemC UML profile [28]. This
formalism is to be considered a conservative extension of the UML methodstate ma-
chine3 defined through the UML extension mechanism of “profiles” (i.e., stereotypes,
tags, and constraints)[33].

SystemC Process State MachinesProcesses are the basic unit of execution within Sys-
temC and provide the mechanism for simulating concurrent behavior. Three kinds of
processes are available:sc_method, sc_thread andsc_cthread. Each kind of
process has a slight different behavior, but in general (i) aprocess is declared within
the scope of a class (a module or a hierarchical channel) as a stereotyped operation
with no return type and no arguments (see, for example, Fig.1); (ii) all processes run

3 A UML “method” state machine specifies the algorithm or procedure for a behavioral feature
(such as a class’s operation).



concurrently; (iii) the process code is nothierarchical, i.e. no process can directly in-
voke another process (processes can cause other processes to execute only by notifying
events); and (iv) a process is activated depending on itsstatic sensitivitythat is an ini-
tial list (possibly empty) of events that can dynamically change at run-time realizing
the so calleddynamic sensitivitymechanism. Finally, (v) all processes are usually acti-
vated at the beginning of the simulation, but a process can beexplicitly not initialized
– by means of adont_initialize statement –, so it does not execute immediately
when the simulation starts, but after a first occurrence of any of the events in its static
sensitivity.

Fig. 1.Thecount_stim module

In this paper, we focus on thesc_thread process type. Fig.2 (A) shows the UML
schema of a SC thread state machine. This diagram corresponds to a SystemC thread
that: (i) has both a static (the liste1s, . . . , eNs) and a dynamic sensitivity (the state
WAITING FOR e* with the stereotypewait), (ii) runs continuously (by an infinite
while loop), and (iii) is not initialized (the state with thedont_initialize stereo-
type follows the top initial state). Activitiesa1 anda2 stand for structured blocks of
sequential (or not) code withoutwait statements. The wait-state denotes a generic
wait(e*) statement where the evente* matches one of the cases described in Fig.3.
The pattern in Fig.2 (A) can be more complex in case ofwait statements within the
scope of nested control structures. In this case, as part of the SystemC UML profile, the
control structureswhile, if-else, etc., need to be explicitly represented in terms of
special stereotyped junction or choice pseudostates.

Fig.2 (B) shows the state machine for thestimgen thread of the module shown in
Fig.1. It is an instantiation of the pattern in Fig.2 (A). After initializing theload and
din ports, thestimgen thread runs continuously: at each clock cycle (by the wait for
the positive clock edge event of the static sensitivity list) it checks the received value
from thedout port and may restart the counter in case it reaches the_maxcount
attribute’s value. Actions are specified using SystemC/C++as action language.

The stereotypesc_thread labels both the operation indicating the thread process
in the class of the container module (see, e.g., Fig.1) and the state machine defined for
the process (see Fig. 2 (B)). The tagsensitive (see Fig.1 ) is used to declare the
static sensitivity list of the thread (if any) using the form≪ e1s ≪ .. ≪ eNs, where



(A) (B)

Fig. 2. A thread state machine pattern (A) and a (concrete) thread state machine (B)

e1s, .., eNs are event types. The boolean tagged valuedont_initialize, whose
default value isfalse, represents the SystemCdont_initialize statement. The
dont_initialize stereotype is also applied to a simple state (see Fig.2) and is used
to capture at state machine level the behavioral semantics of thedont_initialize
statement. Adont_initialize state has only one outgoing transition with possibly
no explicit triggers; it is assumed that the static sensitivity list of the process are the
implicit trigger event list of this transition.

The dynamic sensitivity of a thread is captured at behavioral level in the state ma-
chine associated to the thread by the use of the stereotypesstatic_wait andwait.
These stereotypes are applied to simple states. They model the SystemCwait() and
wait(e*) statements for resuming a waiting process depending on its static and dy-
namic sensitivity, respectively. Astatic_wait state has only one outgoing transi-
tion, thestatic resuming transition, with no explicit triggers since it is assumed that
the events of the static sensitivity list of the process are the implicit triggers of this
transition. The parametere* of a wait(e*) statement is the trigger of the outgoing
transitions, thedynamic resuming transitions, of await state (see Fig.3).

3 ASM-based semantic framework

The semantic framework presented in [11] is based on the ASM formal method and
allows to link the abstract syntax (metamodel) of a languagewith its executable be-



Fig. 3.Dynamic Sensitivity of a Thread

havioral semantics expressed in terms of ASM transition rules. In the sequel, we recall
from [11] some basic concepts.

A language metamodelA has a well-defined semantics if a semantic domainS is
identified and a semantic mappingMS : A → S is provided [13] to give meaning to
syntactic concepts ofA in terms of the semantic domain elements. In the ASM-based
semantic framework, the mappingMS is defined in terms of the ASM metamodel,
AsmM, and its semantic domainSAsmM

4. The semantics of a “terminal model”5 [15]
conforming toA is therefore expressed in terms of an ASM model.

By assuming the semantic domainSAsmM as the semantic domainS, the semantic
mappingMS : A → SAsmM is defined as

MS = MSAsmM
◦ M

whereMSAsmM : AsmM → SAsmM is the semantic mapping of the ASM metamodel
and associates a theory conforming to theSAsmM logic with a model conforming to
AsmM, and the functionM : A → AsmM associates an ASM to a terminal model
m conforming toA. Therefore, the problem of giving the metamodel semantics is re-

4 SAsmM is the first-order logic extended with the logic for functionupdates and for transition
rule constructors formally defined in [2].

5 A terminal model is a representation, that conforms to a reference metamodel, of a real world
system (or portions of it).



duced to define the functionM between metamodels. The complexity of this approach
depends on the complexity of building the functionM .

Different ways of definingM were presented in [11], classified intranslationaland
weaving, depending on the abstraction level of the metamodelling stack [15]. Going
up through the metamodeling levels, these techniques allowincreasing automation in
defining model transformations, increasing reuse and decreasing dependency of the fi-
nal ASM with respect to the terminal model. Among them, we here commit with the
translationalmeta-hookingapproach that works at meta-metamodel level, and allows us
to exploit the definition of the functionγ : MOF −→ AsmM (see below for details)
defined in [11] and suitable for all languages whose metamodel is defined in terms of
MOF. Hereγ is adapted to handle also UML profiles, as the SystemC UML Profile.

Meta-hooking for MOF-based metamodels This technique aims at automatically
deriving (most of the part of) the signature of the resultingASM from the source meta-
modelA and MOF. This resulting algebra is then endowed with ASM transition rules
to capture the behavioral aspects of the underlying language. Finally, by navigating a
specific terminal modelm, the initial state is determined.

Formally, the functionM : A −→ AsmM for a MOF-based metamodelA (such as
UML or a UML profile) is defined as

M(m) = ι(ω(m))(τA(γ(ω(m))), m)

for all m conforming toA, where:
– γ : MOF −→ AsmM provides signature (domain and function definitions) of the
final machineM(m) from the metamodelω(m) to whichm conforms to,
– τA: AsmM−→ AsmM provides the ASM transition rules capturing the behavioral
aspects ofA,
– ι : MOF −→ (AsmM × A −→ AsmM ) is an HOT (High Order Transformation)6

and establishes, for a metamodelA, the transformationι(A) that computes the initial
state of the final machineM(m) by extracting initial values for data structures of the
machine from the source modeling elements inm.

Mappingsγ andι areuniversal, i.e. once defined for the MOF, they are applicable
to all metamodels conforming to MOF, and therefore to the SystemC UML Profile.

4 Meta-Hooking for the SystemC Process state machines

We here exploit the meta-hooking technique of the ASM-basedsemantic framework
to provide the operational semantics of the SCP state machines. To this purpose, as
domainA of the functionM , we do not need to consider the whole SystemC UML
metamodel, but only its portion related to the abstract syntax for modeling state ma-
chines. Figures 4 and 5 shows a simplified7 portion of the UML metamodel (related

6 An HOT is a transformation taking as input or producing as output another transformation.
7 The effect of some OCL constraints of the SystemC UML profile is graphically emphasized

by circles. They show that multiplicities have been restricted from many to exactly 1.



to the state machines) together with the stereotypes definitions (only some elements)
capturing specific features of the SCP state machines.

The semantics specification of the SCP state machines is captured by an ASM model
obtained in three steps: (1) theγ mapping (see the MOFtoAsmM transformation rules
provided in [11], Table 1) is applied to the portion of the UMLmetamodel related to
the state machine formalism and to its extension through stereotypes to obtain the ASM
signature; (2) the operational semantics of the SCP state machines is then defined by
ASM transition rules as form of pseudo-code operating on theabstract data derived
from step 1; finally, (3) the initial state of the ASM model fora terminal model (later
referred SC-UML) conforming to the SystemC UML profile is provided by an HOTι
similar to the one defined in [11], Table 2.

Note that to fulfill step 1, theγ mapping provided in [11] is further extended here
to handle the stereotypes of the UML profile mechanism. To this purpose, astereotype
is treated similarly to a class, and therefore mapped into a domain that is subset of the
domain corresponding to the (extended) base class.Tag definitionsof stereotypes are
attributes of the stereotype class, and therefore they are mapped to ASM functions hav-
ing as domain the ASM domain corresponding to the stereotype, and as codomain the
ASM domain corresponding to the attribute type. Generalization relationships between
stereotypes are mapped as for generalization relationships between classes.

Fig. 4.SCP state machines metamodel (Part 1)



Fig. 5.SCP state machines metamodel (Part 2): some stereotypes

The ASM model described here is an adaptation of the ASM modelpresented in [1]
where an ASM semantics of the UML 1.x state machines is described. Although there
are common parts, the model provided here takes into accountthe UML2 version and
the restrictions and the specific behavioral features of theSystemC UML profile. Due
to the lack of space, only a subset of the entire set of ASM transition rules is reported.
The reader can find more details in the preliminary work [10] and in the implementa-
tion available at [16] using the ASMETA/AsmetaL language8. Moreover, the reader is
assumed to be familiar with the semantics of the UML state machines.

4.1 ASM signature

From the class diagram in Fig. 4 and the stereotypes in Fig. 5,a SCP state machine
is a sequentialstate machine made up of just oneRegion, which in turn consists of
(control) states and transitions belonging to the classesVertex andTransition.

By applyingγ to the SCP state machines metamodel, classes are mapped intoASM
domains, generalization relationships are mapped into subset domain relations, and
class attributes and associations are mapped into ASM functions suitable defined on
the domains corresponding to the related classes. For example, theState class (see
Fig. 4) is mapped in a subdomain ofVertex. PredicatesisSimple, isComposite, and
isSubmachineare defined on the domainState to distinguish among UML simple
states, (sequential) composite states, and submachine states. In particular, simple states
are of the formstate(name, container, incoming, outgoing, entry, exit, doActivity) where
the parameternameis the name of the state,containerdenotes the region containing
the state,incoming/outgoingspecify the transitions entering/departing from the state,
entry/exitdenote actions that are performed as soon as the state is entered/exited,doAc-
tivity denotes the internal behavior (if any) that must be executedas long as the state
is active. All these parameters induced from the associations of theState class (or
from the super classesVertex andNamedElement) are encoded in terms of ASM
functions according to theγ mapping rules in [11].

8 The ASMETA toolset http://asmeta.sf.net/



Stereotypes are mapped into domains, and their corresponding tags are mapped
into functions, as well. OCL constraints of the SystemC UML profile, not reported
here, state some restrictions on the stereotypes. This implies some constraints on the
resulting ASM model. For example, thewait stereotype is mapped into a simple state
that has noentry, exit, anddoActivitybehavior9. The outgoing transitions of await
state are dynamic resuming transitions of formtrans(container, source, target, trigger)
wherecontainerdenotes the region that contains the transition,source/targetprovide
the source/target vertices of the transition,trigger is the label denoting the events (a time
event or a signal event or an OR-list of signal events) which may enable the transition to
fire. In case of an AND-transition – i.e. the dynamic resumingtransition is stereotyped
with and and labeled with a list of signal events –, the transition hasAND-semantics:
it may fire when all the events in the list have been notified, not necessarily all in the
same delta-cycle10 or at the same time. To manage the history of the event occurrences
of an AND-transition (seeTransition Selection rulein Sect. 4.2), the controlled func-
tion andHist(t,trans) is therefore introduced in the ASM signature and returns thelist
of events of an AND-transitiont which have already been notified. Moreover, we dis-
tinguish wait-states using the predicateisWaiton State, and AND-transitions using the
predicateisAndonTransition.

Control flow Further signature elements not directly induced from the metamodel are
added to represent the nesting structure of a state machine and its control flow. Suitable
functions to encode andnavigatenested states, like the functionsUp/DownChain(s1, s2)
denoting ascending/descending sequences of nested statesbetween statess1 ands2, are
defined similarly to the ones used for the same scope in the original ASM model in [1].
These functions can be formulated by composition of ASM functions derived from the
metamodel.

In the sequel, elements of the domainSc_thread are referred to asthreads. A
threadt moves through a SCP state machine diagram,baseStateMachine(t), executing
what is required for itscurrently active state. As effect of calling an operationop (that
is not a SC process), during its lifetime a thread can temporarily moves from its base
state machine to the state machinemethod(op) associated to the invoked operation11,
and then come back after completing the execution of the operation behavior. The state
machine currently executed byt is given by

currStateMachine: Sc_thread→ StateMachine

9 Some other OCL constraints state that concurrent (or orthogonal) composite states (i.e. com-
posite states with more than one region) and other pseudostates (like deepHistory, shallowHis-
tory, entryPoint, join, fork, and exitPoint) of the UML2 arenot allowed in the SystemC UML
profile. Moreover,internal transitions anddeferredevents are also not allowed.

10 A delta cycle is a very small step of time within the simulation, which does not increase the
user-visible time.

11 The mechanism for determining the method (behavior) to invoke as effect of an operation
call is unspecified in the UML. In the SystemC UML profile [28],state machines designed
similarly to the SCP state machines are associated to operations as behaviors to invoke when
the operations are called. We assume, therefore, that threads temporarily execute such a kind
of state machine diagram.



initially set tobaseStateMachine(t), while the calling state machine is provided by
callMachine: Sc_thread× StateMachine→ StateMachine

In the current state machine of a thread, a state becomes active when it is entered as
result of some fired transition, and becomes inactive when itis exited. All the composite
states that either directly or transitively contain the active state are also active. The
current configurationof active states w.r.t. the running state machine is given by

currState: Sc_thread× StateMachine→ P(Vertex)
The functiondeepest: Sc_thread× StateMachine−→ Vertexyields the last (innermost)
active state reached by a thread running its current state machine.

Event handling In the UML, the semantics of event occurrence processing is based
on therun-to-completionassumption [33]. Since the event delivering and dispatching
mechanisms are open in the UML, here they are explicitly modeled according to the
discrete –absoluteandinteger-valued– time model of SystemC [32].

First, time is represented by an increasing monotonic functionT . The domainEvent-
Occurr represents the observable event occurrences (or event notifications) resulting
from the execution of the processes. A functiontype: EventOccurr−→ Eventreturns
the event type of a particular event occurrence. Event occurrences are collected in the
global setpendingEventsand they are ordered by their time componenttime(e) with
respect to the current simulation timeTc.

Second, each threadt is endowed with a queue,eventQueue(t), of event occur-
rences. One event is processed at a time by each thread. In thecontext of a thread
execution, an event is dispatched when it is taken from the head of the event queue. At
this point, the event is considered consumed and referred toas the current event.

Third, as delivering (or resuming) mechanism, it is assumedthat the threads’event
queues are also updated by aschedulermodeled as a separate agent. This special agent
has the responsibility to place the events, upon their occurrence, into the queues of
the processes that are sensitive to them. Threads’ event queues are therefore shared
functions. The behavior of the scheduler agent is not formalized here (though we are
recalling here the ASM functions adopted for the interaction with the scheduler). For
an in depth description, we refer the reader to [20], where anASM formalization of
the SystemC 2.0 scheduler is given, and to its implementation in AsmetaL available at
[16]. According to the scheduler formalization in [20], a shared functionstatus(t) rang-
ing over the enumeration {READY, EXECUTING, SUSPENDED} is used to manage a
thread life cycle. A thread is selected for execution by the scheduler, one after the other,
from the set ofreadyprocesses. The set of all processes sensitive to an event type e is
given by the functionprocesses(e) : Event−→ Sc_thread. Upon an event occurrence,
the scheduler examines the process list of the event type to determine the processes
(threads) to which deliver the event occurrence and turn them ready in case they were
waiting for that event. An event occurrence can be explicitly required to be immediate
in the current delta cycle, or for future time cycles.

In the SystemC UML profile, events can essentially be signal events (theSignal-
Event class in the UML metamodel) or time events (theTimeEvent class). Signal
events represent the receipt of asynchronoussc_eventsignals (as stereotyped), and are
generated as a result of somenotify actions (stereotypedSendSignalAction) exe-
cuted by other processes (other threads or methods processes) either within the context



module (or a hierarchical channel) or in the surrounding environment. Time events are
timeouts caused by the expiration of a time deadline always relative to the time of entry
of the thread into a wait-state.Completion events(which originate from UML rather
than SystemC) are directly handled by threads.

Finally, a functiondispatched(t) yields for a threadt the head element of the thread’s
event queue to indicate the dequeued event to be processed12. At any moment, for a
threadt the only transitiontrans that is eligible to fire when an evente occurs is the
one departing from the deepest active state oft, with an associated guard (if any) eval-
uating to true (eval(g,trans) = true),and withe triggeringtrans. This is expressed by
the following function:

enabled(e, t) =

{

trans if triggering(trans,e, t)
undef otherwise

wheretriggering(trans, e, t) is a derived predicate defined as follows:

triggering(trans, e, t) ≡ source(trans) = deepest(t, currStateMachine(t)) &
eval(guard(trans), trans) &

∨

i
pi(trans, e, t)

Eachpi(trans,e,t) formalizes a different case of the semantics of dynamic resuming
transitions (ranging, see Fig. 3, over timeout, events, andAND/OR lists of events),
static resuming transitions, and completion transitions.In casetrans, for example, is an
AND-dynamic resuming transition,pi(trans,e,t) holds if and only ife is in trigger(trans)
and all the other events intrigger(trans) have already been notified tot

isAnd(trans) & (∃ e′ ∈ trigger(t) : event(e′) = type(e)) &
(∀ e′′ ∈ trigger(trans), event(e′′) 6= type(e): event(e′′) ∈ andHist(t,trans))

4.2 ASM transition system

This section describes the ASM semantics of therun to completion stepof the SystemC
thread state machines. The behavior of a thread consists of the two rulesTransition-
SelectionandGenerateCompletionEventfor simultaneously (i) selecting the machine
transition to be executed next, and (ii) generate completion events. The next paragraph
defines the exact meaning of “executing a state machine” by a parameterized macro rule
stateMachineExecution.

In theTransitionSelectionrule, a check is done in parallel to the machine execution
for treatingdynamic resumingtransitions with an AND-semantics (the OR-semantics
is the default): an AND-transition may fire when all the labeling triggers have been
effectively triggered – not necessarily all in the same delta-cycle or at the same time –,
and in this case the history of the occurrences of its AND-list of events is reset to empty.
If a dispatched event does not trigger any transition in the current state of a thread, it is
lost unless (theelsebranch) it must be collected in the history of an AND-transition.

rule TransitionSelection(t) =
if status(t) = EXECUTING

then let e =dispatched(t), trans =enabled(e,t), s =deepest(t,currStateMachine(t))

12 It should be noted that at this point the ASM model differs from the one in [1] since the
mechanism here for selecting the event to consume is deterministic.



in if trans 6= undef
then par

stateMachineExecution(t,trans)
if isAnd(trans) then andHist(t,trans) := []

else if isAndWait(s,e) then andHist(t,trans) := add(e,andHist(t,trans))

whereisAndWait(s, e)≡ isWait(s) & (∃ trans∈ outgoing(s) | isAnd(trans) & e∈ trigger(trans))

Completion events are generated by a thread when an active state satisfies thecom-
pletion condition[33]. This is formalized similarly as in the ASM model in [1] by a
rule GenerateCompletionEventparameterized witht, with the only difference that the
completion event generated is added to the head of the threadevent queue.

The rule macros This paragraph reports only a very small subset of the rule macros
used in the top level rules. The subrulestateMachineExecutionis described first. It
formalizes the run-to-completion semantics which consists into sequentially executing:
(a) the exit actions of the source state and of any enclosing state up to, but not including,
the least common ancestorLCA (i.e. the innermost composite state that encloses both
the source and the target state), innermost first (see macroexitState); (b) the action on
the transition; (c) the entry actions of any enclosing stateup to, but not including, the
least common ancestor, outermost first (see macroenterState); finally, (d) the “nature”
of the target state is checked and the corresponding operations are performed.

macro rule stateMachineExecution(t,trans) =
seq

exitState(source(trans),ToS,t)
execute(effect(trans),t)
enterState(FromS,target(trans),t)
casetarget(trans)

isSimple: enterSimpleState(target(trans),t)
isComposite, isSubmachine: enterCompositeState(target(trans),t)
isWait: enterWaitState(target(trans),t)
isStatic_wait, isDont_initialize: enterStaticWaitState(target(trans),t)
isFinal, isIf, isEndif, isEndswitch: enterNextState(target(trans),t)
isSwitch: enterSwitchState(target(trans))
isWhile, isDowhile, isFor: enterLoopState(target(trans),t)
isReturn: enterReturnState(target(trans),t)
isBreak: enterBreakState(target(trans),t)
isContinue: enterContinueState(target(trans),t)
isExit: enterExitState(target(trans),t)

endcase

whereToSis the direct sub-state of theLCA in the nested state chain fromsource(trans)
to LCA; while, FromSis the direct sub-state of theLCA in the nested state chain from
LCA to target(trans).

MacrosexitStateandenterStateare formalized similarly as in [1]. The exits from
nested states should be performed in an order that respects the hierarchical structure
of the machine. Starting from the deepest state up to, but excluding, the source/target



least common ancestor state, innermost first, a thread sequentially (i) executes the exit
actions (if any)13, and (ii) removes those states from the thread’s current state and, when
states are exited, their enclosed final state (if any).

macro rule exitState(s,v,t) =
loop through S∈ UpChain(s,v)
seq

if ¬ isPseudoState(S) then execute(exit(S),t)
currState(t, currStateMachine(t)) := remove(S,currState(t, currStateMachine(t)))

Similarly, for entering nested states, any state enclosingthe target one up to, but
excluding, the least common ancestor will be entered in sequence, outermost first. En-
tering a state means that (a) the state is activated, i.e. inserted incurrState(t, currState-
Machine(t)), (b) its entry action (if any) is performed, and (c) the stateinternal activity
(if any) is started.

macro rule enterState(s,v,t) =
loop through S∈ DownChain(s,v)
seq

enterNextState(S,t)
if ¬ isPseudoState(S)
then seq

execute(entry(S),t)
execute(doActivity(S),t)

whereenterNextState(s,t) ≡ currState(t, currStateMachine(t)) := insert(s,currState(t,
currStateMachine(t))).

Macros for entering vertices depending on their specific nature are completely de-
fined in [10]. We here report only that for entering a wait-state. When the target state
of the triggered transition is a wait state, the thread is suspended as follows. The thread
inserts itself in the process list of all eventse appearing as triggers in the outgoing tran-
sitions of the wait-state, and changes its status tosuspended. The thread will be turned
readyby the scheduler when an event that the thread is waiting for will be notified. In
case of timeout, i.e. an outgoing transition with a time event, the thread creates an event
occurrence with timetimeout+Tc and adds it to the set of pending events.

macro rule enterWaitState(s,t) =
if ∃ e′ ∈ trigger(outgoing(s)) : isTimeEvent(e′)
then extendEventOccurrwith e

time(e) := Tc+ eval(when(event(e′)))
type(e) := event(e′)
pendingEvents:= add(pendingEvents,e)

forall e∈ trigger(outgoing(s)) do processes(event(e)) := add(processes(event(e)),t)
status(t) := SUSPENDED

wherewhen(e)for a time evente is an expression specifying a relative instant in time.

13 Note there is no reason to stop the internal ongoing activities (if any) before exit, since the
only outgoing transitions from a non stereotyped state are completion transitions.



4.3 ASM initial state

The initial state is the result of the mappingι(SC-UML), defined by the HOTι applied
to a terminal SystemC-UML model. It provides the initial values of domains and of
(dynamic) controlled functions of the ASM signature necessary to execute each process
state machine (like thestimgen thread machine shown in Fig. 2) appearing in the
terminal model. For the lack of space, the result of this finalstep is not reported here.

5 Related work

There are different ways currently used to specify the semantics of metamodel-based
languages, and therefore of UML profiles. They mainly fall into the following cate-
gories.

(I) Using natural languagesto describe language semantics informally.
(II) Using the OCL [22]and its extensions, see [4, 8, 7] to name a few, to specify

static semantics through invariants and behavior through pre/post-conditions on opera-
tions; however, being side-effect free, the OCL does not allow the change of a model
state, though it allows describing it.

(III) Weaving behavior. Recent works like Kermeta [19], xOCL (eXecutable OCL)
[34], approaches in [29, 31], to name a few, propose ways of providing executability
natively into metamodeling frameworks. A minimal set of executable actions is usually
defined to describe (create/delete object, slot update, conditional operators, loops, local
variables declarations, call expressions, etc.) behavioral semantics of metamodels by
attaching behavior to classes operations Some approaches use imperative or objected-
oriented (sub)languages, other use abstract pseudo-code.Furthermore, [9] provides an
executable subset of standard UML (the Foundational UML Subset) to define the se-
mantics of modeling languages such as the standard UML or extensions.

Although, these action languages aim to be pragmatic, extensible and modifiable,
some of them suffer from the same shortcomings of traditional programming languages;
indeed, a behavioral description written in one of such action languages has the same
complexity of one (a program) written in a conventional programming language. More-
over, not all action semantics proposals are powerful enough to specify the model of
computation (MoC) underlying the language being modeled and to provide such a
specification with a clear formal semantics. As shown in [11,23], when we illustrate
a similar technique, theweaving technique, of our ASM-based framework, the ASMs
formalism itself can be also intended as an action language but with a concise and pow-
erful set of action schema provided by different ASM rule constructors.

(IV) Translational semantics, consisting in defining a mapping from the language
metamodel to the abstract syntax of another language that issupposed to be formally
defined. In [3], metamodels areanchoredto formal models of computation built upon
AsmL, a language to encode ASM models. In [6], the semantics of the AMMA/ATL
transformation language is specified in XASM, an open sourceASM dialect. Similar
approaches based on thistranslational technique are UML-B [30] using the Event-B
formal method, those adopting Object-Z like [17, 5], etc. Some previous works us-
ing ASMs to provide an executable and rigorous semantics of UML graphical sub-
languages (statecharts, activity diagrams, etc.) [21, 1, 14, 8] fall in this category. These



approaches can be intended as exemplifications of other translational techniques of the
ASM semantic framework, as better described in [11]. The technique used here is also
translational, but it is more general as it works at the “meta” level leading more automa-
tion, and therefore less user effort, and more reusable mappings and specifications.

(V) Semantic domain modelling, where a metamodel for the “semantic domain” –
i.e. to express also concepts of the run-time execution environment – is defined, and
then OCL rules are used to map elements of the language metamodel into elements
of the semantic domain metamodel. This approach was used forthe CMOF Abstract
Semantics[18] and for the OCL [22]. We postponed as future step the evaluation of
the effectiveness of the joint-use of this technique with the ASM formal method, as it
requires a certain effort in modeling, at metamodel level, also the semantic domain.

6 Conclusions

This paper presents an executable formal semantics for the SCP state machines of the
SystemC UML profile by exploiting the meta-hooking approachof the ASM-based
semantic framework in [11]. Executability allowssemantics prototypingto examine
particular behavioral features of the profile and to check ifthe provided extensions
of the UML metamodel areconservative, i.e. if their semantics does not contradict the
UML semantics, and fix explicitly thesemantics variation pointsintentionally left in the
UML as leeway for the definition of domain-specific UML profiles. The comparison in
[10] between the ASM model for the UML state machines in [1] and the ASM model
for the SCPs described here shows that SCPs are effectively aconservative extension.

Formal ASM models obtained from graphical SystemC-UML models can poten-
tially drive practical SoC model analysis like simulation,architecture evaluation and
design exploration [12].
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