
Mapping Analysis in Ontology-based Data Access:
Algorithms and Complexity

Domenico Lembo1, Jose Mora1, Riccardo Rosati1,
Domenico Fabio Savo1, Evgenij Thorstensen2

1 Sapienza Università di Roma
lastname@dis.uniroma1.it

2 University of Oslo
evgenit@ifi.uio.no

Abstract. Ontology-based data access (OBDA) is a recent paradigm for access-
ing data sources through an ontology that acts as a conceptual, integrated view of
the data, and declarative mappings that connect the ontology to the data sources.
We study the formal analysis of mappings in OBDA. Specifically, we focus on
the problem of identifying mapping inconsistency and redundancy, two of the
most important anomalies for mappings in OBDA. We consider a wide range of
ontology languages that comprises OWL 2 and all its profiles, and examine map-
ping languages of different expressiveness over relational databases. We provide
algorithms and establish tight complexity bounds for the decision problems as-
sociated with mapping inconsistency and redundancy. Our results prove that, in
our general framework, such forms of mapping analysis enjoy nice computational
properties, in the sense that they are not harder than standard reasoning tasks over
the ontology or over the relational database schema.

1 Introduction

Ontology-based data access (OBDA) [18] is a recent paradigm for accessing data
sources through an ontology (also called TBox) that acts as a conceptual, integrated
view of the data, and declarative mappings that connect the ontology to the data sources.
The framework of OBDA has received a lot of attention in the last years: many theo-
retical studies have paved the way for the construction of OBDA systems (e.g., [6, 19,
11] and the development of OBDA projects for enterprise data management in various
domains [2, 15].

One important aspect in OBDA concerns the construction of a system specifica-
tion, i.e., defining the ontology and the mappings over an existing set of data sources.
Mappings are indeed the most complex part of an OBDA specification, since they have
to capture the semantics of the data sources and express such semantics in terms of
the ontology. More precisely, a mapping is a set of assertions, each one associating a
query φ(x) over the source schema with a query ψ(x) over the ontology. The intuitive
meaning of a mapping assertion is that all the tuples satisfying the query φ(x) also sat-
isfy the query ψ(x). We write a mapping assertion as φ(x) ; ψ(x). As an example,
consider tabP(x, y, z) ; person(x),name(x, y), which maps the ontology predi-
cates person and name to the database relation tabP, thus indicating how ontology
instances can be constructed from the data retrieved at the sources.

The first experiences in the application of the OBDA framework in real-world sce-
narios (e.g., [2, 15]) have shown that the semantic distance between the conceptual and
the data layer is often very large, because data sources are mostly application-oriented:
this makes the definition, debugging, and maintenance of mappings a hard and com-
plex task. Such experiences have clearly shown the need of tools for supporting the
management of mappings.

However, no specific approach (with the exception of [17]) has explicitly dealt with
the problem of mapping analysis in the context of OBDA. The work on schema map-
pings in data exchange has considered the problem of analyzing the formal properties
of mappings, although in a different framework. Indeed, in data exchange the ontology
is replaced by a relational schema, called target schema, possibly equipped with tuple-
generating dependencies and equality-generating dependencies [10, 3]. Such kinds of
dependencies are not able to capture arbitrary ontology languages, such as those con-
sidered in this paper. Also, in data exchange suitable conditions are imposed on the
interaction among database dependencies to guarantee that finite instances for the tar-
get schema exist that are coherent with the database at the sources, the mapping, and
the target dependencies. Such conditions are normally not imposed in OBDA, where
the focus is not on moving data from the sources to the target, and indeed we do not
adopt them. Among the works on data exchange, [12] is the closest to our approach:
it proposes techniques for the optimization and normalization of schema mappings, in
particular, finding a global, semantically equivalent transformation of a set of mappings
that is optimal with respect to some minimality criterion.

In a recent paper [17], we started providing a theoretical basis for mapping manage-
ment support in OBDA, focusing on the formal analysis of mappings in ontology-based
data access. In particular, in that paper the two most important semantic anomalies of
mappings have been analyzed: inconsistency and redundancy. Roughly speaking, an in-
consistent mapping for an ontology and a source schema is a specification that gives rise
to logical contradictions with the ontology and/or the source schema. Then, a mapping
M is redundant with respect to an OBDA specification if addingM to the specifica-
tion does not change its semantics. Verifying whether a mapping is affected by these
anomalies is a crucial task in OBDA. A designer that is creating (or modifying) the map-
ping needs to know whether the new (or updated) mapping leads to an inconsistency.
Given the complexity of the OBDA specification, this is very hard to check manually.
Similarly, a redundant mapping is not wanted, since it is very difficult to maintain; fur-
thermore, it may affect the performance of query answering [8].

The work presented in [17] has defined both a local notion of mapping inconsis-
tency and redundancy, which focuses on single mapping assertions, and a global no-
tion, where inconsistency and redundancy is considered with respect to a whole map-
ping specification (set of mapping assertions). In this paper, we study the computational
properties of verifying both local and global mapping inconsistency and redundancy in
an OBDA specification. We consider a wide range of ontology languages that com-
prises the description logics underlying OWL 2 and all its profiles (OWL 2 EL, OWL
2 QL, and OWL 2 RL),1 and examine mapping languages of different expressiveness
(the so-called GAV and GLAV mappings [9]) over sources corresponding to relational

1 http://www.w3.org/TR/owl2-profiles/

databases. We provide algorithms and establish tight complexity bounds for the deci-
sion problems associated with both local and global mapping inconsistency and map-
ping redundancy, for both GAV mappings and a large class of GLAV mappings, and for
both combined complexity and TBox complexity (which only considers the size of the
TBox).

The outcome of our analysis is twofold. First, in our framework, it is possible to
define general and modular techniques that are able to reduce the analysis of mappings
to the composition of standard reasoning tasks over the ontology (inconsistency and
instance checking, query answering) and over the data sources (query answering and
containment). This is a non-trivial result, because mappings are formulas combining
both ontology and data source elements. Moreover, the above forms of mapping anal-
ysis enjoy nice computational properties, in the sense that they are not harder than the
above mentioned standard reasoning tasks over the ontology and the data sources (see
Figure 1 and Figure 2 at the end of the paper).

The above results allow us to conclude that, in our OBDA framework, the formal
analysis of mappings is feasible, at least for ontology languages enjoying nice compu-
tational properties, as in the case of the three OWL 2 profiles.

The paper is organized as follows. In Section 2 we recall OBDA specifications and
the formal notions of mapping inconsistency and redundancy in OBDA. In Section 3
we study the complexity of checking local and global mapping inconsistency, while in
Section 4 we study the complexity of verifying local and global mapping redundancy.
We conclude the paper in Section 5.

2 Preliminaries

In the following, we assume to have three pairwise disjoint, countably infinite alphabets:
an alphabet ΓT of ontology predicates, an alphabet ΓS of source schema predicates, and
an alphabet ΓC of constants.

Source schemas. A source schema S is a relational schema containing relations in
ΓS , possibly equipped with integrity constraints (ICs). A legal instance D for S is a
database for S (i.e., a finite set of ground atoms over S and the constants in ΓC) that
satisfies the ICs of S. We denote by Const(D) the set of constants occurring in D.

We consider simple schemas, i.e., relational schemas without ICs, and FD schemas,
i.e., simple schemas with functional dependencies (FDs) [1]. We adopt standard notions
for conjunctive queries (CQs) over relational schemas [1], and by a CQ over a source
schema S we mean a CQ over the alphabet of S. With φ(x) we denote a CQ with free
variables x. The number of variables in x is the arity of the query. A Boolean CQ is a
CQ without free variables. Given a CQ q over S and a legal instanceD for S, eval(q,D)
denotes the evaluation of q overD. Throughout the paper S will always denote a source
schema.

Ontologies. We consider ontologies expressed in some Description Logic (DL) lan-
guage LO and use standard DL notions [16]. In particular, a DL ontology O is pair
〈T , A〉, where T is the TBox and A is the ABox. O, T , and A will always have the

same meaning in the paper. As in the W3C standard OWL, we do not interpret ontolo-
gies under the Unique Name Assumption. We denote with Mod(O) the set of models
of O, and with O |= α the fact that O entails a sentence α. Also, by ontology incon-
sistency we mean the task of deciding whether Mod(O) = ∅, and by instance checking
the task of deciding whether O |= β, where β is a ground atom. By CQs over O we
mean CQs over the alphabet of the TBox ofO, and by CQ entailment the task of check-
ing whether O |= q, where q is a Boolean CQ. In the following, we consider DLs that
are the logical basis of the W3C standard OWL and of its profiles, i.e., SROIQ [14],
which underpins OWL, DL-LiteR [5], which is the basis of OWL 2 QL, RL [16], a
simplified version of OWL 2 RL, and EL⊥, a slight extension of the DL EL [4], which
is the basis of OWL 2 EL.

Mappings. A mapping assertion m from a source schema S to a TBox T has the
form φ(x) ; ψ(x), where φ(x), called the body ofm, and ψ(x), called the head ofm,
are queries over S and T , respectively, both with free variables x, which are called the
frontier variables. The number of variables in x is the arity of the mapping assertion.
Given a mapping assertion m, we also use FR(m) do denote the frontier variables x,
head(m) to denote the query ψ(x), and body(m) to denote the query φ(x). We also
remark that queries used in our mappings, besides variables, may contain constants
from ΓC . A mappingM from S to T is a finite set of mapping assertions from S to T .
HereinafterM will always denote a mapping.

In principle, φ(x) and ψ(x) can be specified in generic query languages. The liter-
ature on data integration and OBDA has mainly considered φ(x) expressed in a (frag-
ment of) first-order logic, and ψ(x) expressed as a CQ [9, 17, 18]. In this paper, we
focus on the notable cases in which φ(x) is a CQ over S and ψ(x) is as follows:

– ψ(x) is a CQ over T . This is a powerful form of GLAV mapping [9], and is among
the most expressive types of mappings studied in the literature. We refer to it simply
as GLAV.

– ψ(x) is a CQ with a bounded number of existential variables in the head. This is a
practically relevant form of GLAV mappings, which we call GLAVBE.

– ψ(x) is a CQ without existential variables in the head. Such mappings are the most
used in OBDA applications [13, 2], and are a special case of the W3C standard
R2RML mappings [7]. According to the data integration literature, we call them
GAV.

We say that a mapping assertion m is active on a source instance D if
eval(body(m), D) is a non-empty set of tuples of constants. A mappingM is active on
D if all its mapping assertions m ∈M are active on D.

Without loss of generality, we assume that different mapping assertions use differ-
ent variable symbols. A freeze of a set of atoms Γ is a set of ground atoms obtained
from Γ by replacing every variable with a fresh distinct constant. In this paper, the
freeze is always used in the context of a mappingM, so it suffices to assume that fresh
constants do not appear inM. Different freezes of the same set of atoms are equal up
to renaming of constants. Thus, in the following we assume, without loss of generality,
that the freeze of a set of atoms Γ is unique and is obtained by replacing each variable
occurrence x with a fresh constant cx, and we denote it by freeze(Γ).

Given a mapping assertion m of arity n and an n-tuple of constants t, we denote by
m(t) the mapping assertion obtained by replacing FR(m) in m with the constants in t.

OBDA specifications. An OBDA specification is a triple J = 〈T ,S,M〉. The se-
mantics of J is given with respect to a database instance D legal for S: a model for J
w.r.t.D is a FOL interpretation I over the alphabet ΓT ∪ΓC that satisfies both T andM.
Formally, we say that I satisfies the mappingM if for each assertion m ∈M and each
tuple of constants t such that t ∈ eval(body(m), D) we have that I |= head(m(t)).
The set of models of J w.r.t. D is denoted with Mod(J , D). Also, we use (J , D) to
denote J with source instance D, say that (J , D) is inconsistent if Mod(J , D) = ∅,
and denote with (J , D) |= α the entailment of a sentence α by (J , D).

Example 1. We consider a source schema S where the plants relation contains data
on extraction facilities, while the eZones relation contains data on the areas used for
oil and gas extraction. Below, the underlined attributes represent the keys of the rela-
tions, which can be expressed by FDs.

plants(id pl,pl typ,id zn) eZones(id zn,zn typ)

The following RL TBox models a very small portion of the domain of oil and gas
production extracted from an ontology developed within the Optique EU project2. In
particular, the TBox focuses on the facilities (concept Facility) used in the oil and gas
extraction and on the geographical areas (concept Area) in which they are located (role
locatedIn). Facilities that are located in a marine area (concept MarArea) are platforms
(concept Platform).

T = { Platform v Facility, MarArea v Area, ∃locatedIn v Facility,
∃locatedIn− v Area Facility u Area v ⊥ ∃locatedIn.MarArea v Platform }

An example of a GAV mappingM from S to T follows:

m1 : plants(x, y, z) ; Facility(x), locatedIn(x, z)
m2 : plants(x′, ‘pl’, y′) ; Platform(x′)
m3 : eZones(z′, ‘mz’) ; MarArea(z′).

Mapping inconsistency and redundancy. The following definitions are taken
from [17].

In brief, a mapping assertion m from S to T is head-inconsistent or body-
inconsistent if head(m) or body(m) have certainly an empty evaluation in every model
for T or legal instance for S , respectively.

Definition 1 (mapping head-inconsistency). Let T be a TBox, S a source schema,
and m : φ(x) ; ψ(x) a mapping assertion from S to T . We say that m is head-
inconsistent for T if T |= ∀x.(¬ψ(x)).

Example 2. Let T and S be as in Example 1. Consider the following mapping assertion:

m : plants(x, ‘pl’, z) ; Platform(x),MarArea(x)

2 http://www.optique-project.eu/

Then, m is head-inconsistent for T since T |= Platform uMarArea v ⊥.

Definition 2 (mapping body-inconsistency). Let T be a TBox, S a source schema,
and m : φ(x) ; ψ(x) a mapping assertion from S to T . We say that m is body-
inconsistent for S if S |= ∀x.(¬φ(x)).
Example 3. Let T and S be as in Example 1. Then, the following mapping assertion is
body-inconsistent for S.
m : plants(x, ‘pl’, z),plants(x, ‘ref’, k) ; Facility(x)

We extend the inconsistency notions to whole mapping assertions and whole map-
pings.

Definition 3 (local mapping inconsistency). Let T be a TBox, S a source schema,
and m : φ(x) ; ψ(x) a mapping assertion from S to T . We say that m is inconsistent
for 〈T ,S〉 if m is head-inconsistent for T or body-inconsistent for S.

Definition 4 (global mapping inconsistency). Let J = 〈T ,S,M〉 be an OBDA spec-
ification. We say that M is globally inconsistent for 〈T ,S〉 if there does not exist a
source instance D legal for S such thatM is active on D and Mod(J , D) 6= ∅.

Intuitively, it is impossible to consistently activate all the assertions of a globally
inconsistent mapping simultaneously.

Example 4. Let J = 〈T ,S,M〉 be an OBDA specification where T and S are as in
Example 1. Suppose that the mappingM contains the following mapping assertions:
m1 : plants(x, y, z) ; Area(x)
m2 : plants(x′, ‘pl’, z′) ; Platform(x′), locatedIn(x′, z′)

It is easy to see thatM is globally inconsistent for 〈T ,S〉, because T |= Platform u
Area v ⊥ and every activation of m2 also activates m1, thus implying Platform(x)
and Area(x) for the same individual x.

Then, we recall the notion of global mapping redundancy.

Definition 5 (global mapping redundancy). Let J = 〈T ,S,M〉 be an OBDA spec-
ification and let M′ be a mapping from S to T . We say that M′ is globally redun-
dant for J if, for every source instance D that is legal for S, Mod(〈T ,S,M〉, D) =
Mod(〈T ,S,M∪M′〉, D).

Informally, a mappingM′ is redundant for an OBDA specification J if addingM′

to J produces a specification equivalent to J .

Example 5. Let 〈T ,S,M〉 be an OBDA specification, where T and S are as in Exam-
ple 1, andM is as follows:
m1 : plants(x, y, z),eZones(z, ‘mz’) ; locatedIn(x, z)
m2 : eZones(x′, ‘mz’) ; MarArea(x′)
m3 : plants(y′, ‘pl’, z′),eZones(z′, ‘mz’) ; Platform(y′)

Then, {m3} is globally redundant for 〈T ,S, {m1,m2}〉.

Finally, local mapping redundancy is a special case of global mapping redundancy
in which the mappingsM andM′ are both composed of a single assertion.

3 Complexity of mapping inconsistency

We now study local and global mapping inconsistency and show that, for every DL LO,
both problems have the same TBox complexity as ontology inconsistency in LO. We
also establish combined complexity results for the DLs considered in this paper.

We start with some auxiliary definitions.

Definition 6 (minimal instance activating a mapping). LetM be a mapping and let
S be a source schema. A minimal instance for S that activatesM is a source instanceD
legal for S such thatM is active onD and, for every source instanceD′ legal for S such
thatM is active on D′, there exists a homomorphism h from Const(D) to Const(D′)
that maps constants occurring inM to themselves and is such that h(D) ⊆ D′, where
h(D) = {r(h(c1), . . . , h(cn)) | r(c1, . . . , cn) ∈ D}.

Given a GLAV mapping assertion m of arity n, we denote by cvars(m) the se-
quence of frontier variables occurring together with an existential variable in an atom
of the head of m. Moreover, given an n-tuple of constants t, we denote by cvars(m)[t]
the tuple of constants obtained from cvars(m) by replacing each occurrence of a fron-
tier variable with the corresponding constant of t. For instance, if m is the assertion
φ(x,w) ; R(x, y), S(y, z), T (z, w), R(x, z), S(w, x), then cvars(m) is the tuple of
variables 〈x,w, x〉, and if t = 〈a, b〉 then cvars(m)[t] is the tuple of constants 〈a, b, a〉.

Definition 7 (retrieved ABox). Given a mappingM from S to T and an instance D
legal for S, the ABox retrieved byM fromD, denoted by Retr(M, D), is the ABox de-
fined as follows: Retr(M, D) = {freezeH (head(m(t))) | t ∈ eval(body(m), D)}),
where freezeH (head(m(t))) is the set of atoms obtained from head(m(t)) by replacing
each occurrence of a (existential) variable x with the fresh constant cx,cvars(m)[t].

3.1 Local mapping inconsistency

We start from the following property (whose proof is trivial) for the problem of head
inconsistency.

Lemma 1. Let m be a GLAV mapping assertion, T a TBox, and let A =
freeze(head(m)). Then, m is head-inconsistent for T iff 〈T ,A〉 is inconsistent.

Conversely, inconsistency of an ontology 〈T ,A〉 can be immediately reduced to
head inconsistency, considering T as the TBox of the OBDA specification, and con-
structing a GAV mapping assertion m (with no frontier variables) whose head is the
conjunction of the ABox assertions in A. Consequently, the following property holds.

Lemma 2. For both GAV and GLAV mappings and for every ontology language LO,
the combined (resp., TBox) complexity of mapping head inconsistency is the same as
the combined (resp., TBox) complexity of ontology inconsistency in LO.

Now, from the definition of local mapping inconsistency, it follows that the TBox
complexity of local mapping inconsistency is the same as the TBox complexity of map-
ping head inconsistency. Therefore:

Theorem 1. For both GAV and GLAV mappings and for every ontology language LO,
the TBox complexity of local mapping inconsistency is the same as the TBox complexity
of ontology inconsistency in LO.

The above theorem implies row 1 in Figure 1.
Moreover, from the definition of local mapping inconsistency, it follows that, for

simple source schemas, local mapping inconsistency corresponds to mapping head in-
consistency (since all mapping assertions are trivially body-consistent). Therefore:

Corollary 1. For simple source schemas, for both GAV and GLAV mappings, and for
every ontology language LO, the combined complexity of local mapping inconsistency
is the same as the combined complexity of ontology inconsistency in LO.

The above result is summarized in row 1 in Figure 2.
Then, we analyze the case of FD schemas. We start by defining the algorithm

freezeFD(M,S), which takes as input a mappingM and a source schema S, and ap-
plies the chase procedure [1] to the database instance D =

⋃
m∈M freeze(body(m))

using the functional dependencies of S, and considering the constants occurring in D
but not occurring inM as unifiable terms (since they act as “soft constants” differently
from the constants occurring inM). Such a chase procedure runs in PTIME and may
end up in two ways: (i) it fails, i.e., it derives that two constants occurring inM should
be equal (which violates the Unique Name Assumption of databases); (ii) it returns
a database D′ that is obtained from D by unifying constants occurring in D but not
occurring inM according to the equalities induced by the functional dependencies.

We are now able to show the following lemma.

Lemma 3. Let S be a source schema and letM be a mapping. Deciding whether there
exists a minimal instanceD for S that activatesM, and computing such aD if it exists,
can be done: (i) in linear time, if S is a simple schema; (ii) in PTIME, if S is an FD
schema.

Proof. The proof easily follows from the fact that the algorithm freezeFD(M,S) runs
in PTIME, and computes a minimal instance D for S that activates M iff such an
instance exists. In particular, for property (i), it is easy to verify that, if S is a simple
schema, then

⋃
m∈M freeze(body(m)) is a minimal instance for S that activates M.

For property (ii), in the case when S is an FD schema, if the algorithm freezeFD(M,S)
fails, then there exists no legal instance for S that activatesM; otherwise, the algorithm
returns a database D′ that corresponds to the application of the equalities induced by
the functional dependencies over the constants occurring in D but not occurring inM.
Therefore, there exists a endomorphism h of the constants in D that is the identity for
the constants of M and is such that h(D) = D′. Due to the property of the chase, it
follows that such an instance D′ is a minimal instance for S that activatesM. ut

We can now prove the following property.

Theorem 2. For both GAV and GLAV mappings, and for FD schemas, the combined
complexity of local mapping inconsistency is PTIME-complete for DL-LiteR, RL, and
EL⊥, and is N2EXPTIME-complete for SROIQ.

Proof. To decide local mapping consistency of m, besides head inconsistency we also
have to check body inconsistency of m. This corresponds to decide whether there ex-
ists a minimal instance for S that activates the mapping {m}. By Lemma 3, this can
be done in PTIME in the case of FD schemas. Moreover, consistency of a database D
with respect to an FD schema S can be immediately reduced to mapping body incon-
sistency, by creating a GAV mapping assertion whose body contains the conjunction of
the facts in D. In the case of FD schemas, this provides a PTIME lower bound for body
inconsistency, and hence for local mapping inconsistency. The lower bound in the case
of SROIQ follows from the lower bound for head inconsistency. ut

The above results are summarized in row 1 in Figure 2.

3.2 Global mapping inconsistency

To define a technique for global mapping inconsistency, we start by showing the fol-
lowing property.

Theorem 3. Let J = 〈T ,S,M〉 be an OBDA specification. Then,M is globally in-
consistent for 〈T ,S〉 iff either freezeFD(M,S) fails or the instance D returned by
freezeFD(M,S) is such that (J , D) is inconsistent.

Proof. The proof of the only-if part is trivial. For the if part, we will prove the contra-
positive: IfM is not globally inconsistent for 〈T ,S〉, then freezeFD(M,S) returns an
instance D such that (J , D) is consistent.

Let D′ be a source instance legal for S such thatM is active on D′, and let I be
a model of (J , D′). Then, freezeFD(M,S) does not fail and returns an instance D.
Since D is minimal, Definition 6 implies that there exists a homomorphism h from
the constants of D to the constants of D′ such that h(D) ⊆ D′. Now let I ′ be the
interpretation obtained from I by changing the interpretation of constants as follows: If
c occurs in D then cI

′
= h(c)I , otherwise cI

′
= cI . It is immediate to verify that I ′ is

a model for J w.r.t. D. ut

The above theorem immediately implies the following algorithm for deciding the
global inconsistency of a GLAV mappingM for a TBox T and a source schema S.

Algorithm GlobalInconsistency:
Input: OBDA specification 〈T ,S,M〉

if (a) algorithm freezeFD(M,S) fails
then return true
else

let D be the instance returned by freezeFD(M,S);
if (b) (〈T ,S,M〉, D) is inconsistent
then return true else return false

The complexity of step (a) of the algorithm, i.e., deciding the existence and com-
puting a minimal instance for S that activates M, has been established by Lemma 3.
It remains to analyze the complexity of checking inconsistency of (〈T ,S,M〉, D). To
this aim, we present two techniques for deciding the inconsistency of (〈T ,S,M〉, D).
First, we use the following property, whose proof easily follows from Definition 7.

Lemma 4. For every model I of (〈T ,S,M〉, D) there exists a model I ′ of
〈T ,Retr(M, D)〉 such that I and I ′ coincide except for the interpretation of the con-
stants in Const(Retr(M, D)) \ Const(D). The converse also holds.

From the above lemma, to decide inconsistency of (〈T ,S,M〉, D), we can compute
the ABox A = Retr(M, D) and then check inconsistency of 〈T ,A〉.

Example 6. Let J = 〈T ,S,M〉 be the OBDA specification of Example 4. We show
how algorithm GlobalInconsistency runs on J . First, the algorithm computes a
minimal instance D for S by means of the algorithm freezeFD (cf. Lemma 3). In our
example, this actually coincides with computing freeze(body(m)) for each mapping
m ∈ M. Hence, we have that D = {plants(cx, cy, cz),plants(cx′ ,pl, cz′)}.
The second step consists in checking if 〈J , D〉 is consistent. To this end,
one can exploit Lemma 4 and: (i) compute the ABox A = Retr(M, D),
which is {Area(cx),Area(cx′),Platform(cx′),Platform(cx), locatedIn(cx′ , cz′),
locatedIn(cx, cz)} and (ii) check the consistency of the ontology 〈T ,A〉. Since, e.g.,
both Area(cx′) and Platform(cx′) belong toA, and since T |= PlatformuArea v ⊥,
the ontology 〈T ,A〉 is inconsistent. Hence, the algorithm returns true.

Now, observe that the cost of computing Retr(M, D) does not depend on the size
of the TBox. This implies that, with respect to TBox complexity, the complexity of on-
tology inconsistency is an upper bound for global mapping inconsistency. Conversely,
ontology inconsistency can be easily reduced to global mapping inconsistency, by creat-
ing a GAV mapping assertion (with no frontier variables) whose head is the conjunction
of the ABox assertions in A. Consequently:

Theorem 4. For both simple and FD schemas, for both GAV and GLAV mappings, and
for every ontology language LO, the TBox complexity of global mapping inconsistency
is the same as the TBox complexity of ontology inconsistency in LO.

The above theorem implies row 2 in Figure 1.
To establish combined complexity, we define a second way to decide inconsistency

of (〈T ,S,M〉, D). We start from the following property.

Lemma 5. Let M be a GLAVBE mapping, and let D be a source instance. Then, the
size of Retr(M, D) is polynomial with respect to the size ofM and D.

Proof. When M is a GAV mapping, from Definition 7 it follows that the number of
assertions in Retr(M, D) is bounded by (nc · nv) + (nr · n2v), where nc is the number
of concepts, nr is the number of roles, and nv is the number of constants occurring in
D andM. WhenM is a GLAVBE mapping, observe that, by Definition 7, the number
of fresh constants nf occurring in Retr(M, D) is not greater than m · k · nk, where
m is the number of mapping assertions inM, n is the number of constants in D, and
k is the maximum number of occurrences of existential variables in the head of a map-
ping assertion (observe that k is the maximum length of cvars(m) in the definition of
Retr(M, D)). Since k is bounded in GLAVBE mappings, we derive that such a num-
ber of constants nf is polynomially bounded. And since the number of assertions in
Retr(M, D) is bounded by (nc ·nw)+ (nr ·n2w), where nc is the number of concepts,
nr is the number of roles, and nw = nv + nf , the thesis follows. ut

Notice that the above property does not hold for arbitrary GLAV mappings (for
which Retr(M, D) may be of exponential size), so in the rest of this section we fo-
cus on GLAVBE mappings. Notice also that the above lemma does not imply that for
GLAVBE mappings Retr(M, D) can be computed in polynomial time with respect to
the size of M and D: conversely, it is immediate to verify that deciding whether an
ABox assertion belongs to Retr(M, D) is an NP-hard problem.

From the above lemma and from Lemma 4, it follows that, in the case of GLAVBE
mappings, inconsistency of (〈T ,S,M〉, D) can be decided by checking the existence
of a polynomial subset A′ of Retr(M, D) such that 〈T ,A′〉 is inconsistent.

Given a mapping assertion m, a grounding for m is the mapping assertion obtained
from m by replacing every variable in m with a constant symbol. A grounding for a
mappingM is a set {mg | ∃ m ∈ M s.t. mg is a grounding for m}. Now let D be a
source instance. A grounding G forM is generated by D if, for every mg ∈ G, every
atom in body(mg) occurs in D. Given a grounding G forM, the ABox induced by G,
denoted as A(G), is defined as the set of atoms occurring in the heads of the mapping
assertions of G.

Lemma 6. Let M be a GLAVBE mapping and let D be a source instance. Then: (i)
for every grounding G forM that is generated by D, if 〈T ,A(G)〉 is inconsistent, then
〈T ,Retr(M, D)〉 is inconsistent; (ii) there exists a grounding G forM that is gener-
ated by D such that G has polynomial size with respect toM and D, and 〈T ,A(G)〉 is
inconsistent iff 〈T ,Retr(M, D)〉 is inconsistent.

Proof. The proof of (i) follows from the fact that there exists a homomorphism h from
Const(A(G))\Const(D) to Const(Retr(M, D)) such that h(A(G)) ⊆ Retr(M, D).
Consequently, if I is a model for 〈T ,Retr(M, D)〉, we can immediately derive a model
I ′ for 〈T ,A(G))〉 from I by just changing the interpretation of the constants, defin-
ing cI

′
= h(c)I for every c ∈ Const(A(G)) \ Const(D), and cI

′
= cI otherwise.

Then, the proof of (ii) easily follows from (i), Lemma 5 and the fact that, by defini-
tion of Retr(M, D), there exists a grounding G for M such that A(G) is equal to
Retr(M, D). ut

Consequently, the following algorithm is able to decide inconsistency of
(〈T ,S,M〉, D).

Algorithm OBDAInconsistency:
Input: OBDA specification 〈T ,S,M〉 withM GLAVBE mapping, source instance D

if there exists a polynomial grounding G forM
such that G is generated by D and the ontology 〈T ,A(G)〉 is inconsistent
then return true else return false

We are now able to analyze the combined complexity of the algorithm GlobalIn-
consistency when step (b) is executed through the algorithm OBDAInconsistency.
As shown by Lemma 3, step (a) can always be executed in polynomial time. Then, if
the ontology inconsistency check is in PTIME, check (b) can be executed in nondeter-
ministic polynomial time. Consequently, the algorithm GlobalInconsistency provides
an NP upper bound for DL-LiteR, RL, and EL⊥, while it provides a N2EXPTIME
upper bound for SROIQ.

Concerning the lower bounds, the one for SROIQ is trivial, while the NP bound
for the other three cases can be proved by an easy reduction of conjunctive query con-
tainment in relational databases. Consequently:

Theorem 5. For both simple and FD schemas, and for both GAV and GLAVBE map-
pings: (i) if the ontology language is DL-LiteR, RL, or EL⊥, then the combined
complexity of global mapping inconsistency is NP-complete; (ii) if the ontology lan-
guage is SROIQ, then the combined complexity of global mapping inconsistency is
N2EXPTIME-complete.

The above results are summarized in row 2 in Fig. 2.

4 Complexity of mapping redundancy

We now show that local and global mapping redundancy have the same TBox complex-
ity as instance checking for GAV mappings and CQ entailment over an ontology for
GLAV mappings. We also study the combined complexity for the DLs considered in
this paper. We focus on the global case only, since as we said, the local redundancy is a
special case of the global one. Also, observe that a mappingM′ is globally redundant
for an OBDA specification iff each subset ofM′ is redundant. We thus consider only
the case in which M′ = {m}, and with a slight abuse of notation, we call such case
global redundancy of a mapping assertion m for J .

From now on, we do not consider the trivial case when m is body-inconsistent for
S. Under this assumption, a minimal instance for S that activates {m} always exists
(and the algorithm freezeFD does never fail for every mappingM and source schema
S as input). We notice, however, that all the complexity results of this section also hold
without this assumption.

Theorem 6. Let J = 〈T ,S,M〉 be an OBDA specification and m a mapping asser-
tion. Then, m is globally redundant for J iff there exists a minimal instance D for S
that activates {m} such that Mod(J , D) = Mod(〈T ,S,M∪ {m}〉, D).

Proof (sketch). The proof of the only-if part is trivial. As for the if part, since a minimal
instance has a homomorphism to every other instance, the fact that the models for a
minimal instance are the same can be used to show that, for every legal instance D′ for
S, a model for (〈T ,S,M〉, D′) has to be a model for (〈T ,S,M∪{m}〉, D′) too. ut

Based on the above theorem, below we provide an algorithm that establishes
whether m is globally redundant for J by checking whether a suitable Boolean CQ
is entailed by J coupled with the minimal instance that activates {m} returned by
the algorithm freezeFD(M,S) (cf. Lemma 3). In the following, with a little abuse of
notation, we denote with freeze(FR(m)) the tuple obtained by freezing the frontier
variables of m.

Algorithm mapRedundancy:
Input: OBDA specification 〈T ,S,M〉, mapping assertion m

(a) D ← freezeFD({m},S);

let σ be the substitution derived by freezeFD({m},S);
tF ← σ(freeze(FR(m)));
if (b) (J , D) |= head(m(tF))
then return true else return false

In the algorithm, σ denotes the substitution of terms derived by the application of
freezeFD({m},S), i.e., σ = {x1 → y1, . . . , xn → yn} where each yi is a constant (ei-
ther fresh or non-fresh) and each xi is a fresh constant in freeze(body(m)); σ is applied
to the tuple obtained by freezing the frontier variables of m, in order to propagate the
term substitutions derived by the chase to such a tuple. Notice that, for simple source
schemas, σ is the identity and thus it has no effect. Finally, mapRedundancy verifies
whether the Boolean query corresponding to the head of the mapping m whose frontier
variables are substituted with tF is entailed by (J , D).

The following theorem states that mapRedundancy is sound and complete with
respect to the problem of establishing global mapping redundancy (termination of the
algorithm is straightforward).

Theorem 7. Let J = 〈T ,S,M〉 be an OBDA specification and m a mapping asser-
tion. Then, m is globally redundant for J iff mapRedundancy(J ,m) returns true.

As shown in Section 3, step (a) can be executed in polynomial time for both simple
schemas and FD schemas. As for step (b), the first technique we present is tailored to
establish TBox complexity of global mapping redundancy. We first give the following
lemma.

Lemma 7. Let J = 〈T ,S,M〉 be and OBDA specification, D a minimal instance for
S that activatesM, and q a Boolean CQ. Then, (J , D) |= q iff 〈T ,Retr(M, D)〉 |= q.

According to the above result, step (b) of mapRedundancy can be performed by first
computing the ABox Retr(M, D), and then checking whether (T ,Retr(M, D)) |=
head(m(σ(freeze(FR(m))))).

Example 7. Consider the OBDA specification J = 〈T ,S,M〉, where T and S are as
in Example 1, andM is as follows:

m1 : plants(x, y, z),eZones(z, ‘mz’) ; locatedIn(x, z)
m2 : eZones(x′, ‘mz’) ; MarArea(x′).

Moreover, consider the following mapping assertion:

m3 : plants(y′, ‘pl’, z′),eZones(z′, ‘mz’) ; Platform(y′).

The algorithm mapRedundancy first computes D = freezeFD({m},S) =
{plants(cy′ , ‘pl’, cz′),eZones(cz′ , ‘mz’)}. Then, it produces the Boolean CQ
qm3

= head(m(tF)) = Platform(cy′). To check whether (J , D) |= qm3
the

algorithm computes Retr(M, D) = {locatedIn(cy′ , cz′),MarArea(cz′)}. Since
locatedIn.MarArea v Platform ∈ T , we have that 〈T ,Retr(M, D)〉 |= qm3

, and
thus mapRedundancy returns true (i.e., m3 is globally redundant for J).

For TBox complexity, we notice that in mapRedundancy both step (a) and the size
of Retr(M, D) do not depend on the TBox T . In particular, we have that:

– In the case of GAV mappings, the check in step (b) corresponds to a linear number
(in the size of head(m)) of instance checking tasks in the language LO used for T .

– In the case of GLAV mappings, the check in step (b) corresponds to a single Boolean
CQ entailment task in LO.

Thus, mapRedundancy together with the techniques for step (a) and (b) discussed
above allows us to obtain upper bounds for the TBox complexity of global mapping
redundancy. More precisely, the complexity of instance checking in LO is an upper
bound for GAV mappings, while the complexity of CQ entailment in LO is an upper
bound for GLAV.

As for lower bounds, we notice that both instance checking and CQ entailment in
LO can be easily reduced to local mapping redundancy for GAV and GLAV mappings,
respectively, with a technique similar to the one we used for Lemma 2.

The following theorem sums up the above results.

Theorem 8. For both simple and FD schemas, and for every ontology language LO,
the TBox complexity of both local and global mapping redundancy for GAV and GLAV
mappings is the same as the TBox complexity of instance checking in LO and TBox
complexity of CQ entailment in LO, respectively.

The above theorem implies rows 3 and 4 in Figure 1.
Similarly to the case of global mapping inconsistency, since executing step (b)

by computing the retrieved ABox Retr(M, D) requires exponential time in com-
bined complexity, to establish combined complexity of the overall problem we need
to resort to a different strategy for step (b). To this aim, we exploit a property that
generalizes Lemma 6 (which focuses on inconsistency) to query entailment. From
this property, it follows that, for every CQ q that does not mention constants oc-
curring in Const(Retr(M, D)) \ Const(D), and for every GLAVBE mapping M,
〈T ,Retr(M, D)〉 |= q can be decided by checking the existence of a polynomial
grounding G for M that is generated by D such that 〈T ,A(G)〉 |= q. Therefore, the
following algorithm for checking CQ entailment over an OBDA specification J and a
source instance D follows.

Algorithm CQEntailment:
Input: OBDA specification 〈T ,S,M〉 withM GLAVBE mapping, source instance D, CQ q

if there exists a polynomial grounding G forM
such that G is generated by D and 〈T ,A(G)〉 |= q
then return true else return false

Then, in the case of GLAVBE mappings we can perform step (b) of mapRedun-
dancy by executing CQEntailment(J , D, head(m(freeze(FR(m)))).

As for combined complexity, in the following we consider simple source schemas
for the lower bounds and FD source schemas for the upper bounds. First, step (b) can
be executed through the nondeterministic algorithm CQEntailment. Consequently, this
algorithm provides an NP upper bound for the case of GLAVBE mappings if, for the

GAV GLAV
task DL-LiteR RL EL⊥ SROIQ DL-LiteR RL EL⊥ SROIQ

local inc. =NLOGSPACE =P =P =N2EXPTIME =NLOGSPACE =P =P =N2EXPTIME
global inc. =NLOGSPACE =P =P =N2EXPTIME =NLOGSPACE =P =P =N2EXPTIME
local red. =NLOGSPACE =P =P =N2EXPTIME =NP =NP =NP open

global red. =NLOGSPACE =P =P =N2EXPTIME =NP =NP =NP open

Fig. 1. TBox compl. of mapping inconsistency and redundancy (for both simple and FD schemas).

GAV GLAVBE
task DL-LiteR RL EL⊥ SROIQ DL-LiteR RL EL⊥ SROIQ

local inc. =NLOGSPACE (SI) =P =P =N2EXPTIME =NLOGSPACE (SI)∗ =P∗ =P∗ =N2EXPTIME∗

=P (FD) =P (FD)∗

global inc. =NP =NP =NP =N2EXPTIME =NP =NP =NP =N2EXPTIME
local red. =NP =NP =NP =N2EXPTIME =NP =NP =NP open

global red. =NP =NP =NP =N2EXPTIME =NP =NP =NP open

Fig. 2. Combined compl. of mapping inconsistency and redundancy (SI = simple schemas, FD =
FD schemas). ∗ The result also holds for arbitrary GLAV mappings.

ontology language LO, CQ entailment is in NP, i.e., for DL-LiteR, RL, and EL⊥. The
matching NP lower bounds can be proved already for GAV mappings, by an easy reduc-
tion of conjunctive query containment in relational databases. In the case of SROIQ,
for GLAVBE mappings we are not able to even prove decidability of global mapping
redundancy (since decidability of CQ entailment in this language is currently an open
problem too), while for the GAV case we can easily derive a N2EXPTIME exact bound.

Theorem 9. For both simple and FD source schemas, global and local mapping re-
dundancy are: (i) NP-complete w.r.t. combined complexity for both GAV and GLAVBE

mappings, in the case of DL-LiteR, RL, or EL⊥; (ii) N2EXPTIME-complete w.r.t. com-
bined complexity for GAV mappings, in the case of SROIQ.

The above theorem implies rows 3 and 4 in Figure 2.

5 Conclusions
The tables in Fig. 1 and Fig. 2 report the results presented in Sec. 3 and 4. These results
clarify the complexity of the fundamental mapping analysis tasks studied in this paper.

The analysis presented in this paper can be extended in different directions. First, it
would be interesting to establish tight combined complexity bounds for general GLAV
mappings, and extend our study to other forms of mappings (beyond GLAV), admitting,
for instance, forms of negation in the source queries. Then, it would be interesting to
extend our analysis beyond the OWL framework, considering, e.g., DLs interpreted
under the Unique Name Assumption, or languages of the Datalog+/- family. Finally, we
believe that the problems and techniques studied in this paper may constitute the core
of practical tools for the crucial task of constructing, debugging, and maintaining an
OBDA specification. So, an important direction for future work is the implementation
and practical evaluation of techniques for mapping analysis in OBDA.

Acknowledgments. This research has been partially supported by the EU under FP7
project Optique (n. FP7-318338), and by the RCN under project DOIL (n. 213115).

References

1. S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison Wesley Publ. Co.,
1995.

2. N. Antonioli, F. Castanò, S. Coletta, S. Grossi, D. Lembo, M. Lenzerini, A. Poggi, E. Virardi,
and P. Castracane. Ontology-based data management for the italian public debt. In Proc. of
FOIS, pages 372–385, 2014.

3. M. Arenas, P. Barceló, L. Libkin, and F. Murlak. Foundations of Data Exchange. Cambridge
University Press, 2014.

4. F. Baader, S. Brandt, and C. Lutz. Pushing the EL envelope. In Proc. of IJCAI, pages
364–369, 2005.

5. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Tractable reasoning
and efficient query answering in description logics: The DL-Lite family. JAR, 39(3):385–429,
2007.

6. C. Civili, M. Console, G. De Giacomo, D. Lembo, M. Lenzerini, L. Lepore, R. Mancini,
A. Poggi, R. Rosati, M. Ruzzi, V. Santarelli, and D. F. Savo. MASTRO STUDIO: Managing
ontology-based data access applications. PVLDB, 6:1314–1317, 2013.

7. S. Das, S. Sundara, and R. Cyganiak. R2RML: RDB to RDF Mapping Language. W3C
RDB2RDF Working Group, W3C recommendation, Sept. 2012.

8. F. Di Pinto, D. Lembo, M. Lenzerini, R. Mancini, A. Poggi, R. Rosati, M. Ruzzi, and D. F.
Savo. Optimizing query rewriting in ontology-based data access. In Proc. of EDBT, pages
561–572. ACM Press, 2013.

9. A. Doan, A. Y. Halevy, and Z. G. Ives. Principles of Data Integration. Morgan Kaufmann,
2012.

10. R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa. Data exchange: Semantics and query
answering. TCS, 336(1):89–124, 2005.

11. M. Giese, A. Soylu, G. Vega-Gorgojo, A. Waaler, P. Haase, E. Jiménez-Ruiz, D. Lanti,
M. Rezk, G. Xiao, Ö. L. Özçep, and R. Rosati. Optique: Zooming in on big data. IEEE
Computer, 48(3):60–67, 2015.

12. G. Gottlob, R. Pichler, and V. Savenkov. Normalization and optimization of schema map-
pings. VLDBJ, 20(2):277–302, 2011.

13. P. Haase et al. Optique system: Towards ontology and mapping management in OBDA
solutions. In Proc. of WoDOOM, pages 21–32, 2013.

14. I. Horrocks, O. Kutz, and U. Sattler. The even more irresistible SROIQ. In Proc. of KR,
pages 57–67, 2006.

15. E. Kharlamov et al.˙ Optique 1.0: Semantic access to big data: The case of norwegian
petroleum directorate’s factpages. In Proc. of ISWC, pages 65–68, 2013.

16. R. Kontchakov and M. Zakharyaschev. An introduction to description logics and query
rewriting. In RW Tutorial Lectures, number 8714 in LNCS, pages 195–244. Springer, 2014.

17. D. Lembo, J. Mora, R. Rosati, D. F. Savo, and E. Thorstensen. Towards mapping analysis in
ontology-based data access. In Proc. of RR, pages 108–123, 2014.

18. A. Poggi, D. Lembo, D. Calvanese, G. De Giacomo, M. Lenzerini, and R. Rosati. Linking
data to ontologies. J. on Data Semantics, X:133–173, 2008.

19. M. Rodriguez-Muro, R. Kontchakov, and M. Zakharyaschev. Ontology-based data access:
Ontop of databases. In Proc. of ISWC, volume 8218 of LNCS, pages 558–573. Springer,
2013.

