
1

J-CO-QL: A Flexible Query Language for
Complex Geographical Analysis of

Heterogeneous Geo-tagged JSON Data Sets
Steven Capelli, Paolo Fosci, Fabio Marini and Giuseppe Psaila

Abstract—Analysts that wish to perform geographical analysis are provided with large volumes of publicly available geo-tagged data
sets. Often, these data sets are published by public administrations as Open Data, and are formatted as JSON objects. Furthermore,
these JSON data sets are also heterogeneous, in terms of format and structure, even though they describe the same territorial entities.
So far, analysts need new powerful tool to easily perform complex geographical analysis on large collections of geo-tagged JSON data,
possibly stored in NoSQL databases.
In this paper, we introduce the J-CO-QL: it provides a set of high level operators able to operate on heterogeneous collections of JSON
objects, explicitly dealing with geometry and providing advanced spatial aggregation and comparison capabilities. J-CO-QL relies on
an intuitive execution model that permits to write complex queries; operators are designed to be high-level operator, based on a clear
database vision of the problem and suitable for non programmers.

Index Terms—Colelctions of JSON objects, Geo-tagged data sets, Query Language for geographical analysys, Powerful spatial
operators.

F

1 INTRODUCTION

An impressive amount of information concerning territories
has (and is) made publicly available on the Internet. Very
often, this information is published on Open Data portals,
where public administrations publish data sets concerning
several aspects of territories and citizenship. In spite of the
wide use of

JSON ([1]) or CSV as general format, every single data
set has a specific structure, with specific field names, even
though they describe similar topics. Obviously, these data
sets often contain geo-referenced information.

Other sources of (possibly geo-tagged) information
could be descriptions of networks (such as water networks,
electricity networks, etc.) and environment descriptions
(streets, buildings, etc.), that might be cross processed to
discover useful information, or integrated with Open Data
sets.

NoSQL databases [2], [3], [4] are emerging as a key
technology, because traditional relational/SQL databases
are unable to flexibly integrate so heterogeneous data sets.
Nowadays, the most famous NoSQL DBMS is MongoDB [5],
[6]: it stores collections of heterogeneous JSON objects, with

• S. Capelli is with the DISCo Department of Universitä degli studi di
Milano Bicocca, Viale Sarca 336 - 20126 Sesto San Giovanni (MI) - Italy
E-mail: steven.capelli@unimib.it

• P. Fosci is with the DIGIP Department of University of Bergamo,
Viale Marconi 5 - 24044 Dalmine (BG) - Italy
E-mail: paolo.fosci@unibg.it

• F. Marini works for GN Informatica, Calusco dAdda (BG) - Italy
E-mail: fabio.marini@gninformatica.com

• G. Psaila is with the DIGIP Department of University of Bergamo,
Viale Marconi 5 - 24044 Dalmine (BG) - Italy
E-mail: giuseppe.psaila@unibg.it

no limitations to the variety of structure of objects gathered
within the same collection.

Beside NoSQL databases, researchers are extending rela-
tional technology as well, in order to store and query JSON
documents within textual and bloc attributes in tables [1],
[7], thus obtaining a kind of hybrid solution, i.e., managing
schema-less documents within a totally structured database.

In parallel, query languages are evolving as well, in
order to be able to deal with JSON documents. Apart from
raw query languages provided by some NoSQL databases
(like the one provided by MongoDB), some interesting pro-
posals appeared in literature, such as [8], where the basic
and well known syntactic structure of SQL is extended with
constructs able to query JSON documents.

However, these languages do not deal at all with geo-
tagging of JSON objects. Furthermore, they are not suitable
to specify complex analysis tasks, that require to build and
aggregate several intermediate results, maintaining a clear
database vision of the problem, as well as dealing with high
level of heterogeneity within collections.

In our opinion, analysts working on the integration and
cross analysis of heterogeneous and geo-tagged data are
facing a gap between their needs and currently available
processing technology.1 In particular, they need tools, possi-
bly integrated within a GIS for visualization purposes, that
permit to easily perform complex data analysis tasks on
highly heterogeneous and geo-tagged data sets.

The goal of our research work is to fill in such a gap, that
can be expressed as the inability of GISs to flexibly query

1. As an example, the reader can think about geo-coding activities,
such as associating points with zip codes, an activity that with relational
database extended with geographical functions (PotgreSQL/PostGIS,
for example) could require several ours or days of work.

2

and transform heterogeneous data sets of geo-tagged JSON
objects.

The perspective scenario is depicted in Figure 1: we are
developing a framework, named J-CO-QL Framework (J-CO-
QL stands for JSON COllections Query Language), designed
to enrich a GIS as a plug-in and provide an engine to execute
queries on top of MongoDB (currently) as well as other
NoSQL DBMS (in the future) able to store large volumes
of JSON documents. This way, an analyst will be able to
operate within the well known user interface of her/his
favourite GIS, visually analysing geo-tagged JSON data sets,
writing complex queries and transformation processes that
will be executed on the data sets, visualizing the results.

In this paper, we present J-CO-QL, the query language of
our framework.

J-CO-QL provides a pool of operators for various data
transformation tasks on collections of JSON objects (possi-
bly geo-tagged with GeoJSON [9], [10]). In particular, we
defined specific spatial operations on the geometric fields of
JSON objects. The main design goals of J-CO-QL are:

1) dealing in a native way with geometrical features of
objects;

2) easily managing highly heterogeneous collections;
3) providing a clear semantics of the query process, on

the basis of a database vision;
4) providing high-level operators, so far abstracting

from the programmer vision typical of some other
proposals.

In this paper, we present the basic and minimal operators
we consider necessary in J-CO-QL to meet our design goals,
for which the data model and the execution model are
devised. We will show the language and its use by means
of a running example. In the future, we will introduce
other operators, specifically designed to address specific, yet
complex, geographical analysis problems.

During the design of the language, we were inspired by
early works [11], [12] about a query language for hetero-
geneous, although structured, collections of geo-referenced
data.

The paper is organized as follows. in Section 2, we
present the data model and a toy running example that will
be exploited along with the paper. Section 3 presents the
execution model on which J-CO-QL relies. At this point, Sec-
tion 4 presents basic notations and the basic building blocks
(action and clauses) of J-CO-QL; after the presentation of
basic operators in Section 5, the SPATIAL JOIN operator is
presented in Section 6, the fundamental operators necessary
to write complex query processes are presented in Section
7 and some useful set-oriented operators are introduced in
Section 8. A complete example is presented in Section 9, to
illustrate the potential application of J-CO-QL. Section 10
presents the implementation of the prototype and discuss
some experimental results. Finally, Section 11 discusses re-
lated works and Section 12 draws the conclusions.

2 DATA MODEL

The basic concept which we rely on is the JSON object. JSON
(JavaScript Object Notation) is a de facto standard serialized

Fig. 1. Perspective Application of the J-CO-QL Framework.

representation for objects. Fields (object properties) can be
simple (numbers or strings), complex (i.e., nested objects),
vectors (of numbers, strings, objects).

As far as spatial representation is concerned, we rely on
the GeoJSON standard [9], [10]). In particular, we assume
that the geometry is described by a field named geometry,
defined as a GeometryCollection objects type in GeoJSON
standard. The absence of this top-level field means that the
object does not have an explicit geometry.
As an example, consider the object with name
"buildingA" reported in Listing 1. The geometry
field describes the polygon representing the footprint of the
building on the ground.

The following definition defines the concepts of collection
and Database.

Definition 1 (Collections and Databases). A Database db is
a set of collections db = {c1, . . . , cn}. Each collection
c has a name c.name (unique in the database) and an
instance InstanceOf(c)= [o1, . . . , om] that is a vector of
JSON objects oi.

Thus, we need operators (see Section 3) to transform
collections and get new collections. Our language should
satisfy the closure property.

Example 1 (Running Example). In order to illustrate the data
model and, in the next sections, the execution model and
the J-CO-QL operators, we provide a running example.
Suppose we have a sample database named ToyDB.
Within it, We have three toy collections: the first one is
named Buildings (shown in Listing 1); the second one
is named WaterLines (see Listing 2). Finally, the third
one is named Restaurants (see Listing 3).
In particular, collection Buildings contains two objects,
describing two buildings. Each building is described by
its name, the city name, the address and the geomet-
rical description (field geometry). Notice that while
buildingA has an field named city, the corresponding
one in buildingB is named cityName. This is an
example of heterogeneous objects objects that describe
homogeneous real world entities.
Collection WaterLines describes lines for water dis-
tribution. this is not heterogeneous and each line is
described by the city and the geometrical representation
(poly-line) of the network.

3

Finally, collection Restaurants is an heterogeneous
collection: in fact, the three objects share three descrip-
tive fields (name, city and address), but the first one
has no more fields, while the second object has two
numerical fields named lat and lng, the third object
has the geometry field.

Listing 1. Collection Buildings
[{ "name":"buildingA",

"city":"city A",
"address":"address A",
"geometry":{"type":"GeometryCollection",

"geometries":[
{
"type": "Polygon",
"coordinates": [

[[100.0, 0.0],
[101.0, 0.0],
[101.0, 1.0],
[100.0, 1.0],
[100.0, 0.0]]]

}

]

}

},

{ "name":"buildingB",
"cityName":"city B",
"address":"address B",
"geometry":{"type":"GeometryCollection",

"geometries":[
{
"type": "Polygon",
"coordinates": [

[[20.0, 0.0],
[21.0, 0.0],
[21.0, 1.0],
[20.0, 1.0],
[20.0, 0.0]]]

}
]

}
}]

Listing 2. Collection WaterLines

[{ "name":"WaterLineA",
"city":"city A",
"geometry":{"type":"GeometryCollection",

"geometries":[
{
"type": "LineString",
"coordinates":

[[90.0, 0.0],
[103.0, 1.0],
[104.0, 0.0],
[105.0, 1.0]]

}
]

}
},
{ "name":"WaterLineB",
"city":"city A",
"geometry":{"type":"GeometryCollection",

"geometries":[
{
"type": "LineString",
"coordinates":
[[102.0, 10.0],
[103.0, 2.0],
[104.0, 1.0],
[102.0, -1.0]]

}
]

}
},
{ "name":"WaterLineC",
"city":"city C",
"geometry":{"type":"GeometryCollection",

"geometries":[
{
"type": "LineString",
"coordinates":
[[104.0, 10.0],
[105.0, 2.0],
[109.0, 1.0],
[110.0, -1.0]]

}
]

}
}]

Listing 3. Collection Restaurants
[{ "name":"RestaurantA",

"city":"city A",
"address":"address A"

},

{ "name":"RestaurantB",
"city":"city B",
"address":"address C"
"lat": -10.574228,
"lng": 21.015217

},

{ "name":"RestaurantC",
"city":"city C",
"address":"address D",
"geometry":{"type":"GeometryCollection",

"geometries":[
{
"type": "Polygon",
"coordinates":[

[[20.0, -10.0],
[21.0, -10.0],
[21.0, -11.0],
[20.0, -11.0],
[20.0, -10.0]]]

}
]

}
}]

3 EXECUTION MODEL

Queries will transform collections stored in databases (for
example, managed by MongoDB), and will generate new
collections that will be stored again into these databases,
for persistence. For simplicity we call such databases as
Persistent Databases

4

Definition 2 (Query Process State). A state s of a query
process is a pair s = (tc, IR), where tc is a collec-
tion named Temporary Collection. while IR is a database
named Intermediate Results database.

Definition 3 (Operator Application). Consider an operator
op. Depending on the operator, it is parametric w.r.t.
input collections (present in the persistent databases or
in IR) and, possibly, an output collection, that can be
saved either in the persistent databases or in IR.
The application of an operator op, denoted as op, is
defined as

op : s→ s′

where both domain and co-domain are the set of query
process states. The operator application takes a state s
as input, possibly works on the temporary collection
s.tc, possibly takes some intermediate collection stored
in s.IR; then, it generates a new query process state
s′, with a possibly new temporary collection s′.tc and a
possibly new version of the intermediate result database
s′.IR.

The idea is that the application of an operator starts
from a given query process state and generates a new query
process state. The temporary collection tc is the result of the
operator; alternatively, the operator could save a collection
as intermediate result into the IR database, that could be
taken as input by a subsequent operator application.

Definition 4 (Query). A query q is a non-empty sequence
of operator applications, i.e., q = 〈op1, . . . , opn〉, with
n ≥ 1.

Each operator application starts from a given query
process state and generates a new query process state, as
defined by the following definition.

Definition 5 (Query Process). Given a query q =
〈op1, . . . , opn〉, a query process QP is a sequence of
query process states QP = 〈s0, s1, . . . , sn〉, such that
s0 = (tc : [], IR : ∅) and, for each 1 ≤ i ≤ n, it is
opi : si−1 → si

The query process starts from the empty temporary
collection s0.tc and the empty intermediate results database
s0.IR. Thus, J-CO-QL must provide operators able to start
the computation, taking collections from the persistent
databases, while other operators carry on the process, con-
tinuously transforming the temporary collection and pos-
sibly saving it into the persistent databases. But the query
could be complex and composed by several subtasks, thus
the temporary collection could be saved into the intermedi-
ate results database IR. At this point, a new subtask can be
started by the same operators that can start the query, which
can take collections either from persistent databases or from
the intermediate result database as input, giving rise to a
new subtask.

For this reason, we identified two classes of operators
(see Table 1): start operators and carry on operators, that will
be described in the next sections.

TABLE 1
Type of operators

Family Operators

Start

GET COLLECTION
INTERSECT COLLECTIONS
JOIN OF COLLECTIONS
MERGE COLLECITONS
SPATIAL JOIN OF COLLECTIONS
SUBTRACT COLLECTIONS

Carry-on

EXPAND
FILTER
GROUP
SAVE AS
SET INTERMEDIATE AS

3.0.0.1 Rationale.: Two points are innovative in the
design of the execution model, w.r.t. standard approaches to
query languages: the intermediate result database and the
procedural favour.
The intermediate result database IR is motivated by the need
to support complex transformation processes, that typically
proceed through the computation of several intermediate
results. Where to store such intermediate results? It is in-
appropriate to store them into the same DBs that contain
initial and target collections. In contrast, the adoption of
the intermediate result database forces analysts to explic-
itly set intermediate results, without touching regular DBs;
furthermore, intermediate collections are clearly stated to be
intermediate, and disappear from the system at the end of
the process.
Moreover, the fact that the intermediate results database IR
is part of query process states implicitly guarantees isolation:
it exists only during the query process and in case of
parallelism, each parallel process has its own intermediate
results database.

The procedural flavour is the result of the applications
of operators: operators are declarative (see next sections)
but their application defines a process. Anyway, queries
are not programs, in the sense of procedural programming
languages, they are processes.
Observe that this is not a new concept in databases: the
classical notion of Transaction is, in fact, a query process
where operators are applied sequentially, storing results into
the database. Differently from other approaches, the J-CO-
QL execution model makes it explicit.

4 J-CO-QL BASIC BLOCKS

This section is devoted to introduce the basic blocks that are
exploited in many J-CO-QL operators. In some sense, they
constitute the skeleton of the language. Before we present
them, it is necessary to introduce notation and terminology.

4.1 Notation and Terminology

Hereafter, we introduce terminology and symbols that we
will use in the rest of the paper.

4.1.0.1 Syntax.: Regarding the notation for the syn-
tax of operators, we will make use of the * symbol to denote
0 or more repetitions and of the + symbol to denote 1 or
more repetitions; square brackets denote optionality; the
vertical bar | separates alternatives.

5

4.1.0.2 Collections and databases.: With collection-
Reference, we denote a reference to a collection stored in a
database. Its syntax is:

collectionName[@dbName] [AS collectionAlias]

where dbName is the persistent database that contains the
collection, collectionName is the name of the desired collec-
tion, collectionAlias is an alias name given to the collection
(if not specified, the default value for collectionAlias is collec-
tionName). Notice that dbName is optional: if not specified,
the collection is looked for within the intermediate result
database IR.

4.1.0.3 Field Reference.: A fieldReference permits to
refer to fields within JSON objects. Its syntax is

(.fieldName)+

i.e., a dotted list of field names. The dot at the beginning
means that we start from the root of the object, i.e., the most
external level of the object.

For example, .a, .a.a3 and .a.a3.a31 are three sam-
ples of fieldReference.

4.2 Object Generation

J-CO-QL operators manipulate JSON objects. For this rea-
son, many operators change the structure of objects when
they insert objects into the output temporary collection. This
is done by the GENERATE action. In the rest of the paper, we
will refer to it as generateAction.

The syntax of the GENERATE action is reported hereafter.

GENERATE (objectStructure [geometricOption]
| geometricOption)

where objectStructure specifies the structure of the gener-
ated object, that might be followed by geometryOption, that
specifies how and whether the geometry field is generated
in the output object. If the geometryOption is not specified,
this means that the geometry field is kept as it is from
the input to the output object (if missing in the input, it
will not appear in the output object). Notice that the clause
cannot be empty: if the objectStructure is missing (meaning
the the structure of the input object is not changed), a
geometryOption must be specified.

4.2.0.1 Object Structure Definition.: objectStructure
is a non-empty list of outputFieldSpec within braces, i.e.,

{ outputFieldSpec (, outputFieldSpec)* }
In its simplest form, an outputFieldSpec can be a fieldReference:
in this case, the new field is given the most internal name
of the referenced field (e.g., if .a.a3.a31 is specified, the
new field name is a31).

The second form for outputFieldSpec can be a field name
followed either by a constant value (e.g., dn: ’John’),
or by an objectStructure (to specify nested objects), or by a
fieldReference (e.g., db: .b.b2).

Notice that a fieldReference takes the full value (included
nested objects and arrays) of the field. However, if the field
is not present, the null value is given to the new field.

4.2.0.2 Geometric Option Specification.: geometry-
Option specifies how and whether the output geometry
field must be generated into the output object. Three options
are possible:

1) KEEPING GEOMETRY means that the geometry
field in the input object is translated into the out-
put object as it is (the same if missing). When the
geometryOption is not specified, this is the default
setting.

2) DROPPING GEOMETRY means that the geometry
field will not appear in the output object (if present
in the input object, it is drooped).

3) SETTING GEOMETRY geometryFunction means that
the geometry field appears in the output object and
is obtained as specified by geometryFunction.
As far as geometryFunction is concerned, currently
we have identified three alternatives (but we foresee
to add other functions in the future).

• POINT(latFieldRef,longFieldRef)
takes two numerical fields denoting,
respectively the latitude and the longitude
of a point, and generates the corresponding
GeoJSON representation. latFieldRef and
longFieldRef are both fieldReference to fields in
the input object.

• AGGREGATE(arrayFIeldReference)
looks for geometry fields appearing
in objects listed within the array field
present in the input object (as specified by
arrayFIeldReference, that is a fieldReference),
and aggregates them into a unique GeoJSON
representation.

• fieldRefeference takes the specified field in the
input object. If it is a geometrical, GeoJSON
compliant, field, it is taken as geometry of
the output object; in the contrary, the output
geometry field is missing.

Example 2. Consider the following JSON object

{
"a": {

"a1": 1,
"a2": 2,
"a3": {

"a31": 90.000022,
"a32": 10.000001

}
},

"b": {
"b1": ’bb’,
"b2": [1, 2, 3]
},

"c": ’CC’
}

Consider now the following GENERATE clause:

GENERATE {.c,
d: { da: {d1: .a.a1, d2:

.a.a2},
db: {.b.b2, dn: ’John’},

e: .b, .g}
SETTING GEOMETRY POINT(.a.a3.a31,
.a.a3.a32)

The GENERATE action will generate the output object here-
after reported.

6

{
"c": ’CC’,
"d": {

"da": {
"d1": 1,
"d2": 2,
}

"db": {
"b2": [1, 2, 3],
"dn": ’John’

}
},

"e": {
"b1": ’bb’,
"b2": [1, 2, 3]

},
"g": null,
"geometry":{"type":"GeometryCollection",

"geometries":[
{
"type": "Point",
"coordinates":

[10.000001, 90.000022]
}]

}

}

Notice that both fields c and g are generated by simple
fieldReference specifications (.c and .g, respectively),
while the other fields are generated by full field speci-
fications. Finally, notice that the value of field g is null,
since there is no field named g in the upper level of the
input object.
As far as the geometry field is concerned, notice that
it was not present in the input object. It is derived by
means of the POINT function, that takes values of fields
.a.a3.a31 and .a.a3.a32 as latitude and longitude,
respectively, deriving the corresponding GeoJSON rep-
resentation associated to field geometry in the output
object.

4.3 CASE Clause

The heterogeneity of JSON collections asks for a clause that
is able to manage separately objects with different structure,
possibly applying the GENERATE action (see Section 4.2) in
different ways. For this reasons, many operators defined
in J-CO-QL make use of the CASE clause (in the syntax of
operators referred to as caseClause).

Its syntax is the following:

CASE
(WHERE selectionCondition
[generateAction])+

(KEEP OTHERS|DROP OTHERS);

i.e., the CASE keyword is followed by a non-empty list
of WHERE branches, followed by the KEPP OTHERS-DROP
OTHERS option.

The role of a CASE clause is the following: given a
set of objects, they are filtered based on the conditions
expressed in the WHERE branches and possibly transformed
into new objects. When an object satisfies a selectionCondi-
tion, its structure can be modified by using the generateAction

(see Section 4.2) or can remain unchanged, if the optional
generateAction is not specified

The selectionCondition is a classical boolean condition,
enriched with two predicates:

• WITH predicate, that is true when an object presents
the specified fieldReferences;

• WITHOUT predicate, that is true for objects without
the specified fieldReferences.

4.3.0.1 WITH predicate.: The syntax of this predi-
cate is

WITH [typeSelector] fieldReference (, fieldReference)*
where, in the simplest form (without typeSelector), it is true
when all the listed fieldReferences match a field in the input
object.

When present, typeSelector specifies the data type all
fields specified by the list of fieldReferences must have. We
identified the following options for typeSelector:

• SIMPLE, fields must be simple-value fields;
• COMPLEX, fields must be complex (object) fields;
• ARRAY, fields must be arrays;
• STRING, fields must be strings;
• NUMBER, fields must be numerical values;
• INTEGER, fields must be integer values;
• FLOAT, fields must be floating point values;
• GEOMETRY, fields must be GeoJSON-compliant ge-

ometries.

4.3.0.2 WITHOUT predicate.: The syntax of this
predicate is

WITHOUT fieldReference (, fieldReference)*
which is evaluated as true when all the listed fieldReferences
do not match a field in the object.2

WHERE branches are cascaded each other (remind that
there can exist many WHERE branches with different se-
lectionCondition); when an object satisfies more than one
selectionCondition, only the first matching condition in the
sequence is considered.

The final mandatory option KEEP OTHERS and DROP
OTHERS specifies what to do with objects that do not match
any CASE branch. If KEEP OTHERS is specified, these objects
are put into the output temporary collection, keeping their
structure as it was in input; if DROP OTHERS is specified,
these objects are not put into the output collection.
Example 3. Consider the following example which aims at

showing a possible use of the CASE clause.

CASE
WHERE WITH .geometry
GENERATE KEEPING GEOMETRY
WHERE WITHOUT .geometry AND

WITH .a.a1, .a.a2, .c, .b.b1, .b.b2
GENERATE
{.c, d: { da: {d1: .a.a1, d2: .a.a2},
db: {.b.b2, dn: ’John’}, e: .b, .g} }
SETTING GEOMETRY

POINT(.a.a3.a31, .a.a3.a32)
DROP OTHERS

2. In JSON, a missing field is equivalent to a field having null value.
In J-CO-QL, we comply with this semantics.

7

The first WHERE branch works on all input objects which
have the geometry field and outputs them as they are
(through the use of the GENERATE action).

The second WHERE branch, instead, works on all input
objects which have not the geometry field and have the
fields listed in the WITH clause. The GENERATE action mod-
ifies the structure of the input objects as shown in Example
2.

Finally, the DROP OTHERS option drops all input objects
which do not meet any WHERE branch selection condition.

Notice that predicates WITH and WITHOUT are necessary,
in order to query the schema of each single object and apply
the proper selection condition or transformation. This idea
was argued in the work [1]: authors observe that query
languages designed to query JSON objects must provide
constructs to query the schema of single objects; this is
necessary to make the language able to adapt to the specific
structure of single objects in the collections.

5 BASIC OPERATORS

In this section, we introduce the basic operators that allow
to start and terminate a query process

5.1 GET COLLECTION
The GET COLLECTION operator is a start operator that gets
a collection from a database (persistent or intermediate) and
makes it the new temporary collection. The syntax of the
operator is:

GET COLLECTION collectionReference;

collectionRefference specifies the collection name and the
database in which the collection is stored. Remind that when
the database is not specified, the collection is taken from the
intermediate result database IR.

5.1.1 SET INTERMEDIATE AS
The SET INTERMEDIATE AS operator stores the input tem-
porary collection into the intermediate results database IR.
The syntax of operator is:

SET INTERMEDIATE AS collectionName;

Note that collectionName is the name given to the tem-
porary collection when stored into the intermediate results
database IR.

5.1.2 SAVE AS
The SAVE AS operator saves the input temporary collection
into a persistent database.

SAVE AS collectionName@dbName;

6 SPATIAL JOIN OF COLLECITONS
Currently, J-CO-QL provides one operator for spatial
processing and analysis, i.e., the SPATIAL JOIN OF
COLLECTIONS operator. This is the key operator for per-
forming spatial analysis and is so rich that it is possible to
perform very complex analysis. Furthermore (see Section 4),

geometrical features are supported in the basic blocks of a
large number of operators.

The SPATIAL JOIN OF COLLECTIONS (or SPATIAL
JOIN for simplicity) operator is a start operator that per-
forms the geo-spatial join between two input collections
based on the truth of a metric or topological condition
evaluated between the geometries of any pair of two objects
from the two input collections. The metric conditions can be
defined on the distance between two geometries, for exam-
ple requiring that their distance is lower than a maximum
threshold, or the intersection of their geometries that must
be not empty or with an area greater than a specific value.
The topological condition can be defined on the orientation
of one geometry w.r.t. the other geometry, or that the two
geometries share some part of their boundary, i.e., they
meet, or that one geometry is covered (is included) or covers
(includes) the second geometry.

The syntax of the SPATIAL JOIN operator is the follow-
ing:

SPATIAL JOIN OF COLLECTIONS
collectionReference1, collectionReference2
[ON spatialJoinCondition]
SET GEOMETRY (INTERSECTION | RIGHT

| LEFT | ALL)
[caseClause];

The operator makes the join between two input col-
lections: these can be stored either in persistent, possibly
distinct, databases or in the intermediate result database IR.
Furthermore, the two input collections must have different
names (or must be aliased with different names, see Section
4.1) to avoid any ambiguity in the output. The spatial join
of two input objects is performed if a metric or a topological
condition defined on their geometries is satisfied: this is the
mandatory spatialJoinCondition specified after the ON key-
word. The SET GEOMETRY parameters allows specifying
the geometry of the output object.

The resulting objects are possibly selected and modified
by caseClause (see Section 4.3), that actually generates the
new temporary collection.

Let us give a precise semantic description. For each
object li in the left collection (collectionReference1, named
or aliased as lcn) and an object rj in the right collection
(collectionReference2, named or aliased as rcn) both having
the geometry field, an object oi,j is generated if the ge-
ometries of li and rj meet the spatialJoinCondition. and if the
oi,j is approved by caseClause (see Section 4.3), when this
clause is used. The generated object oi,j has three fields: the
first one has the name lcn) and contains the left object li
(i,.e., oi,j .lcn= li); the second field has the name rcn) and
contains the right object rj (i,.e., oi,j .rcn= rj); the third field
is the geometry field, resulting from the spatial join, based
on the SET GEOMETRY parameter. When SET GEOMETRY
INTERSECTION is specified, oi,j .geometry is the inter-
section of the geometries of the joined objects; when SET
GEOMETRY RIGHT (resp. SET GEOMETRY LEFT) is spec-
ified, oi,j .geometry is the geometry of the right (resp.,
left) input object; when SET GEOMETRY ALL is specified
oi,j .geometry is the union of the geometries of the input
objects.

8

If the caseClause is not specified, the objects oi,j are put as
they are in the output temporary collection. If the caseClause
is specified, the objects oi,j are then possibly filtered ad
restructured (see Section 4.3) before they are put into the
output temporary collection. This way, the output can be
customized.

Metric and topological relationships are expressed by
pre-defined properties, which are as follows:

• DISTANCE(unit) is the distance between the center
of the two geometries, expressed based on the speci-
fied unit, that can be M (meters), KM (Kilometres), ML
(miles).

• AREA(unit) is the area of the intersection of the two
geometries expressed based on the specified unit,
that can be M (square meters), KM (square Kilometres),
ML (square miles).

• ORIENTATION(from) reports the cardinal orien-
tation of li.geometry w.r.t. rj.geometry or vice
versa; If the from parameter is LEFT (resp. RIGHT),
it is the orientation of the spatial vector from the
center of li.geometry to the center of rj.geometry
(resp., from the center of rj.geometry to the center
of li.geometry); orientation values are strings ob-
tained by composing the 4 letters N (for North), E
(for East), S (for South) and W (for West): a single
letter (e.g., "N" for North orientation), a pair (e.g.,
"NE" for North-East), a triple (e.g., "NNE" for North-
North-East).

• INCLUDED(side) is a boolean property that denotes
the inclusion of
li.geometry w.r.t. rj.geometry; if the side
parameter is LEFT, INCLUDED(LEFT) is true
if li.geometry is completely included in
rj.geometry; if the side parameter is RIGHT,
INCLUDED(RIGHT) is true if rj.geometry is
completely included in li.geometry..

• MEET is a boolean property, that is true when the two
geometries share a common part of their boundaries.

• INTERSECT is a boolean property that is true when
the two geometries intersect.

Example 4. Consider collection Buildings shown in List-
ing 1 and collection WaterLine shown in Listings 2,
stored in database ToyDB. Suppose we are a company
committed to perform maintenance of water lines. Thus,
we want to know which water lines passes below which
buildings in city "City A". The query is the following:

SPATIAL JOIN OF COLLECTIONS
Buildings@ToyDB, WaterLines@ToyDB
ON INTERSECT
SET GEOMETRY INTERSECTION
CASE
WHERE WITH STRING .Buildings.City
AND .Buildings.City = "City A"

WHERE WITH STRING .Buildings.CityName
AND .Buildings.CityName = "City A"

DROP OTHERS;

The operator performs a geospatial join between each
object bi in collection Buildings and each object wj

in collection WaterLines, in such a way the geospatial

representations of bi and wj intersect. In practice, we are
interested in discovering which water lines passes below
which building. The output collections:

[
{
Buildings:{
"name":"buildingA",
"city":"city A",
"address":"address A",
"geometry":{"type":"GeometryCollection",

"geometries":[
{
"type": "Polygon",
"coordinates": [
[[100.0, 0.0],
[101.0, 0.0],
[101.0, 1.0],
[100.0, 1.0],
[100.0, 0.0]]]

}

]

}

},
Waterlines:{
"name":"WaterLineA",
"city":"city A",
"geometry":{"type":"GeometryCollection",

"geometries":[
{
"type": "LineString",
"coordinates":
[[90.0, 0.0],
[103.0, 1.0],
[104.0, 0.0],
[105.0, 1.0]]

}
]

}
},
"geometry":{

"type": "LineString",
"coordinates":
[[100.0,0.7692307692307692],
[101.0,0.8461538461538461]]

}
}

]

Notice that the output has the default structure
(GENERATE action has not been used). The field Buildings
contains the matching object bi coming from the left
collection, while field WaterLines contains the match-
ing object wJ coming from the right collection; field
geometry is the GeoJSON representation of the geospatial
intersection between geometries of objects bi and wj , that
in our cases is a line. Notice that we obtain only one
pair, related to city "City A", because it is the only one
that actually overlays and the city of the building is the
required one.
The goal of the example is to know which water lines
pass below which building. For this purpose, not all
information contained in the output shown, are needed
(i.e. the details about geospatial information of the spe-
cific building and waterline, may not be needed).

9

The below listing, for example, shows the same query
written using the GENERATE action, that permits to
obtain a customized output containing only the desired
information and structured as we want.

SPATIAL JOIN OF COLLECTIONS
Buildings@ToyDB, WaterLines@ToyDB
ON INTERSECT
SET GEOMETRY INTERSECTION
CASE
WHERE WITH STRING .Buildings.City
AND .Buildings.City = "City A"
GENERATE {.City: .Buildings.City,

.Building: .Buildings.name,

.Waterline: .WaterLine.name}
KEEPING GEOMETRY

WHERE WITH STRING .Buildings.CityName
AND .Buildings.CityName = "City A"
GENERATE {.City: .Buildings.CityName,

.Building: .Buildings.name,

.Waterline: .WaterLine.name}
KEEPING GEOMETRY

DROP OTHERS;

The output is the following:

[
{
"City":"city A",
"Building":"buildingA",
"Waterline":"WaterLineA",
"geometry":{

"type": "LineString",
"coordinates":

[[100.0,0.7692307692307692],
[101.0,0.8461538461538461]]

}
}

]

The output contains only the objects needed for our
purpose and are structured in a more compact way than
in the input. The field City represents the city of the
building, the field Building represents the name of the
building and the field WaterLine represents the name
of the waterline. At last, the field geometry contains the
geometry intersection between building (buildingA) and
waterline (waterLineA) according to GeoJSON standard.
Notice the power of the GENERATE action which permits
to restructured a JSON object, completely changing its
structure.

Example 5. Consider the collection Buildings inside ToyDB
database and shown in Listing 1. Assume, we want to
know which building are distant less than 50 meters in
the city C.
The syntax of the query is the follow:

SPATIAL JOIN OF COLLECTIONS
Buildings@ToyDB AS B1, Buildings@ToyDB AS B2
ON DISTANCE(M) < 50
SET GEOMETRY ALL
CASE
WHERE WITH STRING .B1.City
AND .B1.City = "City C"

WHERE WITH STRING .B1.CityName
AND .B1.CityName = "City C"

DROP OTHERS;

The Listing above performs a geospatial join between
each object b1i (in collection named B1) and each object
b2j (in collection named B2), only if the distance between
the buildings is less than 50 meters (see ON clause, where
the DISTANCE metric is used). Moreover, the use of
WHERE clauses permit to keep only the pairs of building
located in the city C. The output is not modified by
GENERATE action and each object oij present in output
contains: b1i object in collection named B1; b2j object in
collection named B2; geometry object which include both
geometry of the object b1i and b2j (see SET GEOMETRY
ALL).
Notice the simplicity of use of the DISTANCE metric in
the SPATIAL JOIN operator.

7 FUNDAMENTAL NON-SPATIAL OPERATORS

7.1 JOIN OF COLLECTIONS
The JOIN OF COLLECTIONS (or JOIN for simplicity) op-
erator is a start operator that makes the no-geospatial join
between two collections. W.r.t. the SPATIAL JOIN opera-
tor, the JOIN operator works on non-geospatial fields. The
syntax of operator is hereafter.

JOIN OF COLLECTIONS
collectionReference1, collectionReference2
[caseClause];

The output of the JOIN operator is a JSON collection
obtained by pairing objects in both input collections.

Let us denote with lcn the name (or alias) of the left
collection collectionReference1, with rcn the name (or alias)
of the right collection collectionReference2; in order to avoid
ambiguity, lcn and rcn must differ. For each object li in the
left collection and for each object rj in the right collection,
an object oi,j is generated, with two fields: the first one has
the name of the left collection lcn and its value is the left
object li, i.e., oi,j .lcn= li; the second field has the name of
the right collection rcn and its value is the right object rj ,
i.e., oi,j .rcn= rj .

At this point, the caseClause selects and possibly restruc-
ture the generated objects, in dealing with heterogeneous
resulting object all together: the various WHERE branches
recognize different objects and apply different join condi-
tion. After the WHERE branches, the user specifies either the
KEEP OTHERS option or the DROP OTHERS option.

In practice, the JOIN is designed as a Cartesian product
followed by a pool of selection conditions, where the associ-
ated GENERATE action cab restructure the output object. The
result is a very flexible operator, because:

• if the caseClause is absent, the operator behaves as
a pure Cartesian product, i.e., the output temporary
collection contains all possible pairs of objects in the
input collections;

• if one or more WHERE branches are specified with the
DROP OTHERS option, this corresponds to a classical
join enriched with the possibility of dealing with
heterogeneous object combinations;

• if one or more WHERE branches are specified with the
KEEP OTHERS option, this corresponds to a proba-
bly uncommon situation, where all objects generated

10

by the Cartesian product are kept into the output
temporary collection, even though no join condition
(i.e., no WHERE branch) is met by them. Although
unusual, we think that it could be useful in practical
applications and, nevertheless, it is coherent with the
design.

Note that, although the JOIN operator does not deal
with geometries, the GENERATE actions specified in the
WHERE branches deals with geometry. The following exam-
ple shows that.
Example 6. Suppose we are the same company of Example

4. We need to associate restaurants to buildings, based
on their address, considering restaurants for which an
geographical description is given. We can write the fol-
lowing query.

JOIN OF COLLECTIONS Buildings@ToyDB AS B,
Restaurants@ToyDB AS R

CASE
WHERE WITH STRING .B.City, .B.Address,

.R.City, .R.Address AND
WITH GEOMETRY .R.geometry AND
.B.City=.R.City AND
.B.Address=.R.Address

GENERATE {BuildingName: .B.Name,
RestaurantName: .R.Name,
City: .B.City,
Address: .B.Address}
SETTING GEOMETRTY .B.geometry

WHERE WITH STRING .B.CityName, .B.Address,
.R.City, .R.Address AND

WITH GEOMETRY .R.geometry AND
.B.CityName=.R.City AND
.B.Address=.R.Address

GENERATE {BuildingName: .B.Name,
RestaurantName: .R.Name,
City: .B.CityName,
Address: .B.Address}
SETTING GEOMETRTY .B.geometry

DROP OTHERS;

The JOIN operator creates all pairs between the objects
containing in Buildings@ToyDB (aliased as B) and
Restaurants@ToyDB (aliased as R) collections. Then,
the use of caseClause permits to keep only pairs of objects
in which their cities and their address coincides. The
output collection is reported in the listing below.
The two WHERE branches makes substantially the same
thing, i.e., express a condition that filters out those
pairs having the same city name and the same address,
provided that the restaurant object (aliased as R) has a
geometry (predicate WITH GEOMETRY .R.geometry).
Two branches are necessary to deal with the fact that,
within buildings, some objects have field City and some
others have field CityName.
Finally, for both branches, the GENERATE action actually
generates the output objects. The field BuildingName
represents the name of the building, the field Restau-
rantName represents the name of the restaurant (the
names are different because they are kept by different
collections). The City and Address represent respectively
the city and the address of the building or restaurant.
At last, the field geometry contains the geometry of the
Building (buildingA).

Notice that, the use of the GENERATE action permits to
generate a JSON collection with a completely different
structure from the structure of the input objects. In the
case of the example, the need is to get a uniform structure
for the output objects.

[{
"BuildingName":"buildingA",
"RestaurantName":"RestaurantA",
"City":"city A",
"Address":"address A",
"geometry":{"type":"GeometryCollection",

"geometries":[
{
"type": "Polygon",
"coordinates": [

[[100.0, 0.0],
[101.0, 0.0],
[101.0, 1.0],
[100.0, 1.0],
[100.0, 0.0]]]

}
]

}

}]

7.1.1 FILTER
The FILTER operator is a carry-on operator that permits
to filter objects in the temporary collection, according to a
caseClause (see Section 4.3).

The syntax is the following:

FILTER
caseClause;

The FILTER clause takes the input temporary collection,
filters its objects according to WHERE clause and possi-
bly generates a restructured version of them (when the
GENERATE action is specified). In practice, the FILTER op-
erator applies a caseClause (see Section 4.3) to the temporary
collection. The following example will show a practical
application of the operator.

Example 7. Consider collection Restaurants shown in Listing
3 which represents some restaurant. We want to derive
the geometry field for those restaurants having fields
lat (latitude) and lng (longitude), which are not pro-
vided with a GeoJSON-compliant geometry field.
The query is hereafter.

GET COLLECTION Restaurants@ToyDB;
FILTER
CASE

WHERE WITH LOAT .lat, .lng AND
WITHOUT .geometry

GENERATE SETTING GEOMETRY
POINT(.lat, .lng)

KEEP OTHERS;

The GET COLLECTION operator retrieves the initial
Restaurants collection from the persistent database;
this collection becomes the new temporary collection.
The FILTER operator carries on the process.
Notice the simplicity of the caseClause. Only one single
WHERE branch is sufficient for our purpose; the condition

11

looks for objects without geometry field, having two
floating point valued fields named lat and lng. The
GENERATE action does not specify a structure for the
output object, meaning that the structure of the object
remains untouched, but the SETTING GEOMETRY pa-
rameter derives a point geometry from fields lat and
lng. Finally, KEEP OTERS says that not selected objects
remains as they are in the output temporary collection.
The new temporary collection produced by the operator
is hereafter.

[
{ "name":"RestaurantA",
"city":"city A",
"address":"address A"
},

{
"name":"RestaurantB",
"city":"city B",
"address":"address C"
"lat": -10.574228,
"lng": 21.015217,
"geometry":{

"type": "Point",
"coordinates": [

21.015217,
-10.574228]

}
},

{
"name":"RestaurantC",
"city":"city C",
"address":"address D",
"geometry":{"type":"GeometryCollection",

"geometries":[
{
"type": "Polygon",
"coordinates":[

[[20.0, -10.0],
[21.0, -10.0],
[21.0, -11.0],
[20.0, -11.0],
[20.0, -10.0]]]

}
]
}

}
]

7.1.2 GROUP

The GROUP operator is a carry-on operator that groups
objects in the input temporary collection. Although concep-
tually similar to the classical GROUP BY provided by SQL,
it is a rich operator designed to deal with the heterogeneous
nature of JSON collections. Here is its syntax.

GROUP
(PARTITION whereCondition
BY fieldReference (, fieldReference)*
INTO fieldName
[SORTED BY

fieldReference (, fieldReference)*]
[generateClause])+

(KEEP OTHERS|DROP OTHERS);

First of all, the GROUP operator partitions objects in
the input temporary collection on the bases of the where-
Condition reported after the PARTITION keyword; for each
PARTITION branch, the Pi set of all objects that satisfy the
whereCondition is built (in case an object meets more than one
condition, it is inserted into the partition associated with the
first satisfied condition in the list).

For each partition Pi, objects belonging to Pi are further
grouped by the list of fields after the BY keyword: the
operator groups the objects in such a way a group contains
all the objects o1, . . . , on having the same values for fields
specified by the list of fieldReference after the BY keyword.

For each group, an object gk appears in the output
temporary collection, such that it has all the grouping fields
and a array field containing objects o1, . . . , on; the name of
this field is specified after the keyword INTO.

The optional SORTED BY option specifies whether to
sort objects into the array fields. If so, the fieldReferences
listed after the SORTED BY keywords are the sort keys.

Finally, if specified, the GENERATE clause can further
restructure the generated objects.

Notice that the output temporary collection contains as
many objects as the number of groups. Furthermore, in
case the KEEP OTERS option is specified, all objects that do
not match any PARTITION branch are kept into the output
temporary collection.

The following example shows practical application of the
GROUP operator.
Example 8. Consider the collection WaterLines shown in

Listing 2. We might be interested in grouping water lines
by their city name. The query is hereafter.

GET COLLECTION WaterLines@ToyDB;
GROUP
PARTITION WITH STRING .city
BY .city
INTO waterLineCity
DROP OTHERS;

The GET COLLECTION operator retrieves the
WaterLines collection from the persistent database
and makes it the new temporary collection, on which
the GROUP operator works.
Water lines having the string-valued city field consti-
tute the partition in which we are interested in (in the
case of Listing 2, all water lines). They are grouped by
field City; the name given to the array field containing
grouped objects is waterLineCity. Here is the output
temporary collection.

[
{"city":"city A",
"waterLineCity":[

{"name":"WaterLineA",
"city":"city A",
"geometry":{"type":"GeometryCollection",

"geometries":[
{"type": "LineString",
"coordinates":
[[90.0, 0.0],
[103.0, 1.0],
[104.0, 0.0],
[105.0, 1.0]]

}

12

]
}

}]
},

{"name":"WaterLineB",
"city":"city A",
"geometry":{"type":"GeometryCollection",

"geometries":[
{"type": "LineString",
"coordinates":

[[102.0, 10.0],
[103.0, 2.0],
[104.0, 1.0],
[102.0, -1.0]]

}
]

}
},

{"city":"city C",
"waterLineCity":[
{"name":"WaterLineC",
"city":"city C",
"geometry":{"type":"GeometryCollection",

"geometries":[
{
"type": "LineString",
"coordinates":

[[104.0, 10.0],
[105.0, 2.0],
[109.0, 1.0],
[110.0, -1.0]]

}
]

}
}]

}]

The output contains an object which represents the
group for city A (first object) and another object which
represents the grouping for city C (second object). The
first object contains a field city (grouping field) with
value city A and a field waterLineCity which contains all
objects of the Listings 2 with the field city equals to ”city
A” (grouped objects). The second object has the same
structure but the grouping field is City C.

If the user would like to derive a global geometry for
each resulting object, a GENERATE action with could be
used, as follows.

GET COLLECTION WaterLines@ToyDB;
GROUP
PARTITION WITH STRING .city
BY .city
INTO waterLineCity
GENERATE SETTING GEOMETRY

AGGREGATE(.waterLineCity)
DROP OTHERS;

The GENERATE action simply adds a geometry to
each external object, obtained by aggregating all
geometry fields of objects grouped within the array
field waterLineCity. For the sake of space, we do not
report the new output collection.

The above example is based on one single partition. Mul-
tiple partitions are very useful when the collection contains

very heterogeneous objects, which corresponds to different
real world entities, that must be separately grouped. For
instance, suppose we have a temporary collection contain-
ing both railways and roads: railways have (among other
fields) a railwayOwne field, a type field and a maxSpeed
field; roads have (among others) a countyName field, a
townName field and width field. As far as railways are
concerned, we want to group them by railwayOwner and
type; as far as roads are concerned, we want to group them
by countyName and townName. The solution is to define
two different partitions and, then, group objects within
them separately. The resulting GROUP operator could be the
following.

GROUP
PARTITION

WITH .RailwayOwner, .Type, .maxSpeed
BY .RailwayOwner, .Type
INTO groupedRailways
ORDERED BY .maxSpeed

PARTITION
WITH STRING .countyName, .townName AND

WITH FLOAT .width
BY .countyName, .townName,
INTO groupedRoads

DROP OTHERS;

In contrast, if the need is to group together objects that
describe homogeneous real world entities but have different
field name describing the property, on which fields objects
should be grouped, the solution is to further apply the
FILTER operator and, by means of the GENERATE action,
rename the fields homogeneously. Then the GROUP operator
could be applied by with one single partition.

7.1.3 EXPAND

The EXPAND operator is a carry-on operator that permits
to un-nest objects contained in an array field, putting the
resulting objects into the output temporary collection. The
syntax of operator is reported hereafter.

EXPAND
(UNPACK whereCondition

ARRAY fieldReference
TO fieldName
[generateClause])+

(KEEP OTHERS|DROP OTHERS) ;

In order to deal with heterogeneity of collections, several
UNPACK branches are possible. Each UNPACK branch has a
whereCondition, that selects objects to unpack in the branch.
For each selected object si, the array field specified after the
ARRAY keyword is unpacked, i.e., in place of si, for each
item aj (object or simple value) contained in in the array, a
new object oi,j is generated, which has all fields in si apart
from the array field fieldReference, which is replaced by a new
field fieldName having aj as value, .e., oi,j .fieldName= aj .

After that, within a branch, it is possible to specify a
GENERATE action, that permits to further restructure the
output objects.

As for WHERE clauses, if an object meets several where-
Conditions, the first one in the list will be considered, and
the corresponding UNPACK branch applied on the object.

13

Finally, as for other operators, KEEP OTHERS|DROP
OTHERS options denote if not selected objects must be, resp.,
taken or discarded in the output temporary collection.

Example 9. Suppose we want to backward the GROUP op-
eration reported in Example 8. The EXPAND operation is
the following.

EXPAND
UNPACK WITH STRING .city AND

WITH ARRAY .waterLineCity
TO tmp
GENERATE {.tmp.name, .tmp.city}

SETTING GEOMETRY .tmp.geometry
DROP OTHERS;

One single unpack branch is necessary, which selects
for objects having a string-valued city field and an
array field waterLineCity. In place of this array field,
expanded object will have field tmp, containing the
previously grouped objects describing water networks.
To obtain again the original structure, the GENERATE
action is specified.

Again, the reader can notice that non-spatial operators
apparently do not support geometrical features of objects.
However, it is always possible to apply the GENERATE
action, overtaking this apparent limitation.

8 USEFUL SET-ORIENTED OPERATORS

For the sake of providing users with a large variety of
operators, some useful set-oriented operators are provided.

8.1 MERGE COLLECTIONS

The MERGE COLLECTIONS operator merges the content of
two or more collections into the temporary collection. Here
is its syntax.

[ALL] MERGE COLLECTIONS collectionReference
(, collectionReference)+;

When the option ALL is not specified, the operator re-
moves duplicate objects, possibly coming from different col-
lections. When the ALL option is specified, duplicate objects
are not removed. The operator exploits the heterogeneous
nature of JSON collections: objects with different structure
can be stored together without any limitation.

8.2 INTERSECT COLLECTIONS

The INTERSECT COLLECTIONS operator makes a set-
intersection between collections and puts the resulting col-
lection into the temporary collection.

INTERSECT COLLECTIONS collectionReference1,
collectionReference2;

The INTERSECT COLLECTIONS performs a deep equal-
ity matching: only identical objects present in both the input
collections matches and only one single occurrence of them
is put into the output collection.

8.3 SUBTRACT COLLECTIONS
The SUBTRACT COLLECTIONS operator makes a set-
oriented subtraction between collections and puts the re-
sulting objects into the temporary collection.

SUBTRACT COLLECTIONS collectionReference1,
collectionReference2;

The SUBTRACT COLLECTIONS returns a JSON collec-
tions containing all objects in collectionName1@dbName with-
out an identical object (based on deep equality matching) in
collectionName2@dbName.

9 COMPLETE EXAMPLE

In order to show the effectiveness of J-CO-QL for complex
tasks, we wrote the query in Listings 4, based on the
collections stored in our sample DB named ToyDB. The
goal is to extract the informations of restaurants located in
buildings in city A under which some water lines pass. This
query is useful for water lines maintenance in city A.

Listing 4. Complete Example
1 SPATIAL JOIN OF COLLECTIONS
2 Buildings@ToyDB, WaterLines@ToyDB
3 ON INTERSECT
4 SET GEOMETRY INTERSECTION
5 CASE
6 WHERE WITH STRING .Buildings.City
7 AND .Buildings.City = "City A"
8 WHERE WITH STRING .Buildings.CityName
9 AND .Buildings.CityName = "City A"

10 DROP OTHERS;
11 SET INTERMEDIATE AS BWCityA;
12
13 GET COLLECTION Restaurants@ToyDB;
14 FILTER
15 CASE
16 WHERE WITH LOAT .lat, .lng AND
17 WITHOUT .geometry
18 GENERATE SETTING GEOMETRY
19 POINT(.lat, .lng)
20 KEEP OTHERS;
21 SET INTERMEDIATE AS RestaurantsWGeom;
22
23 JOIN OF COLLECTIONS BWCityA AS Bwca,
24 RestaurantsWGeom AS Rwg
25 CASE
26 WHERE WITH STRING .Bwca.City,
27 .Bwca.Address,
28 .Rwg.City, .Rwg.Address AND
29 WITH GEOMETRY .Rwg.geometry AND
30 .Bwca.City=.Rwg.City AND
31 .Bwca.Address=.Rwg.Address
32 GENERATE {BuildingName: .Bwca.Name,
33 RestaurantName: .Rwg.Name,
34 City: .Bwca.City,
35 Address: .Bwca.Address}
36 SETTING GEOMETRTY .Bwca.geometry
37 WHERE WITH STRING .Bwca.CityName,
38 .Bwca.Address, .Rwg.City,
39 .Rwg.Address AND
40 WITH GEOMETRY .Rwg.geometry AND
41 .Bwca.CityName=.Rwg.City AND
42 .Bwca.Address=.Rwg.Address
43 GENERATE {BuildingName: .Bwca.Name,
44 RestaurantName: .Rwg.Name,

14

Fig. 2. Execution Model example.

45 City: .Bwca.CityName,
46 Address: .Bwca.Address}
47 SETTING GEOMETRTY .Bwca.geometry
48 DROP OTHERS;
49 SAVE AS RestaurantsWL@ToyDB;

Figure 2 shows the execution model of the example.
It shows how the temporary collection and intermediate
database IR change during the process. In Figure 2, for lack
of space, we used abbreviated names with the following
meaning:

• Bwca stands for BWCityA,
• R stands for Restaurants@ToyDB,
• Rwg stands for RestaurantsWGeom,
• Jbr stands for Output of the join operator.

Moreover, with term tc, we indicate the temporary
collection and with term IR, we denote the intermedi-
ate database. Rectangles represent the query process state
and show how the temporary collection and intermediate
database IR change during the query process.

The query process works as follows:

9.1 New Task
The query starts a new task using the SPATIAL JOIN
operator (which is a Start operator). The SPATIAL JOIN (see
row 1) makes the geospatial join considering the geospatial
intersection between Buildings@ToyDB (shown in List-
ings 1) and WaterLines@ToyDB (shown in Listings 2). The
SPATIAL JOIN outputs, into a new temporary collection,
the pairs of buildings and water lines in cityA which inter-
sect, with their geo-spatial intersection. Figure 2 shows that
the element Bwca (BWCityA) has been put into tc.

The temporary collection generated by SPATIAL JOIN
is then saved into the intermediate result database IR by
the SET INTERMEDIATE AS operator. This operator saves
tc into IR, naming the collection as BWCityA (see row 11).

Figure 2 shows that the element Bwca (BWCityA) has been
added to IR.

9.2 Subtask 1

The GET COLLECTIONS operator (which is a Start opera-
tor) starts a new subtask. The GET COLLECTION (see row
13) outputs the Restaurants@ToyDB (shown in Listings
3) into the temporary collection. Figure 2 shows that the
element R (Restaurants@ToyDB) has become the new tc.

The temporary collection is now the input collection for
the FILTER operator. It keeps any restaurants and adds a
field geometry (of point type) to anyone of them which
have the fields lat and lng and do not have the field
geometry. Any other restaurant in the collection is kept as
it is in input (see the CASE clause). The result becomes the
new temporary collection. Figure 2 shows that the element
Rwg (RestaurantsWGeom) has become the new tc.

The temporary collection produced by FILTER is then
saved into the intermediate results database IR by the
SET INTERMEDIATE AS operator. This operator saves tc
into IR, naming the collection as RestaurantsWGeom
(see row 21). Figure 2 shows that the element Rwg
(RestaurantsWGeom) has been added to IR.

This subtask permits to change the structure of the
Restaurants@ToyDB collection (shown in Listings 3) accord-
ing to J-CO-QL data model. The GENERATE action adds the
field geometry to any restaurants which do not have that
field. This way, J-CO-QL can manage any JSON collection,
even if some objects are geo-tagged in a way not compliant
with GeoJSON standard.

9.3 Subtask 2

In row 23 the JOIN operator starts the final subtask. This
operator makes a join between the intermediate collections
BWCityA and RestaurantsWGeom (retrieved from IR and

15

Fig. 3. Architecture of J-CO-QL Engine.

respectively renamed as Bwca and Rwg). It outputs the
join between buildings and restaurants (pre-filtered by the
FILTER operator at row 14) which have the same address
and the same city (see the CASE clause). The output becomes
the new temporary collection. Figure 2 shows that the
element Jbr (output of the join) has been the new tc.

Finally, the current temporary collection tc, which indeed
contains the desired restaurant information, is saved into
the persistent database named ToyDB by the SAVE AS
operator, with name RestaurantsWL. Figure 2 shows that
the element Jbr (output of the join) is saved into persistent
database ToyDB.

The reader can observe that the query is easy to read and
rather intuitive as far as its execution is concerned.

10 J-CO-QL ENGINE

In order to prove the feasibility of our approach, we de-
veloped a prototype version of the J-CO-QL Engine. In
Subsection 10.1 we present the architecture; in Subsection
10.2 we discuss a preliminary performance evaluation that
encourages us to carry on the development.

10.1 Architecture
J-CO-QL Engine is written in Java; it is designed to be an
independent tool, external to any DBMS (currently, Mon-
goDB): this choice makes the J-CO-QL engine able to operate
on several DBMSs. The architecture of J-CO-QL Engine is
reported in Figure 3.

The stack of components includes the Parser, that trans-
forms the query text into an internal representation received
by the Planner. This component generates the execution plan
by relying on an internal object-oriented representation. The

Executor controls the execution of each single instructions in
the query plan, manage main memory usage and temporary
collections and the intermediate results database. When
necessary, it interacts with the Driver Manager, that currently
includes only the MongoDB Driver, but in the future will
includes drivers for other DBMSs and data sources. The
Driver Manager interacts with MongoDB to retrieve collec-
tions, store result collections and, when necessary (in case of
low levels of available main memory) transfers intermediate
collections to MongoDB.

The query plan is represented as a vector of objects
defined on the abstract class JCO Executable, from which
specific and non-abstract subclasses are derived, one for
each J-CO-QL operator. By exploiting polymorphism, the
Executor calls the execute_operator method of each ob-
ject, providing references to its internal component to get
input collections, store the temporary collection, the inter-
mediate collections and save collections to the persistent
database. The execute_operator method can call these
components when necessary.

The implementations of the operators make use of some
libraries, necessary to an efficient implementation. In partic-
ular, LocationTech Spatial4j3 and Tsusiat Software Java Topology
Suite 4 are used to deal with spatial representations, while
David Moten’s R-tree/R*-tree in memory indexing5 in order to
perform all computation related with geometry.
Currently, the implementation is not optimized: it tries to
adopt a main memory approach to execute queries, but no
optimizations are implemented. Anyway, we are evaluating
the introduction of (spatial) main-memory indexes, that will
certainly improve performance.

10.2 Performance Evaluation
In order to have a first validation of our approach, we
ran some experiments with the prototype of the J-CO-QL
Engine. We made the experiments on a MacBook Pro Retina,
equipped with an Intel i7 Quad Core processor with 2,5 GHz
clock-rate, 16 GB RAM and an SSD drive.

We used two data sets available on the internet. The
first one is named restaurants.json and contains about 26500
objects with point geometry. The second one is named
countries.geo.json and describes the polygon geometry of 180
countries.

In Table 2, we report the execution times (in sec) we
measured during tests; each experiment was repeated 10
times and we report the average execution times.

We tested the most critical operators, i.e., the JOIN
operator and the SPATIAL JOIN operator.

In the table, columns Size of C1 and Size of C2 report
the number of objects in the input collections; column size of
output reports the number of objects in the output collection;
column Total time reports the execution time of the operator.

As far as the JOIN operator is concerned, we tested it by
joining the collection restaurants.json with itself. The number
of potential pairs was 25360 × 25360 and the execution
time was 23 sec. Certainly, it must be improved, but it is
acceptable for off-line analysis.

3. https://github.com/locationtech/spatial4j
4. JTS - http://tsusiatsoftware.net/jts/main.html
5. https://github.com/davidmoten/rtree

16

As far as the SPATIAL JOIN operator is concerned, we
joined collection countries.geo.json (countries) with collection
restaurants.json (restaurants), in the second experiment with
the SPATIAL JOIN operator, we joined four times the
restaurants.json collection to get to 101440 objects.

The execution times show that it is necessary more than
one minute in the second case; it is an acceptable time, but
we want to improve it.

The results show that the approach is feasible, but the
implementation needs the introduction of significant opti-
mization. In fact, the application perspective of the J-CO-QL
Framework is in Big Data Analysis.

11 RELATED WORK

J-CO-QL moves from our previous work on the problem
of querying heterogeneous collections of complex spatial
data [11], [12]. In that work, we proposed a database model
able to deal with heterogeneous collections of possibly
nested spatial objects, based on the composition of more
primitive spatial objects; at the same time, an algebra to
query complex spatial data is provided, inspired by classical
relational algebra. W.r.t. those works, J-CO-QL rely on the
JSON standard, thus we do not define an ad-hoc data model;
furthermore, J-CO-QL abandons the typical relational alge-
bra syntax, because it relies on a more flexible and intuitive
execution model.

The adoption of NoSQL databases is motivated by the
need of flexibility, as far as data structures are concerned,
in interesting survey about NoSQL databases in [2], where
several systems are catalogued and classified. In particular,
a DBMS like MongoDB falls into the category of document
databases, because collections of JSON objects are generically
considered as documents. Consequently, the query language
provided by such systems does not allow complex and
multi-collection transformations like those provided by J-
CO-QL (see the web sites reported in the footnote6 for
details). Readers interested in NoSQL DBMSs evaluation
can refer to [3] and to [4].

Nevertheless, there are attempts to introduce support for
JSON objects within traditional relational technology. The
idea is to store JSON objects into text or blob attributes;
then, SQL is extended with constructs that provide query
and transformation capabilities among JSON objects. An
example of this approach is in [7], where Oracle DBMS is
extended this way.

As far as query language for JSON objects are concerned,
several proposal were made. However, none of them is
explicitly designed to provide geographical data analysis
capabilities, natively integrated in a high level query lan-
guage, as for J-CO-QL. Hereafter, we shortly refer to them.

Jaql [13] was designed to help Hadoop [14] programmer
writing complex transformations, avoiding low-level pro-
gramming, to perform in a cloud and parallel environment.
Flexibility and physical independence are the main goals
of Jaql: in particular, its execution model is similar to our
execution model, since it explicitly relies on the concept of
pipe; in fact, the pipe operator is explicitly used in Jaql

6. MongoDB: https://www.mongodb.com/
CouchDB: http://docs.couchdb.org/en/2.0.0/

queries. However, it is still oriented to programmers; its
constructs are difficult to understand for non programmer
users, while J-CO-QL constructs are at a higher level and
truly declarative.

On the same track of query languages for improving
MapReduce/Hadoop programming, we cite ChuQL [15],
which deals with XML documents (not JSON objects, even
though an XML is logically related to JSON). Compared to
Jaql, ChuQL is even worst, in the sense that its constructs
are still too programmatic; thus, it is not suitable for non
programmers.

An interesting language is Pig Latin [16], a query lan-
guage developed by Yahoo for writing complex analysis
tasks on nested (1-NF, first normal form) data sets on
top of Hadoop; thus, JSON collections are implicitly in-
cluded. Pig Latin’s constructs have names similar to J-CO-
QL constructs, however, it strongly relies on the concept of
variables: the result of each statement must be explicitly
assigned to a variable, that can be later referred to by
other statements; Clearly, this solution permits to explicit
the computation flow, but it is not based on a database view
of the problem. In contrast, J-CO-QL provides the concepts
of temporary collection and intermediate results database,
because it relies on a database view of the problem. The
DryadLINQ language, presented in [17], follows a very sim-
ilar approach to Pig Latin’s approach.

Since JSON and XML are both suitable for represent-
ing semi-structured documents, it is worth mentioning the
mostly known languages for querying XML documents. The
first to mention is XPath [18], that allows to write path
expressions to retrieve elements in a single XML document.
On the basis of XPath, a complex language designed to work
on collections of XML documents is XQuery. Among all
features, it provides constructs to generate new documents,
as well as the possibility to express complex queries.

The same approach is followed by JSONiq [19], a recent
query language devised to write complex transformations
on JSON documents. In practice, it can be considered the
adaptation of XQuery to JSON and many features are taken
from XQuery.

Although these languages are declarative, they are still
oriented to a programmer vision. In contrast, J-CO-QL is
oriented to data analysts, that need to explicitly manage
heterogeneous collections of real world entities.

An interesting proposal, that tries to unify all previous
languages, as well as SQL, is SQL++ [8]. The classical
SELECT statement of SQL is adapted and extended to per-
form queries on collections of JSON objects. In our opinion,
this is a clean proposal, if compared with others, that tries
to work at a higher abstraction level. However, it does not
deal explicitly with heterogeneity of objects, i.e., it does not
provide constructs similar to the WHERE branches provided
by J-CO-QL. Furthermore, complex transformations that
require several queries sequentially would executed need
to explicitly save intermediate results into the persistent
database (although in [8] nothing is said about data manipu-
lation operators such as INSERT). In contrast, the execution
model on which J-CO-QL relies clearly separate persistent
databases and temporary databases, by means of the tem-
porary collection and the intermediate result database IR.

17

Operation Size of C1 Size of C2 Size of Output Total time
JOIN 25360 25360 446768 25.7
SPATIAL JOIN 176 25360 21336 16.6
SPATIAL JOIN 176 101440 101440 70.5

TABLE 2
Execution times (in sec) observed during the experiments.

12 CONCLUSIONS

In this paper, we proposed a query language, named J-CO-
QL, specifically devised to query heterogeneous collections
of (possibly) geo-tagged JSON objects, in order to provide a
powerful tool to perform complex geographical analysis.

The language is defined in order to provide non pro-
grammers with a high level query language, which ex-
plicitly supports geographical representation and spatial
aggregation operations.

The execution model which J-CO-QL relies on is, simple,
intuitive, and suitable to express complex queries based on
several subtasks.

The prototype we realized demonstrates the feasibility of
the approach; performance will be improved by introducing
several optimizations in the current implementation-

At this moment, we do not think J-CO-QL is at the
end of development. We are planning to extend current
operators with new features able to better deal with nesting
and arrays. But above all, we are going to define new
powerful operators for spatial analysis, such as sequence
and trajectory matching. spatial clustering.

The final goal of the project is to obtain a powerful tool
suitable for analysis of big data concerning territorial and
geographical data sets, coming from heterogeneous sources
of information.

REFERENCES

[1] Z. H. Liu, B. Hammerschmidt, and D. McMahon, “Json data
management: supporting schema-less development in rdbms,” in
Proceedings of the 2014 ACM SIGMOD international conference on
Management of data. ACM, 2014, pp. 1247–1258.

[2] J. Han, E. Haihong, G. Le, and J. Du, “Survey on nosql database,”
in Pervasive computing and applications (ICPCA), 2011 6th interna-
tional conference on. IEEE, 2011, pp. 363–366.

[3] H. Robin and S. Jablonski, “Nosql evaluation: A use case oriented
survey,” in CSC-2011 International Conference on Cloud and Service
Computing, Hong Kong, China, December 2011, pp. 336–341.

[4] R. Cattell, “Scalable sql and nosql data stores,” SIGMOD Record,
vol. 39 (4), pp. 12–27, 2011.

[5] K. Banker, MongoDB in action. Manning Publications Co., 2011.
[6] Z. Parker, S. Poe, and S. V. Vrbsky, “Comparing nosql mongodb

to an sql db,” in Proceedings of the 51st ACM Southeast Conference.
ACM, 2013, p. 5.

[7] C. Chasseur, Y. Li, and J. M. Patel, “Enabling json document stores
in relational systems.” in WebDB, vol. 13, 2013, pp. 14–15.

[8] K. W. Ong, Y. Papakonstantinou, and R. Vernoux, “The sql++
unifying semi-structured query language, and an expressiveness
benchmark of sql-on-hadoop, nosql and newsql databases,” CoRR,
abs/1405.3631, 2014.

[9] H. Butler, M. Daly, A. Doyle, S. Gillies, S. Hagen, and T. Schaub,
“The geojson format,” Tech. Rep., 2016.

[10] T. E. Chow, “Geography 2.0: A mashup perspective,” Advances in
web-based GIS, mapping services and applications, pp. 15–36, 2011.

[11] G. Bordogna, M. Pagani, and G. Psaila, “Database model and al-
gebra for complex and heterogeneous spatial entities,” in Progress
in Spatial Data Handling. Springer, 2006, pp. 79–97.

[12] G. Psaila, “A database model for heterogeneous spatial collec-
tions: Definition and algebra,” in Data and Knowledge Engineering
(ICDKE), 2011 International Conference on. IEEE, 2011, pp. 30–35.

[13] A. Nayak, A. Poriya, and D. Poojary, “Type of nosql databases and
its comparison with relational databases,” International Journal of
Applied Information Systems, vol. 5, no. 4, pp. 16–19, 2013.

[14] T. White, Hadoop: The definitive guide. ” O’Reilly Media, Inc.”,
2012.

[15] S. Khatchadourian, M. P. Consens, and J. Siméon, “Having a chuql
at xml on the cloud.” in AMW. Citeseer, 2011.

[16] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins, “Pig
latin: a not-so-foreign language for data processing,” in Proceedings
of the 2008 ACM SIGMOD international conference on Management of
data. ACM, 2008, pp. 1099–1110.

[17] Y. Yu, M. Isard, D. Fetterly, M. Budiu, Ú. Erlingsson, P. K. Gunda,
and J. Currey, “Dryadlinq: A system for general-purpose dis-
tributed data-parallel computing using a high-level language.” in
OSDI, vol. 8, 2008, pp. 1–14.

[18] A. Berglund, S. Boag, D. Chamberlin, M. F. Fernandez, M. Kay,
J. Robie, and J. Siméon, “Xml path language (xpath),” World Wide
Web Consortium (W3C), 2003.

[19] J. Robie, G. Fourny, M. Brantner, D. Florescu, T. Westmann, and
M. Zaharioudakis, “Jsoniq-the sql of nosql 1.0 jsoniq.”

[20] E. Meijer, B. Beckman, and G. Bierman, “Linq: reconciling object,
relations and xml in the. net framework,” in Proceedings of the
2006 ACM SIGMOD international conference on Management of data.
ACM, 2006, pp. 706–706.

[21] E. Meijer, “The world according to linq,” Queue, vol. 9, no. 8, p. 60,
2011.

