
AppPolicyModules: Mandatory Access Control
for Third-Party Apps

Enrico Bacis
enrico.bacis@unibg.it

Simone Mutti
simone.mutti@unibg.it

Stefano Paraboschi
parabosc@unibg.it

Università degli Studi di Bergamo, Italy
Department of Management, Information and Production Engineering

ABSTRACT
Android has recently introduced the support for Mandatory
Access Control, which extends previous security services re-
lying on the Android Permission Framework and on the
kernel-level Discretionary Access Control. This extension
has been obtained with the use of SELinux and its adap-
tation to Android (SEAndroid). Currently, the use of the
MAC model is limited to the protection of system resources.
All the apps that are installed by users fall in a single undif-
ferentiated domain, untrusted app. We propose an extension
of the architecture that permits to associate with each app a
dedicated MAC policy, contained in a dedicated appPolicy-
Module, in order to protect app resources even from malware
with root privileges.

A crucial difference with respect to the support for policy
modules already available in some SELinux implementations
is the need to constrain the policies in order to guarantee
that an app policy is not able to manipulate the system
policy. We present the security requirements that have to
be satisfied by the support for modules and show that our
solution satisfies these requirements. The support for app-
PolicyModules can also be the basis for the automatic gen-
eration of policies, with a stricter enforcement of Android
permissions. A prototype has been implemented and exper-
imental results show a minimal performance overhead for
app installation and runtime.

Categories and Subject Descriptors
D.4.6 [Security and Protection]: Access control

Keywords
Android, App Security, Policy Modularity, Administrative
Policies, Mandatory Access Control, SELinux

1. INTRODUCTION
Mobile operating systems play a central role in the evolu-

tion of Information and Communication Technologies. One

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASIA CCS’15, April 14–17, 2015, Singapore..
Copyright c© 2015 ACM 978-1-4503-3245-3/15/04 ...$15.00.
http://dx.doi.org/10.1145/2714576.2714626.

of the clearest trends of the past few years has been the adop-
tion by users of mobile portable devices, replacing personal
computers as the reference platform for the delivery of many
ICT resources and services. The rapid success and wide de-
ployment of mobile operating systems has also introduced
a number of challenging security requirements, making ex-
plicit the need for an improvement of security technology.

The mobile scenario is indeed characterized by two mu-
tually reinforcing aspects. On one hand, mobile devices are
high-value targets, since they offer a direct financial incen-
tive in the use of the credit that can be associated with the
device or in the abuse of the available payment services (e.g.,
Google Wallet, telephone credit and mobile banking) [13,18].
In addition, mobile devices permit the recovery of large col-
lections of personal information and are the target of choice
if an adversary wants to monitor the location and behavior
of an individual. On the other hand, the system presents
a high exposure, with users of modern mobile devices con-
tinuously adding new apps to their devices, to support a
large variety of functions (we follow the common convention
and use the term app to denote applications for a mobile
operating system).

The risks are then greater and different from those of clas-
sical operating systems [2]. The frequent installation of ex-
ternal code creates an important threat. The design of secu-
rity solutions for mobile operating systems has to consider
a careful balance between, on one side, the need for users to
easily extend with unpredictable apps the set of functions of
the system and, on the other side, the need for the system
to be protected from potentially malicious apps.

It is to note that the greatest threats derive from apps that
are offered through delivery channels that are alternative to
the “official” app markets (e.g., [19]), whose number of app
installations is increasing rapidly, pointing out the need of
wider security layers. Apps in official markets, instead, are
verified by the market owner and the ones detected as misbe-
having are promptly removed from the market. The correct
management of the app market is crucial, nevertheless it is
not able by itself to fully mitigate the security concerns. The
mobile operating systems have to provide a line of defense
internal to the device against apps that, due to malicious in-
tent or the presence of flaws in system components or other
apps, may let an adversary abuse the system.

1.1 Rationale of the approach
The approach that we propose follows the principles of the

Android security model, which aims at isolating from each
other the apps that are executed by the system. Each app is
confined within an assigned domain and interaction between

the elements of the system is managed by a privileged com-
ponent, which enforces the restrictions specified by a policy.
The approach presented in the paper aims at strengthening
this barrier, introducing an additional mechanism to guar-
antee that apps are isolated and cannot manipulate the be-
havior of other apps. The additional mechanism is obtained
with an adaptation of the services of a Mandatory Access
Control (MAC) model, which enriches the Discretionary Ac-
cess Control (DAC) services native to the Linux kernel.

MAC models are commonly perceived as offering a signif-
icant contribution to the security of systems. However, one
drawback of MAC models is represented by policy manage-
ment which is a especially critical in complex systems such
as Android, where each OEM tries to customize the MAC
policy for its own devices. Samsung KNOX is the most well-
known example. Policy customization provides benefits in
terms of security, but it inevitably leads to policy fragmen-
tation. Our work tries to do a step ahead in the policy
standardization defining a set of entry points which can be
used by both OEMs and developers in order to extend, un-
der specific constraints, the MAC policy to fulfill their own
security requirements and subsequently try to mitigate the
policy fragmentation problem.

Apps can only become known to the system when the
owner asks for their installation. The MAC policy has then
to be dynamic, with the ability to react to the installation
and deletion of apps, which requires modularity and the ca-
pability to incrementally update the security policy, with
a policy module associated with an app. We use the term
appPolicyModule to characterize it (when space is limited,
like in table headers, we may use the acronym APM). The
support for appPolicyModules allows app developers to ben-
efit from the presence of a MAC model, letting them define
security policies that increase the protection the app can get
against attacks coming from other apps, which may try to
manipulate the app and exploit its vulnerabilities.

1.2 Outline
Section 2 provides an overview of the Android security ar-

chitecture, describing the role of the MAC model introduced
by SEAndroid. Section 3 describes the threat to third-party
apps that the policy modules want to mitigate. Section 4
presents a model of SELinux policies, used in Section 5 to
formalize the requirements that policy modules have to sat-
isfy. Section 6 introduces the syntax used by appPolicyMod-
ules. Section 7 illustrates how the use of appPolicyModules
can improve the support of Android permissions. In Section
8 we discuss the performance results. Section 9 provides a
comparison with previous work in the area. Finally, Section
10 draws a few concluding remarks.

2. ANDROID SECURITY ARCHITECTURE
The Android security model shows a direct correspon-

dence with the overall Android architecture, which is or-
ganized in three layers (from bottom to top): (a) an un-
derlying Linux kernel, (b) a middleware framework, and (c)
an upper application layer. The Linux kernel in the lowest
layer provides low-level services and device drivers to other
layers and it differs from a traditional Linux kernel, because
it aims at running in an embedded environment and does
not have all the features of a traditional Linux distribution.
The second layer, the middleware framework, is composed of
native Android libraries, runtime modules (e.g., the Dalvik

Virtual Machine and the alternative Android Runtime ART)
and an application support framework. The third layer is
composed by apps. Apps are divided into two categories:
(i) pre-installed apps (e.g., Web browser, phone dialer) and
(ii) third-party apps installed by the user. In the paper we
focus on the consideration of third-party apps, since the pre-
installed ones are already covered by the system policy.

Android provides distinct security mechanisms at the dis-
tinct layers. The Linux security model based on user identi-
fiers (uid) and group identifiers (gid) operates at the lowest
layer, with each app receiving a dedicated uid and gid. The
granularity of this access control model is at the level of files
and processes, reusing all the features of the classical DAC
model of Unix/Linux, with a compact acl that describes for
each resource the operations permitted respectively to the
owner, members of the resource group, and every user of the
system.

At the application layer, Android uses fine-grained per-
missions to allow apps or components to interact with other
apps/components or critical resources. The Android Per-
mission Framework contains a rich and structured collection
of privileges, in the 4.4.4 version more than 200, focused on
the management of the large variety of resources that are
offered by the operating system to apps. The access control
model assumes that apps specify in their manifest the set
of privileges that will be required for their execution. At
installation time, users of Android devices have to explicitly
accept the request for privileges by the app; in case the user
does not accept the app request, the app is not installed.

2.1 SEAndroid
Recently, the SEAndroid initiative [15] has led to a sig-

nificant extension of the security services, with the integra-
tion of Security Enhanced Linux (SELinux) [12] into the
Android operating system. The goal of SEAndroid is to
build a mandatory access control (MAC) model in Android
using SELinux to enforce kernel-level MAC, introducing a
set of middleware MAC extensions to the Android Permis-
sion Framework. SELinux originally started as the Flux
Advanced Security Kernel (FLASK) [10] development by
the Utah University Flux team and the US Department of
Defense. The development was enhanced by the NSA and
released as open source software. SELinux policies are ex-
pressed at the level of security context (also known as secu-
rity label or just label). SELinux requires a security context
to be associated with every process (or subject) and object,
which is used to decide whether access is allowed or not as
defined by the policy. Every request a process generates to
access a resource will be accepted only if it is authorized
by both the classical DAC access control service and by the
SELinux policy. The advantage of SELinux compared to the
DAC model are its flexibility (the design of Linux assumes
a root user that has full access to DAC-protected resources)
and the fact that process and resource labels can be assigned
and updated in a way that is specified at system level by the
SELinux policy (in the DAC model owners are able to fully
control the resources).

The middleware MAC extension chosen to bridge the gap
between SELinux and the Android permission framework
is called install-time MAC [15] (several middleware MACs
have been developed, but only the install-time MAC has
been integrated into the AOSP). This mechanism allows to
check an app against a MAC policy (i.e., mac permissions.xml).

The integration of this middleware MAC ensures that the
policy checks are unbypassable and always applied when
apps are installed and when they are loaded during system
startup.

The current design of SEAndroid aims at protecting core
system resources from possible flaws in the implementa-
tion of security in the Android Permission Framework or at
the DAC level. The exploitation of vulnerabilities becomes
harder due to the constraints on privilege escalation that are
introduced by SELinux. Unfortunately, the current use of
SELinux in Android aims at protecting the system compo-
nents and trusted apps from abuses by third-party apps. All
the third-party apps fall within a single untrusted app do-
main and an app interested in getting protection from other
apps or from internal vulnerabilities can only rely on An-
droid permissions and the Linux DAC support. This is a
significant limitation, since apps can get a concrete benefit
from the specification of their own policy.

3. THREAT MODEL
In Android each app receives a dedicated uid and gid at

install-time. These identifiers are used to set the user and
the group owner of the resources installed by the app in the
default data directory, which is /data/data/“package name”.
By default, the apps databases, settings, and all other data
go there. Since user data for an application also resides in
/data/data/“package name”, it is important that only that
application has access to that particular folder. This confine-
ment of the data folders permits to enforce a strict isolation
from other applications. In Android this isolation is only
enforced at DAC level, but this is not enough to protect the
app and its own resources by other apps with root privileges.
Android, by default, comes with a restricted set of permis-
sions for its user and the installed applications (i.e., no root
privileges). Despite this, apps can gain root privileges in
two ways and use it to provide desirable additional features
for users, but a malicious app may also abuse it to bypass
Android’s security measures.

On one hand many benign apps require root privileges to
accomplish their job. For example, Titanium Backup [17]
is one of Google Play’s best-selling apps and it needs root
privileges to backup system and user applications along with
their data. In this scenario, the user typically flashes a recov-
ery console on the device which has the permission to write
on the system partition and from there she installs an app
such as SuperSU or Superuser in order to gain and manage
root privileges. After that, the user can give root privileges
to other applications. According to Google, users install
non-malicious rooting apps by a ratio of 671 per million in
2014 (increased by 38% compared to the 491 per million
in 2013 [11]). Moreover, there are successful community-
ROMs, such as CyanogenMod with over 10 million installa-
tions, that provide root access to the user by default. Here,
the user is aware of the fact that some apps act as root in
the system and have access to everything, however she does
not know how these privileges are used and she has to trust
the app.

On the other hand, a malware could exploit a bug in a sys-
tem component and gain root privileges to freely access the
whole system in order to steal personal information or per-
form fraudulent actions. In this scenario the user is unaware
of the fact that an app acts as root. Over the years An-
droid has been attacked by threatening malware apps such

as DroidDreamLight, which affected 30,000-120,000 users in
May 2011 [3]. Recently the app towelroot has been released
which, exploiting the CVE-2014-3153 bug of Linux kernel,
permits to “root the device” without the need to flash a re-
covery console, and gives root privileges potentially to all
apps. This bug affects all Android versions up to 4.4.4 and
thus represents a significant threat in the current DAC-only
protection of private app resources.

Our proposal provides a solution to both scenarios through
the use of appPolicyModules defined by the app and at-
tached to the SELinux system policy.

3.1 Example
Hereinafter, we define a running example that we use as a

proof of concept of our solution. Dolphin Browser [7] is con-
sidered one of the most successful mobile browsers for An-
droid1 with over 100 million downloads. It uses the Webkit
engine and provides several features such as gesture browsing
and browsing boost. We use it to show how the threat model
defined in the previous section affects the current DAC-only
security isolation of a real app and its private data. In Sec-
tion 5 we use this example to identify the requirements and
then we will illustrate how the use of a dedicated appPol-
icyModule can provide better security for its private data.
The Android permissions requested by the app are:

android . permiss ion−group .NETWORK
android . permiss ion−group .ACCOUNTS
android . permiss ion−group .LOCATION
android . permiss ion−group .MICROPHONE
android . permiss ion−group .CAMERA

Many browsers include a password manager component
that stores confidential information such as usernames and
passwords. The common strategy used by almost all the mo-
bile browsers we have analyzed is to keep the credentials in
a SQLite database. Following Google’s best practices for de-
veloping secure apps, the password database is saved in the
app data folder, which should be accessible only to the app
itself. Another best practice (not used by Dolphin browser)
to provide additional protection for sensitive data, is to en-
crypt local files using a key that is not directly accessible
to the application. For example, a key can be placed in a
KeyStore and protected with a user password that is not
stored on the device. While this does not protect data from
a root compromise that can monitor the user inputting the
password, it can provide protection for a lost device without
file system encryption.

Some of the browsers we have analyzed (e.g., Google Chrome)
store the passwords in plaintext in the database, while others
use some form of encryption (e.g., Dolphin Browser, Fire-
fox). The decision to keep the passwords in plaintext can
appear as a weakness, but even when the information is
stored in an encrypted form, if the data needs to be recov-
ered automatically by the app without the need of addi-

1At the time of writing Chrome is the most used mobile
browser for Android devices; however, due to the fact that
Chrome is included in the Gapps, it does not belong to the
untrusted app domain but to the isolated app domain, thus it
is not considered as a third-party app. The same discussion
and threat model presented for Dolphin Browser is also valid
for Google Chrome for Android. Moreover, all the passwords
that the user saved in the Desktop version of Google Chrome
using the same login details are available in the Android
database.

tional information not stored on the device (e.g., a master
password known only by the user), a malware could use the
same resources used by the legitimate application to retrieve
the information.

There are a number of ways one can obtain the Java code
back from the APK in order to study the app behavior, to
replicate it and to extract the encrypted information. To en-
crypt the passwords, Dolphin Browser used to adopt a static
key, which was obtainable by simply looking at the decom-
piled bytecode. Newer versions of the browser derive the key
from the android id of the device, generated during the first
boot, whose use is encouraged by the Android Developers
community to generate device-specific passwords.

We were able to obtain the decrypted passwords from the
password.db decompiling the app and studying its behavior.
In the same way, a malware that managed to obtain root
privileges can access the database and decrypt all the user
credentials.

4. SELINUX POLICY MODEL
SELinux uses a closed policy model, denying every access

request that is not explicitly permitted. The SELinux policy
is defined using rules, which produce a set of authorizations.
The SELinux model is quite rich and offers a number of fea-
tures that increase its expressive power and flexibility. For
instance, SELinux is able to manage a Multi-Level Security
model, with the representation of sensitivity labels and cate-
gories. These features are used in some systems that rely on
SELinux (e.g., Samsung Knox), but they are not currently
used in AOSP, which is our reference platform. We then pro-
pose a simpler model that allows us to better characterize
our approach.

The model uses names with an “av” prefix, like avType in-
stead of “type”, to provide a more precise definition. In the
remainder of the paper, we will sometimes used the simpler
terms (i.e., type instead of avType) when we see no ambi-
guity in their use. The “av” prefix stands for “access vector”
and is used in SELinux to characterize the rules defining the
policy, called AV Rules. The basic elements of this model
are:

avType: represents an identifier that can be used to de-
scribe both the subject and the target of an authoriza-
tion; an avType denotes a security domain or the pro-
file of a process or resource in the system; the avType
is used to build labels for processes and resources.

avClass: represents the kind of resource (e.g., file, process)
that will be the target of an authorization; an imple-
mentation of SELinux in a system will have to provide
in its setup a set of avClasses consistent with the va-
riety of resources that the system is able to manage.

avPermission: represents the possible actions a source can
apply on a target of a specific avClass, specified in the
setup of SELinux; every avClass cl has its own set
of avPermissions, represented by cl.permissions (e.g.,
file.permissions = {read, write, execute, . . .}).

In order to give a formal representation of the SELinux
policy, we introduce the concept of avAuthorization.

Definition 1. Given a set T of avTypes, a set C of av-
Classes, and a set P of avPermissions, an avAuthorization
a is a quadruple 〈 source, target, class, action 〉, where:

source ∈ T represents the process (the security principal of
the authorization);

target ∈ T is associated with the object that is accessed by
the source;

class ∈ C denotes the type of resource that is accessed in
the operation;

action ∈ {P∩class.permissions} is the specific avPermis-
sion, which has to be compatible with the avClass.

Each avAuthorization describes a specific request that is per-
mitted in the system.

Example 1. Consider an app whose process is associ-
ated with the avType myapp that wants to read a file both
in the internal and external sdcard. The required avAutho-
rizations are as follows: 〈 myapp, sdcard internal, file, read
〉, 〈 myapp, sdcard external, file, read 〉.

Definition 2. An avAuthzPolicy is a set of avAutho-
rizations.

The avAuthzPolicy is derived from the specification of a
collection of avRules. avRules can be positive or negative,
support the use of patterns for the specification of sources
and targets, and may use avAttributes.

Definition 3. An avAttribute is an identifier that can
be used in the construction of avRules. It can be used to sup-
port the definition of collections of avAuthorizations. The
collection of avAttribute identifiers in a system must be sep-
arate from the domain of avTypes.

Definition 4. Given a set T of avTypes, a set C of av-
Classes, a set A of avAttributes, and a set P of avPermis-
sions, an avRule is a quintuple 〈 ruleType, ruleSource,
ruleTarget, ruleClass, ruleAction 〉, where:

ruleType is either allow or neverallow;2

ruleSource is a pattern, structured in two parts: (a) a set
of positive elements pi ∈ T ∪ A, and (b) an optional
set of negative elements ni ∈ T ∪A;

ruleTarget is a pattern, with the same structure as the
ruleSource;

ruleClass is a set of avClasses, i.e., each ci ∈ C, denoting
the types of resource that are considered by the avRule;

ruleAction is a set of avPermissions, where we assume
that each aj ∈ ∩ici.permissions, i.e., all the elements
have to be compatible with all the avClasses specified
in the avRule.

Each avRule can be represented in a textual form, list-
ing the five components following the order above. The tex-
tual notation for patterns keeps all the elements within curly
braces, preceding the set of negative elements with a “-” char-
acter; a colon separates the ruleTarget from the ruleClass.

Example 2. In order to group the common avAuthoriza-
tions granted to myapp it is possible to create the avAt-
tribute sdcard and assign it to the sdcard internal and sd-
card external (through the use of typeattribute, defined be-
low). Then, the avAuthorizations defined in Example 1 can
2SELinux also supports the auditallow and dontaudit rules,
which describe the configuration of the auditing services.
The model we describe can be easily extended to manage
these services.

be derived by the following avRule: 〈 allow, myapp, sdcard,
file, read 〉.

The avRules provide a higher-level representation of avAu-
thorizations. Every allow avRule is managed with an expan-
sion of the sets associated with the source, target, class, and
action. In general, a cartesian product is computed of all the
elements in the positive part. The negative portion of each
pattern is used to specify exceptions in the consideration of
the positive portion of the pattern.

Example 3. In order to provide myapp the avAuthoriza-
tions needed to create and write files and directories labeled
with an avType that has the avAttribute sdcard, defined in
Example 2, with the exception of the avType sdcard internal,
the required avRule is as follows: 〈 myapp,
{ sdcard -sdcard internal }, { file dir }, { create write } 〉.

An element that has a strong impact on the derivation of
the low-level avAuthzPolicy is the definition of the associa-
tion between avTypes and avAttributes.

Definition 5. The typeattribute statement associates an
avType with one or more avAttributes. The syntax of ty-
peattribute appears in Table 1. The interpretation is that
the avType will be associated with all the privileges that have
been granted to the avAttribute.

Definition 6. An avRulePolicy is a set of avRules and
typeattribute statements.

The avAuthzPolicy is obtained by a compilation of the
avRulePolicy. The compilation is executed by the check-
policy tool, with a sequence of three steps: (a) the typeat-
tribute statements are processed, creating new avRules for
every avRule where the avAttribute appears, replacing the
avAttribute with the avTypes; (b) all the allow rules are ex-
panded, producing a set of avAuthorizations; (c) all the nev-
erallow rules are expanded and the policy is checked for the
presence of conflicts: if even one avAuthorization produced
by the expansion of neverallow rules matches an avAutho-
rization produced by allow rules, the compilation stops and
an empty policy is produced.

5. REQUIREMENTS
Analyzing the introduction of appPolicyModules in the

management of per-app security, we need to consider the
different cases that emerge from the combination of the sys-
tem policy and an appPolicyModule. From the model pre-
sented above, we note that every avAuthorization defined in
an SELinux policy has a source avType and a target avType.
These types may be defined in either the system policy or
the appPolicyModule. We then have four types of avAutho-
rization, depending on the origin of the source and target
domains. Each configuration is associated with a specific
requirement that must be satisfied by appPolicyModules.

Each requirement will be described and formalized using
a simple formalization that expresses each requirement as
a constraint on the relationship between the system avAu-
thzPolicy AV , derived from the system avRulePolicy S, and
the avAuthzPolicy AV ′, obtained after the integration of
an appPolicyModule M with S. We will show in Section
6 that our proposed language and restrictions for the app-
PolicyModules satisfy all the requirements. We assume that

AV’AV

M2.dolphin_app
M2

system_file

system

file.write

OK
(Req3)

ERR
(Req2)

file.write M1 ERR
(Req1)

Legend: type (source / target) class.permission

authorization

netdomain

untrusted_app domain

OK
(Req4)

file.write

M3

M3.dolphin_app M3.incognito

file.read,write file.read

M3.history_file

M4M4.dolphin_app

file.read,writefile.read,write

M4.dwnld_file M4.pass_filefile.read

Figure 1: Examples of both compliant and non-
compliant modules to illustrate requirements.

there is an avType that describes the domain of safe-to-use
resources and actions, called untrusted app, which protects
system resources from the abuse of third-party apps (this is
the name actually used in the current SEAndroid policy).

An example referring to the Dolphin Browser app will also
be presented for every requirement, to clarify the impact in
the design of the policy. To denote the type of avAuthoriza-
tion, we use a compact notation where S and A represent
respectively the system and appPolicyModule origin of the
avType, with this structure: source → target.

Req1 (S→S), No impact on the system policy: the
app must not change the system policy and can only impact
on processes and resources associated with the app itself.

An appPolicyModule is intended to extend the system pol-
icy and to be managed by the same software modules that
manage the system policy. Since third-party apps can not be
trusted a priori, it is imperative that the provided appPoli-
cyModule must not be able to have an impact on privileges
where source and target are system types.

More formally, AV must be contained into AV ′ and all the
avAuthorizations appearing in AV ′−AV have to present as
source or target avTypes defined in M (a set represented by
notation M.newAvTypes).

I.e., AV ⊆ AV ′ ∧ ∀a ∈(AV ′ \AV) →
a.source∈M.newAvTypes ∨ a.target∈M.newAvTypes

Example 4 (Figure 1, M1). The APM associated with
Dolphin Browser can specify access privileges only on its own
resources, such as its own password database, but must not
be able to specify authorizations on system resources. With-
out this restriction the appPolicyModule could provide un-
strusted app write access to the type platform app data file
and corrupt the system resources, or enhance the privileges
of system resources that the app can access, creating unpre-
dictable vulnerabilities. Consider the appPolicyModule M1

in Figure 1. The module defines an authorization that mod-
ifies the behavior of the system policy because netdomain
should not have write access to files labeled as system file.
Thus M1 will not be installed due to the violation of Req1.

Req2 (A→S), No escalation: the app cannot specify a
policy that provides to its types more privileges than those
available to untrusted app.

New domains declared in an appPolicyModule must al-
ways operate within the boundaries defined by the system
policy as acceptable for the execution of apps. When a new
application is installed, its domain has to be created “under”
the untrusted app domain, so the system policy can flexibly
define the maximum allowed privileges for third-party apps.

More formally, all the avAuthorizations introduced by the
appPolicyModule M that have an avType t belonging to
the avTypes defined by M as a source will be contained
in the set of avAuthorizations that have the system-defined
untrusted app avType as source.

I.e., ∀ a′ ∈ (AV ′ \AV) |
a′.source∈M.newAvTypes ∧ a′.target6∈M.newAvTypes →
∃a ∈ AV |

(a.source = untrusted app ∧ a′.target = a.target∧
a′.class = a.class ∧ a′.action = a.action)

The constraint forces the avAuthzPolicy to assign to all
the types introduced by the appPolicyModule a set of au-
thorizations that corresponds to privileges available to the
untrusted app avType. Then, each privilege must have the
same class and action of a privilege already assigned to un-
trusted app.

Example 5 (Figure 1, M2). As highlighted by appPol-
icyModule M2 in Figure 1, appPolicyModules can only re-
quest a subset of the privileges granted to the untrusted app
domain. The APM M2 tries to give M2.dolphin app the
privilege of writing files labeled as system file, that is not
granted to the untrusted app domain. Thus M2 will not be
installed due to the violation of Req2.

Req3 (A→A), Flexible internal structure: apps may
provide many functionalities and use different services (e.g.,
geolocalization, social networks). The appPolicyModule has
to provide the flexibility of defining multiple domains with
different privileges so that the app, according to the func-
tionality in use, may switch to the one that represents the
“least privilege” domain needed to accomplish the job, in or-
der to limit potential vulnerabilities deriving from internal
flaws.

Greater flexibility derives from the possibility to freely
manage privileges for internal types over internal resources,
building a MAC model that remains completely under the
control of the app.

More formally, there can exist a pair of new avTypes t
and t′ introduced by M such that in AV ′ \ AV t receives a
privilege that t′ does not have.

I.e., if ∃t∈M.newAvTypes∧t′ ∈M.newAvTypes∧
a ∈ AV ′ ∧ a.source= t 6→
∃a′ ∈ AV ′ | a′.source= t′ ∧ a.target= a′.target∧
a.class= a′.class∧a.action= a′.action

Example 6 (Figure 1, M3). Dolphin Browser provides
the anonymous surfing (incognito) mode, which allows the

user to surf the web without storing permanently the history
and the cookies, and in general aiming at leaving no trace in
persistent memory of the navigation session. In order to en-
hance its security and protect the user even from possible app
flaws, the appPolicyModule could specify a switch of context
(i.e., it may change the SELinux domain associated with its
process) when the user enters the incognito mode. In Figure
1 the APM M3 specifies that the domain M3.dolphin app
can read and write files labeled as M3.history file, while the
domain M3.incognito, used during anonymous surfing, drops
the privilege of writing the files, preventing the leakage of re-
sources that may leave a trace of the navigation session.

Req4 (S→A), Protection from external threats:
users of mobile devices may unconsciously install malware
apps from untrusted sources that, exploiting some security
vulnerabilities, could compromise the entire system or other
apps (e.g., steal user information). To mitigate the risk, an
appPolicyModule should provide a common way to isolate
the app’s critical resources. The use of MAC support of-
fers protection even against threats coming from the system
itself, like a malicious app that abuses root privileges.

The app can protect its resources from other apps, specify-
ing its own types and defining in a flexible way which system
components may or may not access the domains introduced
by the APM. This requirement depends on the ability of the
MAC model to let app types be protected against system-
level elements, an aspect that SELinux supports and not
available in classical multi-level systems, which assume a
rigid hierarchical structure. Indeed, in the SELinux policy
model every privilege has to be explicitly authorized and
new avTypes are not accessible by system avTypes unless a
dedicated rule is introduced in the appPolicyModule.

More formally, the appPolicyModule M can introduce an
avAuthorization that gives to an avType introduced by M
a privilege that is not necessarily available to a type in the
system policy.

I.e., if ∃ t ∈M.newAvTypes∧a ∈ AV ′∧ a.source= t 6→
∃a′ ∈ AV |a′.source 6∈M.newAvTypes∧a.target = a′.target∧

a.class= a′.class∧a.action= a′.action.

Example 7 (Figure 1, M4). The Dolphin browser can
grant to the system type the privilege to read the dwnld file
files, used to label the downloaded files, while it prevents the
access to the pass file files used to label the password file.

There are other environments where SELinux is used,
like the Redhat Fedora distribution of Linux, that already
supports SELinux modules, but the requirements presented
above do not apply to them. The reason is that the trust as-
sumptions are different. The modules used in Redhat Fedora
permit to structure the security policy, they are trusted and
free to revise in arbitrary ways the system policy. Modules
in Android are not trusted and it is mandatory that they
cannot be used to introduce vulnerabilities in the system.

Additional requirements, not associated with a formal treat-
ment, have also to be considered.

• Not all the developers have the knowledge or are inter-
ested to secure their apps with SELinux, so in order
not to impede the development they have to experi-
ence the same development and installation process,
with no impact on their activities. This requirement
will be considered in Section 7.

• In order to facilitate the deployment, the solution has
to be compatible with the implementation of SELinux
offered by SEAndroid. This is considered in Section 8.

6. POLICY MODULE LANGUAGE
We now present the concrete structure of appPolicyMod-

ules. We introduce the subset of the SELinux statements
used in their definition and describe the additional state-
ments that will be automatically added to the appPolicy-
Module by a pre-processor. A critical design requirement is
the compatibility with the SELinux implementation avail-
able today, which facilitates the adoption of the proposed
approach.

Each module presents a head and a body (see right side
Figure 2). The head describes all the identifiers that the
appPolicyModule reuses from the system policy. This is rep-
resented by the require statement. In case a name appears
that is not known to the system, the compilation fails.

The body of the appPolicyModule can make use of the
following SELinux statements: typebounds, type, attribute,
typeattribute, allow, neverallow, and typetransition. These
statements are the only ones that can be used in the defi-
nition of the appPolicyModule. The syntax for these state-
ments is succinctly presented in Table 1.

The typebounds statement permits to specify that the col-
lection of privileges of the bounded avType has to fall within
the boundaries of another avType. The typebounds state-
ment will raise an exception when an allow rule introduces
a privilege for a bounded type in the source that does not
match an existing rule for the bounding type.

type dolphin_app;
type dolphin_app_incognito;
typebounds untrusted_app dolphin_app ,

dolphin_app_incognito;
allow dolphin_app app_data_file:file

{read write};
allow dolphin_app_incognito

app_data_file:file {read};

Listing 1: Example of use of typebounds. In the
system policy there is a rule allow untrusted_app

app_data_file:file {read write};

The evaluation of compatibility takes into account the
presence of other typebounds statements in the target, con-
sidering as correct the use in the target of an avType that is
bounded by the type appearing in the higher-level rule. In
the example in Listing 1, the verification by typebounds is
satisfied, because both the allow rules use in the target an
avType that is considered compatible with the untrusted app
type. It is useful to emphasize that the typebounds statement
does not assign the authorizations to the bounded domain,
it only sets its upper bound. This is a core principle in
our scenario, where policy writers are outside of the trust
domain of the core system resources.

The type statement permits to introduce new avTypes.
To avoid name conflicts between types defined in different
modules, the pre-processing adds a prefix that derives from
the app name to every identifier (we omit in the examples
the representation of this step). If it does not already ap-
pear in the module, the pre-processing step will add a type-
bounds statement for every introduced type that will con-
strain the authorizations referring to types in the system
policy to lie within the untrusted app type. The attribute

Table 1: Simplified SELinux syntax used in APMs.
Statement Syntax
attribute attribute attribute id ’;’
type type type id (’,’ attribute id)* ’;’

typeattribute
typeattribute type id attribute id

(’,’ attribute id)* ’;’

typebounds
typebounds bounding bounded

(’,’ bounded)* ’;’

typetransition
type transition type id type id ’:’

’{’class id+’}’ type id ’;’

allow
allow ’{’pattern+ (’-’pattern)* ’}’

’{’pattern+ (’-’pattern)* ’}’
’{’class id+’}’ ’{’perm id+’}’ ’;’

neverallow
neverallow ’{’pattern+ (’-’pattern)* ’}’

’{’pattern+ (’-’pattern)* ’}’
’{’class id+’}’ ’{’perm id+’}’ ’;’

The element pattern=(type id |attribute id) is not in-
cluded in the SELinux statements; we use it here to pro-
vide a more readable description of the syntax.

statement declares an identifier that can be used to define
rules. SELinux policies make extensive use of avAttributes
to provide a structure to policies. No constraint needs to be
introduced on the definition of new attributes. Attributes
produce an effect on the policy when they are used in the ty-
peattribute statement, which has been presented above. The
pre-processing checks that every type id used in a typeat-
tribute statement must be defined inside the appPolicyMod-
ule. Without this constraint, a module could violate Req1
and Req2, compromising the system policy and possibly per-
forming an escalation of privileges, by assigning attributes
to the untrusted app type. The allow and neverallow state-
ments permit to create avRules. The pre-processing checks
that all the avRules present as a source or target one of the
avTypes and avAttributes introduced by the module.

Finally, the typetransition statement permits to describe
the admissible transitions between avTypes at runtime. We
introduce the constraint, checked by the pre-processor, that
the avType defined as first parameter has to be an avType
defined in the module. The type transition statement is used
to perform object and domain transitions.

• An object transition occurs when an object needs to be
relabeled (i.e., a file label is changed).

• A domain transition occurs when a process with one
avType (we call it transition-startpoint) switches to an-
other avType (we call it transition-endpoint), enacting
different avAuthorizations from the original ones. An
app could define different domains with limited avAu-
thorizations and use them when performing specific
actions. We note that for a domain transition to suc-
ceed, we must grant three different avAuthorizations
to the transition-startpoint type.

With respect to object transitions, there is no need to fur-
ther constrain them, because the process domain must have
the corresponding avAuthorizations to be able to create ob-
jects with the new label. With respect to domain transitions,
when a type transition is authorized and the transition-
startpoint type is given the three additional authorizations,
the transition-startpoint type is actually able to benefit from
all the authorizations that have the transition-endpoint as

the source. This is a potential risk in the definition of the
policy, because the typebounds statement does not extend its
evaluation to the consideration of the types that are reach-
able through type transitions. The current AOSP system
policy does not give to untrusted app any type transition
privilege, and at the moment there is no danger, but to avoid
any risk we enforce the constraint to accept in the appPolicy-
Module only type transitions that have a transition-endpoint
bounded within untrusted app.

6.1 Correctness
We want to show that the appPolicyModules will satisfy

the four requirements described in Section 5.
With respect to Req1 (S→S), No impact on the system

policy, we note that the appPolicyModule statements do not
have an impact on the system policy, because all the allow
and neverallow statements have to specify as source or target
a new avType, guaranteed to be outside of the system policy.

The correctness with respect to Req2 (A→S), No escala-
tion is guaranteed through the use of the typebounds state-
ments associated with all the avTypes that appear as source
in the allow statements. It is to note that the neverallow
rules do not have to be considered here, because they may
only cause the rejection of the appPolicyModule by the com-
piler, but they cannot lead to the escalation of privileges for
the new avTypes. The consideration by the compiler of the
typebounds statements indeed verifies that each allow rule r′

in the appPolicyModule that refers to system types has a
corresponding allow rule r associated with untrusted app.

The respect of Req3 and Req4 can be demonstrated with
a simple example of an appPolicyModule that shows the de-
sired behavior. Requirement Req3 (A→A), Flexible inter-
nal structure is satisfied by the example in Listing 1, which
shows two new avTypes dolphin app and dolphin app incogni-
to, associated with distinct privileges.

Requirement Req4 (S→A), Protection from external threats
is supported by the same example: without an explicit rule
giving permission, a process associated with untrusted app
is not authorized to access files associated with dolphin app.

7. MAPPING ANDROID PERMISSIONS
The introduction of appPolicyModules improves the defi-

nition and enforcement of the security requirements associ-
ated with each app. However, in the approach presented in
the previous section, we assumed that the extension to the
MAC policy has to be defined by the developer, who knows
the service provided by the app and its source code. Due
to the size of the community, we can expect that many app
developers will either be unfamiliar with the SELinux syn-
tax and semantics, or know SELinux but not want to use it,
avoiding the introduction of strict security boundaries to the
app beyond those associated with untrusted app. There is
also the risk generated by the presence in devices of a variety
of versions of the system policy and the need to guarantee
that the appPolicyModule is compatible with it.

However, we observe that the app developers that can be
expected to be most interested in using the services of the
MAC model are expert developers responsible for the con-
struction of critical apps (e.g., apps for secure encrypted
communication, or for key management, or for the access to
financial and banking services). This community is possi-
bly small, but their role is extremely critical. They can be
expected to overcome the obstacles to the use of appPolicy-

module dolphin 1.0.0;
require {
type untrusted_app;
attribute domain;
attribute appdomain;
attribute netdomain; }
type dolphin_app;
typebounds dolphin_app untrusted_app;
typeattribute dolphin_app, domain;
typeattribute dolphin_app appdomain;
typeattribute dolphin_app netdomain;

<uses-permission android:name=
 android.permission-group.NETWORK />
<uses-permission android:name=
 android.permission-group.ACCOUNTS />
<uses-permission android:name=
 android.permission-group.LOCATION />
<uses-permission android:name=
 android.permission-group.MICROPHONE />
<uses-permission android:name=
 android.permission-group.CAMERA />

AndroidManifest.xml appPolicyModule

H
E
A
D

B
O
D
Y

Figure 2: Generation of the Dolphin browser app-
PolicyModule starting from the permissions in the
app manifest.

Modules. In addition, the deployment of the policy modu-
larity services opens the door to a number of other services.
We consider here how it is possible to use them to enforce a
stricter model on the management of Android permissions,
relying on the automatic generation of appModulePolicies,
solving all the issues identified above.

Looking at the workflow to build an app, developers are
already familiar with the definition of security requirements
in the AndroidManifest.xml, through the use of the tag uses-
permission. In fact, in order to access system resources
(e.g., access to the user’s current location) the app has to
explicitly request the associated Android permissions (e.g.,
android.permission-group.LOCATION), which correspond
both to a set of concrete actions at the OS level and to a set
of avPermissions granted at the SELinux level (e.g., open,
read on files and directories). The system already offers both
a high-level representation and a low-level representation of
the privileges needed to access a resource, but they are not
integrated and what happens, in the absence of policy mod-
ularity, is that the app is associated with the untrusted app
domain, which is allowed to use all the actions that corre-
spond to the access to all the resources that are invokable
by apps, essentially using for protection only Android per-
missions. The integration of security policies at the Android
permission and MAC levels offers a more robust enforcement
of the app policy.

This can be realized introducing a mechanism that bridges
the gap between different levels, through the analysis of
the high-level policy (i.e., the permissions asked by the app
within the Android Permission Framework) and the auto-
matic generation of an appPolicyModule that maps those
Android permissions to a corresponding collection of SELinux
statements. The generator starts from the representation
of the app security requirements expressed in the Android-
Manifest.xml, builds a logical model of the structure of the
appPolicyModule, and it finally produces the concrete imple-
mentation of the appPolicyModule and verifies that all the
security restrictions are satisfied.

A necessary step in the construction of the mechanism
is the identification of a mapping between policies at the
distinct levels. The Android Permission Framework con-
tains more than 200 permissions and most of them present
a mapping between the Android permission and a dedicated
SELinux domain, already specified in the system policy. The
current system policy does not cover all the permissions; e.g.,
the downloads, calendar, and media content resources are
associated with the single platform app data file type. We
expect this aspect to be manageable with a revision of the

policy. However, there is a number of Android permissions
that can only be partially supported by this mechanism due
to current limitations in the security mechanisms provided
by internal components (e.g., SQLite).

To summarize, it is already possible to capture most An-
droid permissions in a precise way and some of them with
some leeway, leading in all cases to a significant reduction in
the size of the MAC domain compared to what would other-
wise be associated with an app. We provide in Figure 2 an
example of the appPolicyModule that would be generated
for the Dolphin browser described in Section 3.1. We note
that every app will have to be associated with the domain
and appdomain attributes, which provide all the basic privi-
leges required to let an app execute in the system. The head
of the module will then have to introduce the require dec-
larations that specify this attribute, together with the un-
trusted app type and the netdomain attribute. The body of
the module introduces the dolphin app type, the typebounds
and all the MAC privileges required to access the network
and other resources/services. Due to the current SELinux
policy structure the access to the ACCOUNTS, LOCATION
MICROPHONE and CAMERA services are mitigated by
the system server. The system server is the core of the An-
droid system which manages most of the framework ser-
vices. The access to the requested services is granted by
the system server to the appdomain type and through the
use of the rule typeattribute dolphin app appdomain the dol-
phin app type inherits these privileges.

In general, with the availability of appPolicyModules, the
system could evolve from a scenario where each app is given
at installation time access at the SELinux layer to the whole
untrusted app domain, to a scenario where each app is as-
sociated with the portion of untrusted app domain that is
really needed for its execution, with a better support of the
classical “least-privilege” security principle.

8. IMPLEMENTATION
The work done by Smalley et al. in [15] represents the

basis for our work. We have introduced a set of extensions
in order to enrich the current implementation and manage
appPolicyModules. We now provide a description of the
challenges to enable the concrete use of appPolicyModules
in Android. The system has been implemented with an open
source license, extending the current version 4.4.4 of the
AOSP (link omitted for the anonymity constraints); adap-
tation to Android L is planned as soon as it will be released.

The current SELinux implementation for Android spans
different levels of the Android stack. At the Application
Framework level, the SELinux class provides access to the
centralized Java Native Interface (JNI) bindings for SELinux
interaction. The android os SELinux.cpp file represents the
JNI bridge. At the Libraries level, the SELinux implemen-
tation consists of the libsepol and libselinux libraries. The
former provides an API for the manipulation of SELinux
binary policies. The latter provides the APIs to get and
set process and file security contexts and to obtain security
policy decisions.

The first challenges to the integration of appPolicyMod-
ules in Android appeared in the adaptation of the current
SELinux libraries and in the addition of the libraries needed
to build, link and check the appPolicyModules. These li-
braries are part of the full SELinux environment and are in-
cluded in the major Linux distributions, but the activation

load_policy Security
Server AVC

SELinux filesystem

SELinuxMMAC

semodulepre-processing

seapp_contexts

kernel space
user space

PackageManager
Service

INSTALL_APPMODULE

1) mac_permissions.xml

Checkseapp

CheckMMAC

2)

libsemanage

appPolicyModule 3)

Modified component AppPolicyModule component

APK

PolicyModuleInstall
Receiver

Figure 3: appPolicyModule Architecture.

of policy modules in SELinux for Android required more
than a simple cross-compilation.

8.1 Changes to SELinux
The work we did at the SELinux level can be structured

into four major activities.
First, the libselinux library was modified with the intro-

duction of additional features needed by the libsemanage
library, such as the selinux-config.c module. We modified
the checkpolicy tool in order to build automatically the bi-
nary policy at version 26 (standard SELinux implementa-
tions support version 29 of the binary policy). In the current
SEAndroid implementation the binary policy version range
is between 15 and 26. This constraint is enforced by the
load policy method when a policy reload is triggered.

Second, the libsemanage library, which provides APIs for
the manipulation of SELinux binary policies and binary pol-
icy modules, was adapted to fulfill the new requirements.
Due to the differences in scenario, architecture and require-
ments, some functions, such as the genhomedircon service,
were disabled. The genhomedircon service is used to gener-
ate file context configuration entries for user home directo-
ries based on their default roles and is run when building the
policy. However, in Android, though there is the possibility
to create several users for a single device, they do not have
a home directory.

Third, the source code of the semodule executable was
extended in order to correctly interact with the modified
version of the libsemanage library. The semodule tool is used
to manage SELinux policy modules, including installation,
upgrade, listing and removal of modules. The semodule tool
may also be used to force a rebuild of the policy from the
module repository and/or to force a reload of the policy
without performing any other transaction.

Figure 3 shows an abstract representation of the complete
architecture introduced in order to manage the appPolicy-
Modules. Fourth, in addition to the modifications on the set
of SELinux libraries, to meet the requirements introduced in
Section 2 a pre-processing phase was introduced. This phase
supports the creation of constraints introduced in Section 4.
Thanks to the modularity provided by SELinux, we were
able to implement the pre-processing phase reusing several
SELinux components.

8.2 Changes to Android
The second set of challenges concerns the app installa-

tion process, which starts from the APK file that contains
the app. The PackageManagerService class provides the
APIs that actually manage app installation, uninstallation,

and update. The PackageManagerService component pro-
vides the functions to parse the APK file and to assign the
SELinux label to the app. The label is retrieved by the
SELinuxMMAC class from the mac permissions.xml file.
The file maps the app certificate to a SELinux label. In
the current AOSP version, all third-party apps are assigned
to the default stanza of the mac permissions.xml file, re-
gardless of their certificate. To address this limitation and
assign to the app the right SELinux type, we introduced
a new install service, named PolicyModuleInstallReceiver.
This service is triggered by an Intent and manages the in-
stallation workflow of an appPolicyModule. The workflow
is structured as follows:

1. trigger the installation of the policy module, update
the SELinux policy and check its correctness;

2. update the seapp contexts file used to label app pro-
cesses and app package directories;

3. update the mac permissions.xml file used by SELin-
uxMMAC to retrieve the type to assign to the app.
This file is used in conjunction with seapp contexts.

8.2.1 Update SELinux policy
The use of the PolicyModuleInstallReceiver service requires

to broadcast an intent.action.INSTALL APPMODULE in-
tent. When the service receives the intent it performs a JNI
call to the libsemanage library, which validates (i.e., pre-
processing phase), links, expands the module (i.e., semodule
tool) and triggers the reload of the binary policy.

8.2.2 Update seapp_contexts
In order to meet the requirements Req3 and Req4 de-

scribed in Section 5 the app processes and the app package
directories have to be labeled accordingly to the appPolicy-
Module. In the current AOSP implementation the security
context assigned to app processes, respectively app package
directories, is retrieved from the seapp context file by the
selinux android setcontext, respectively selinux android
setfilecon2.

In order to manage the addition of new entries in the
seapp contexts file the checkseapp utility was extended. Cur-
rently, checkseapp is used during the AOSP build process to
validate the seapp contexts file against policy. The extension
permits to dynamically manage the addition/removal of an
entry in the seapp contexts according to the domains defined
in the appPolicyModule.

To allow AOSP components such as Zygote to spawn ap-
plications in the correct domain, an update of the mac
permissions.xml is needed.

8.2.3 Update mac_permissions.xml
This file is used to configure the install MMAC policy.

More specifically this file is used in conjunction with the
seapp contexts file in order to determine the seinfo label to
assign to the app. The seinfo value is subsequently used
to determine the SELinux security context for the app pro-
cess and its /data/data directory based on the seapp contexts
configuration.

The information needed to build a stanza for the mac
permissions.xml file are (i) the app’s X.509 certificate and
(ii) the seinfo label. The stanza is built on the fly by the
checkMMAC Java class retrieving the information directly
from the parsed apk and the entry added to the seapp contexts

1 20 40 60 80 100
modules

0

1

2

3

4

5

6

in
st

al
l t

im
e

[s
]

recompilation
incremental

Figure 4: Installation time: comparison between the
full recompilation and the incremental approach.

file. After stanza creation, an update is triggered to in-
sert and refresh the whole mac permissions.xml file. This
is needed in order to let SELinuxMMAC retrieve the right
seinfo label for the new app.

8.3 Performance
As it was clearly expressed in the design of SEAndroid [15],

it is necessary to have a minimal overhead in terms of per-
formance, both at app installation time and during regular
system runtime. We executed a series of experiments for the
evaluation of the performance impact of the techniques pre-
sented in this paper. Experiments have been run on a Nexus
7 2013 aosp flo userdebug 4.4.2 r2. The Android runtime
used was ART.

8.3.1 Installation time
We evaluated the performance overhead of our approach

at app installation time, due to the fact that the process
to install an app was extended in order to manage appPol-
icyModules. Two different approaches were developed; the
first one is consistent with the approach used for SELinux
in Fedora. When a new module is ready to be installed,
the libsemanage tool creates a new version of the policy and
re-installs all the old modules plus the new one. If the new
policy passes the checking step, then the new policy is stored
into the system, otherwise a rollback occurs. This approach
introduces a non negligible overhead, because it requires to
reconsider the whole policy every time a new module is
added to the system. This option is natural for SELinux
in Fedora, because the modules are created by trusted en-
tities and they are free to modify the system policy, with a
number of types in the existing binary representation that
may have to be updated. As we have already discussed, the
requirements associated with the use of appPolicyModules
in Android are different, because in our scenario an appPoli-
cyModule cannot modify the system policy (Req1 in Section
5). In addition to the security benefit, this requirement also
leads to a simplification of the management of policy mod-
ules, because the re-installation of the system policy and all
the other modules is not needed. This permits to provide
an “incremental” solution, with a significant reduction in the
appPolicyModule installation time.

The graph in Figure 4 describes the time observed in a
scenario where the current system policy has been extended
with 100 modules, adding the modules one by one. The tests
were run 100 times. Each element in the graph describes the
range of measured values and the average. The observations
in the upper part of the graph show that as the number of
modules increases, the re-compilation approach shows a sig-
nificant increase in the compilation time, due to the fact that
at each step the policy becomes larger and its full recompi-
lation more expensive. The incremental approach instead
shows a constant response time, with no observable impact
deriving from the increase in the size of the overall policy.
The average installation time for the incremental approach,
which is the one to use, is near to 0.2 s, compatible with the
requirements of real systems.

8.3.2 Runtime
We evaluated the performance overhead of our approach

at runtime, considering two scenarios with different binary
policy sizes.

Table 2: Binary policies used in the tests.

policy #rules size

sepolicy 1319 73KB

sepolicy +1000 APMs 35319 631KB

For runtime analysis we used two well known benchmark
apps: (i) AnTuTu [1] by AnTuTu Labs and (ii) Benchmark
by Softweg [16]. Under both benchmarks, we ensured that
the same number of apps/services were loaded and running.

Table 3: AntuTu Benchmark (100 iterations), higher
values are better

sepolicy
sepolicy

+1000 APMs

svm 1130.467 1132.867

smt 3334.533 3341.400

database 630.600 631.333

sram 1534.840 1538.533

float 1938.600 1939.200

snand 1159.320 1159.400

memory 1121.280 1120.800

integer 2285.933 2284.133

AnTuTu Benchmark is a popular Android utility for bench-
marking devices. As it was explained in [15], the overhead
introduced by SELinux is very limited and it only affects sd-
write, sdread and database I/O tests. The tests performed
by Smalley et al. take into account a “static” policy. In our
scenario the policy size is not static, but it changes at each
installation and can potentially become quite large. How-
ever, experimental results highlight how the policy size does
not affect the system performance. Table 3 shows the re-
sults of the benchmark. The impact of the larger policy is
not detectable by the experiments.

Table 4 shows the results provided by Benchmark app de-
veloped by Softweg. Similarly to the results obtained by

Table 4: Softweg Benchmark (100 iterations): for
the Total File System score, higher values are better

sepolicy
sepolicy

+1000 APMs

Create 250 empty files 1.222 s 1.230 s

Create 1000 empty files 0.302 s 0.303 s

Delete 250 empty files 0.351 s 0.351 s

Delete 1000 empty files 0.130 s 0.130 s

Total file system score 342.835 341.158

AnTuTu, SELinux does not affect CPU and graphics scores.
For the filesystem and sdcard tests, the overhead introduced
by the increased size of the policy is negligible. As high-
lighted by the create and delete tests, the time taken to
create or delete 1000 empty files increased by less than 1
percent. As explained by Smalley et al. [15] the create and
delete tests can be viewed as a worst case, since the over-
head of managing the security context is not amortized over
any real usage of the file.

9. RELATED WORK
In the past few years a strong interest has been dedicated

to the investigation of Android security. Several solutions
have been proposed to increase the security of the system
and to protect the apps and system components from a va-
riety of threats. The central role of the proposal by Smalley
et al. [15] has already been discussed. We summarize here
other important contributions in the area.

TaintDroid, proposed in [8] by Enck et al., provides func-
tions to detect the unauthorized leakage of sensitive data.
TaintDroid uses dynamic taint analysis (i.e., taint track-
ing) to monitor the exchange of sensitive information among
third-party apps. While this solution try to identify the in-
formation leakage, our proposal goes one step further im-
peding the leakage at the SELinux level.

Other solutions, such as FlaskDroid [6], TrustDroid [5]
and XManDroid [4] show greater similarity to our work.

FlaskDroid [6] is a security architecture for the Android
OS that instantiates different security solutions. It is in-
spired by the concepts of the Flask architecture and is based
on SEAndroid. FlaskDroid provides mandatory access con-
trol on both Android’s middleware and kernel layers. This
represents an enhancement in terms of the isolation that is
provided between separate components, but the two MAC
levels are not coordinated and largely use booleans in the
SELinux policy. In the current SEAndroid implementation,
the use of booleans inside the policy is strongly discouraged,
for two main reasons: (i) it could introduce compatibility
problems, and (ii) it could undermine the default security
goals being enforced via SELinux in AOSP itself. Compared
to our proposal, the focus of Flaskdroid is the security of
system modules and the security of third-party apps is not
supported. Flaskdroid does not permit to dynamically add
policy modules without a recompilation of the entire policy.

TrustDroid [5] and XManDroid [4] provide mandatory ac-
cess control at both the middleware layer and at the ker-
nel layer. At the kernel layer, they rely upon TOMOYO
Linux [9], a path-based MAC framework. TOMOYO sup-

ports policy updates at runtime, but the security model of
SELinux is more flexible and supports richer policies.

RootGuard [14] is an enhanced root-management system
which monitors system calls, to detect the abnormal be-
havior of apps (i.e., malware) with root privileges. It is
composed by three components (i) SuperuserEx, (ii) Policy
storage database, and (iii) Kernel module, which span the dif-
ferent levels of the Android architecture. The SuperuserEx
is built on top of the open source Superuser app, the Policy
storage database is used to store the RootGuard policy and
the Kernel module introduces a set of hooks in order to inter-
cept system calls. This implementation is similar to the one
used by SELinux, but all the SELinux code is already in the
mainline Linux kernel and provides a more robust solution.

10. CONCLUSIONS
Security is correctly perceived, both by technical experts

and customers, as a crucial property of mobile operating
systems. The integration of SELinux into Android is a sig-
nificant step toward the realization of more robust and more
flexible security services. The attention that has been ded-
icated in the SEAndroid initiative toward the protection of
system components is understandable and consistent with
the high priority associated with the protection of core priv-
ileged resources. Our approach is the natural extension of
that work, which demonstrated a successful deployment, to-
ward a more detailed consideration of the presence of apps.

The paper shows that the potential for the application
of policy modules associated with each app is quite exten-
sive, supporting scenarios where developers define their own
app policy, and scenarios where policies are automatically
generated to improve the enforcement of privileges and the
isolation of apps. The extensive level of reuse of SELinux
constructs that characterizes the language for the appPoli-
cyModules demonstrates the flexibility of SELinux and facil-
itates the deployment of the proposed solution. An analysis
of the evolution of the official SEAndroid project confirms
that appPolicyModules identify a concrete need and that
Android is evolving in this direction.

11. ACKNOWLEDGEMENTS
This work was partially supported by a Google Research

Award (winter 2014), by the Italian Ministry of Research
within the PRIN project “GenData 2020” and by the EC
within the 7FP and H2020, respectively, under grant agree-
ments 257129 and 644579.

12. REFERENCES
[1] AnTuTu labs. AnTuTu Benchmark.

https://play.google.com/store/apps/details?id=

com.antutu.ABenchMark .

[2] M. Arrigoni Neri, M. Guarnieri, E. Magri, S. Mutti,
and S. Paraboschi. Conflict Detection in Security
Policies using Semantic Web Technology. In Proc. of
IEEE ESTEL - Security Track, 2012.

[3] M. Balanza, K. Alintanahin, O. Abendan, J. Dizon,
and B. Caraig. Droiddreamlight lurks behind
legitimate android apps. In Malicious and Unwanted
Software (MALWARE), 2011 6th International
Conference on, pages 73–78. IEEE, 2011.

[4] S. Bugiel, L. Davi, A. Dmitrienko, T. Fischer, A.-R.
Sadeghi, and B. Shastry. Towards taming

privilege-escalation attacks on android. In 19th Annual
Network & Distributed System Security Symposium
(NDSS), volume 17, pages 18–25, 2012.

[5] S. Bugiel, L. Davi, A. Dmitrienko, S. Heuser, A.-R.
Sadeghi, and B. Shastry. Practical and lightweight
domain isolation on android. In Proceedings of the 1st
ACM workshop on Security and privacy in
smartphones and mobile devices. ACM, 2011.

[6] S. Bugiel, S. Heuser, and A.-R. Sadeghi. Flexible and
fine-grained mandatory access control on android for
diverse security and privacy policies. In 22nd USENIX
Security Symposium. USENIX, 2013.

[7] Dolphin Browser. Dolphin Browser for Android.
https://play.google.com/store/apps/details?id=

mobi.mgeek.TunnyBrowser .

[8] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung,
P. McDaniel, and A. Sheth. Taintdroid: An
information-flow tracking system for realtime privacy
monitoring on smartphones. In OSDI, volume 10,
2010.

[9] T. Harada, T. Horie, and K. Tanaka. Task oriented
management obviates your onus on linux. In Linux
Conference, volume 3, 2004.

[10] J. Lepreau, R. Spencer, S. Smalley, P. Loscocco,
M. Hibler, and D. Andersen. The flask security
architecture: System support for diverse security
policies, 2006.

[11] A. Ludwig. Android - practical security from the
ground up, October 2013. http://goo.gl/z0RIwu .

[12] F. Mayer, K. MacMillan, and D. Caplan. SELinux by
Example: Using Security Enhanced Linux (Prentice
Hall Open Source Software Development Series).
Prentice Hall PTR, NJ, USA, 2006.

[13] C. Mulliner, W. Robertson, and E. Kirda.
Virtualswindle: An automated attack against in-app
billing on android. In Proceedings of the 9th ACM
Symposium on Information, Computer and
Communications Security, ASIACCS ’14, pages
459–470, New York, NY, USA, 2014. ACM.

[14] Y. Shao, X. Luo, and C. Qian. Rootguard: Protecting
rooted android phones. Computer, 47(6):32–40, 2014.

[15] S. Smalley and R. Craig. Security enhanced (se)
android: Bringing flexible mac to android. In Network
and Distributed System Security Symposium (NDSS
13), 2013.

[16] Softweg. Benchmark. https://play.google.com/
store/apps/details?id=softweg.hw.performance .

[17] Titanium Track. Titanium Backup.
https://play.google.com/store/apps/details?id=

com.keramidas.TitaniumBackup .

[18] C. Yang, V. Yegneswaran, P. Porras, and G. Gu.
Detecting money-stealing apps in alternative android
markets. In Proceedings of the 2012 ACM Conference
on Computer and Communications Security, CCS ’12,
pages 1034–1036, New York, NY, USA, 2012. ACM.

[19] Y. Zhou, Z. Wang, W. Zhou, and X. Jiang. Hey, you,
get off of my market: Detecting malicious apps in
official and alternative android markets. In NDSS,
2012.

