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Abstract—The network coverage and the number of residential
users that a network operator may serve through a Wireless
Mesh Network can be significantly increased by subleasing the
available bandwidth to a subset of customers.

In this paper we propose an innovative mechanism to allocate
the available bandwidth of a wireless network operator to those
customers who are willing to pay the higher price for satisfying
their bandwidth demand. We formulate the allocation mechanism
as a combinatorial truthful auction and further present a greedy
algorithm that finds efficient allocations even for large-size, real
scenarios, while maintaining the truthfulness property.

Numerical results show that the greedy algorithm represents
an efficient and practical alternative to the combinatorial auction
mechanism.

Index Terms—Bandwidth Auctions, Mechanism Design, Wireless
Community Networks.

I. INTRODUCTION

Wireless Mesh Networks (WMNs) have been accepted as a

new communication paradigm able to provide a cost-effective

means to deploy all-wireless network infrastructures [1]. Sev-

eral network operators have started using the WMN paradigm

as a valuable mechanism to provide broadband Internet access

to remote areas, where the low return on investments cannot

cover all costs to deploy more expensive wired solutions. How-

ever, the maintenance costs of the wireless devices, mainly due

to the low channel reliability, might still limit the diffusion of

this technology.

With the aim of further reducing the overall costs to

provide broadband Internet access to residential users in both

metropolitan and remote areas, and thus maximizing their

profit, network operators have been fostering the deployment

of Wireless Mesh Community Networks (WMCNs) [2]. In

WMCNs, a group of independent mesh routers owned by

different individuals forms a WMN in order to share their

broadband connectivity, which may be available only to a part

of them and with different bandwidths.

In this context, we envision a marketplace scenario where

a network operator may lease the bandwidth of its access

network to a subset of customers in order to increase the

network coverage of its WMN and provide access to res-

idential users through third party mesh client devices. The

customers who manage these mesh clients pay the network

operator to exploit the access bandwidth, while they are

rewarded directly by the residential users they serve. Note that

both the network operator and the customers1 gain from this

agreement, since the former can lease the bandwidth of its

WMNs saving management and maintenance costs, while the

latter can earn money by subleasing the purchased bandwidth

to other residential users. Finally, the residential users that

would not have been covered by the network operator because

of low payoffs obtain a better Internet service.

In order to be an attractive solution, the aforementioned

bandwidth market managed by the WMN operator needs

convincing allocation and payment mechanisms that should

act as incentives for customers to participate and subscribe to

the service. One of the main problems that might discourage

residential users and the WMN operator from participating is

the possibility that even few dishonest customers misbehave.

Specifically, from a residential user’s perspective, the customer

can provide a smaller bandwidth than the one promised.

In this case the residential user can cancel the subscription

and/or react to unsatisfied QoS guarantees. From an opera-

tor’s perspective, the scenario is even more complex, since a

customer could strategically bid false offers, thus manipulating

the market as it prefers, in order to pay a lower price or rule

out honest customers. These adversarial behaviors reduce the

operator’s revenue.

In this paper we present a mechanism targeted for the net-

work scenario described above, which is resilient against any

actions attempted by selfish customers aimed at manipulating

the bandwidth market. To meet this latter requirement, we

design an optimal truthful auction that forces each customer

interested in leasing the available bandwidth to bid its real

valuation of the required bandwidth demand.

The approach consists in finding the optimal set of cus-

tomers to be accepted by the operator (auction winners), whose

traffic demands can be routed through the WMN, and the

corresponding prices they have to pay for the leased service,

which constitute the operator revenue. The optimal allocation

and the pricing together make the auction truthful.

Since finding such optimal allocations is an NP-hard prob-

lem, we have also designed a greedy algorithm which im-

plements the auction and, although not being optimal, still

guarantees that bidding its real valuation is the best strategy

1The customers are residential users that operate the mesh client devices.



for each participating customer.

Several research works investigate the use of auction theory

to design efficient mechanisms for resource allocation, in

which true and fair collaboration emerges as the best rational

strategy for all selfish participants. They are reviewed in the

next section. However, existing solutions do not accurately

capture the main features of wireless multi-hop networks, and

do not take into account the high computational time to carry

out the auction. The main contributions of this paper are:
• We propose and analyze an innovative marketplace for

the allocation of the WMN’s available bandwidth to those

customers who are willing to pay more for sharing their

bandwidth with final users.

• We propose a combinatorial truthful auction that max-

imizes the revenue of the WMN operator, which is

resilient against any market manipulation.

• We design a greedy algorithm to efficiently compute

customer allocations and payments, which still guarantees

that participating customers bid their real valuations.

Experimental results show that the proposed greedy algo-

rithm performs close to the optimal auction, even in large

scale, realistic scenarios, thus representing an efficient yet

truthful alternative mechanism to the combinatorial auction.

The rest of this paper is structured as follows: Section II

discusses related work. Section III presents the communication

and network models considered in our work. Section IV

formulates the combinatorial auction as an optimization model,

while Section V illustrates the greedy algorithm that we pro-

pose to efficiently compute the solution. Section VI provides

a numerical evaluation of the proposed framework. Finally,

conclusions are discussed in Section VII.

II. RELATED WORK

Auction theory has been used to design efficient allocation

mechanisms in several network contexts.

With the upcoming generation of cognitive radio networks,

market-based auctions have been extensively studied as an

efficient mechanism to dynamically sublease the unexploited

licensed spectrum to secondary users and increase the revenue

of the spectrum owner [3], [4], [5], [6], [7].

Auction theory has been exploited to design innovative

traffic engineering techniques and routing protocols, both to

enhance the utilization of unused network paths and force

the collaboration of intermediate relaying nodes [8], [9], [10],

[11], [12], [13].

Ad Hoc-VCG [8] is a routing protocol based on the VCG

(Vickrey-Clarke-Groves) auction, which guarantees that each

intermediate node is refunded at least the true cost incurred to

relay packets. The Commit algorithm [9] further develops this

approach assuring that even the source node behaves correctly.

The performance of the previous incentive-based schemes are

analytically evaluated by Jaramillo et al. in [10]. The analysis

of their basic properties led to the design of DARWIN, a

new protocol robust to imperfect measurements and collusion

attacks. In [11], [12] the truthful pricing mechanism proposed

by Vickrey, Clarke, and Groves is used to solve a broad

class of problems concerning the non-cooperative behavior of

intermediate nodes. Zhong et al. in [13] exploit two solution

concepts defined in game theory to consider also the collusion

among network devices, showing that even if Group Strategy-

proof Equilibrium cannot be satisfied at routing level, their

proposed solutions reach Strong Nash Equilibria among net-

work nodes, which are robust to deviations of any component

of the colluding group.

Works sharing a similar approach to the solutions described

in this paper have been recently proposed [14], [15]. In

particular, Jain et al. in [14] present a mechanism for per-link

bandwidth allocation of end-to-end paths in wired network,

whereas Fu et al. in [15] design an auction-based stochastic

game for resource allocation of virtual operators in wireless

cellular networks. However, these works do not accurately

capture the main features of wireless multi-hop networks, and

do not take into account the very large computational time

needed to solve the considered auction in realistic network

scenarios.

III. SYSTEM MODEL

This section presents the communication and network mod-

els considered in our work, as well as the definitions and as-

sumptions we adopt in the design of our auction mechanisms.

Let us refer to the Wireless Mesh Network (WMN) scenario

illustrated in Figure 1, where the WMN is managed by a single

operator that leases the available bandwidth of the mesh access

points to secondary (customer) mesh clients.

Fig. 1: Wireless Mesh Network scenario considered in this work.

The mechanism we propose allocates the available band-

width of the access network established by Mesh Access

Point (MAPs). More specifically, the WMN operator leases

the available bandwidth provided by its MAPs to secondary

Mesh Clients (MCs) that in turn may eventually sublease it to

other clients.

Each buyer 2 i has a bandwidth demand di that he wishes

to satisfy by transmitting to one of the mesh access points that

cover it with their wireless signal. We assume, without loss of

generality, that the term di accounts for the traffic demand of

both the downlink and uplink, since the wireless resource is a

2In this paper we use interchangeably the terms buyers and mesh clients,
while we use the term seller to refer to the wireless mesh network operator.



half-duplex channel. To satisfy such demand, each buyer bids

an offer bi for its bandwidth demand to the WMN operator.

This latter decides which MCs are served, and the price that

winners have to pay to exploit the available bandwidth.

We further assume that MAPs use orthogonal channels;

therefore, the different subsets of MCs assigned to each MAP

do not interfere with each other.

We observe that the transmission rate and the channel

utilization required to satisfy the WMN’s demand depend,

clearly on device technologies, but in particular on the distance

between the mesh client and the mesh access point to which it

is connected; hence, the allocation mechanism influences the

number of mesh clients that have the opportunity to exploit

the available bandwidth. Therefore, the aim of the operator is

to increase its revenue by allocating the available bandwidth

of its mesh access points to those mesh clients that are willing

to pay the highest price for the channel utilization. To this end,

we design a truthful auction that, in addition to maximize the

revenue of the WMN operator, prevents market distortion by

forcing every mesh client to bid its true valuation, vi = bi.

Each mesh client i submits its bid in the form (bi, di),
where bi represents the price that the buyer i is willing

to pay for its bandwidth demand di. The operator turns

the demand di into a vector of channel utilizations, −→oi =
[

oi1 oi2 ... oij ... oim
]

, where each pair (i, j) refers to
a possible allocation of MC i to MAP j, whereas m represents

the number of MAPs in the network. Channel utilizations are

computed as follows:

oij =
di

r
(max)
ij

(1)

where the element oij represents the channel utilization per-

ceived by MAP j when it satisfies the demand of MC i, and

it is computed as the ratio between the required bandwidth

demand di and the maximum achievable transmission rate of

the wireless link that might connect MC i and MAP j, r
(max)
ij .

Note that this latter value can be easily obtained from the MAC

layer through a scanning of the wireless channels, which is

performed periodically by all network devices.

Let us denote by pi the price paid by user i when its

demand is satisfied. Then, the utility of user i is defined as

the difference between its private valuation vi and the price

paid to exploit the bandwidth pi, according to the following

expression:

ui =

{

vi − pi if i’s demand is satisfied

0 otherwise
(2)

Obviously, when the demand of mesh client i is not satisfied,

its utility is null, since both the paid price and its valuation

are null.

We further assume that the MN operator has only a limited

and imperfect knowledge about the real valuation that mesh

clients are willing to pay for satisfying their traffic demand.

According to the Meyerson’s proposal [16], we therefore

model the operators uncertainty about the real value of any

mesh client i as a continuous probability distribution over a

finite interval F (x), with related density function f(x), and
we optimize over the virtual valuation of customer i as defined

in Equation (3) to design a revenue-maximization truthful

auction.

φi(vi) = vi −
1− F (vi)

f(vi)
. (3)

Finally, the mechanism illustrated in [16] shows that such

auction can be implemented by assigning the items to the

customers with the highest virtual valuations φi, provided they

are not negative. The payment rule is: the winners pay the

smallest value bk that would result in their winning, that is,

the bid (thus the valuation vk, as it is a truthful auction) of

the first excluded customer. If the first excluded customer has

a valuation vk such that φk(vk) < 0, then the winner pays

br = φ−1(0), that is, the bid whose corresponding virtual

valuation is 0. The value br is like a reservation price for the

auctioneer, since he does not sell anything for bids below this

value.

IV. TRUTHFUL AND OPTIMAL BANDWIDTH ALLOCATION

This section presents the combinatorial auction mechanism

we propose to allocate the available access bandwidth of

a WMN operator and maximize its expected revenue. We

formalize the optimal and truthful auction mechanism in two

steps. First, we present an Integer Linear Programming (ILP)

model which gives the optimal allocation for the optimal

auction. Then, we describe the algorithm that, exploiting the

allocation of the ILP model, makes the auction truthful. This

algorithm computes the price paid by MCs in such a way that

the optimal strategy for each mesh client i is to bid its real

valuation vi.

Let N denote the set of mesh clients (MCs), M the set of

mesh routers (MRs), and L the set of wireless links (j, k)
among MRs j and k such that the two MRs are in their

reciprocal radio range. In particular, let us define MC,i as

the set of MRs operating as MAPs that are in the radio range

of MC i and G, G ⊂ M, as the set of MRs that act as gateways

for the WMN to the wired backbone.

We can now introduce the decision variables used in our

ILP model. Binary variables xi, i ∈ N , indicate which MCs

win the auction, i.e., the buyers whose demands are satisfied

by the allocation mechanism (xi = 1 if the demand of MC

i is satisfied, 0 otherwise). Binary variables yij , i ∈ N , j ∈
MC,i, provide the assignment of MCs to MAPs (yij = 1 if

MC i is assigned to MAP j, 0 otherwise). The last set of

binary variables wjk, (j, k) ∈ L, defines which wireless links

of the operator’s WMN are established to route MC demands

towards mesh gateways (wjk = 1 if a wireless link between

devices j and k is active, 0 otherwise). Finally, let variables

fjk, (j, k) ∈ L, denote the traffic flow routed on link (j, k)
and fj , j ∈ G, the traffic flow routed to the wired connection

(note that this value is null for mesh routers that do not act as

gateways).



Given the above definitions and notation, the combinatorial
auction problem can be stated as follows:

max
∑

i∈N

φi(bi) · xi (4)

s.t.
∑

j∈MC,i

yij = xi ∀i ∈ N (5)

∑

i∈N :
j∈MC,i

yijoij ≤ 1 ∀j ∈ M (6)

∑

i∈N :
j∈MC,i

diyij +
∑

k∈M:
(j,k)∈L

(

fkj − fjk
)

= 0 ∀j ∈ M \ G (7)

∑

i∈N :
j∈MC,i

diyij +
∑

k∈M:
(j,k)∈L

(

fkj − fjk
)

= fj ∀j ∈ G (8)

fkj + fjk ≤ wjkcjk ∀(j, k) ∈ L (9)

fj ≤ C ∀j ∈ G (10)

fjk, fq ≥ 0 ∀(j, k) ∈ L, q ∈ G (11)

xi, yij ∈ {0, 1} ∀i ∈ N , j ∈ MC,i (12)

wjk ∈ {0, 1} ∀(j, k) ∈ L (13)

The objective function (4) maximizes the expected revenue

of the WMN operator obtained from the bandwidth auction.

Constraints (5) provide full coverage of all the mesh clients

that win the auction. More specifically, if a mesh client i

wins the bandwidth auction, then it must be associated only

to one mesh access point among the set of those that cover it.

Constraints also ensure that only the mesh clients that win the

auction can be assigned to a mesh access point. Constraints (6)

prevent the allocation of an overall bandwidth demand that

cannot be satisfied by a mesh access point.

Constraints (7) and (8) define the flow balance at node j.

The term
∑

diyij accounts for the total traffic that is assigned

to mesh access point j, while the terms
∑

fkj and
∑

fjk
represent the total incoming and outgoing traffic, respectively.

The term fj represents the traffic sent by gateway mesh routers

to the wired backbone.

The set of constraints (9) ensures that the total traffic routed

on a link established between two devices j and k does not

exceed its capacity, denoted by cjk, while (10) represent the

capacity constraints for the wired backbone.

Note that in multi-channel multi-radio WMNs the intra-

flow and inter-flow interference can be ignored, since wireless

interfaces with directive antennas can be tuned to different

channels according to an optimization strategy in order to

reduce interference effects on the backbone link capacity.

Finally, constraints (11) ensure the positiveness of the flow

variables, while (12) and (13) ensure the integrality of the

binary decision variables.

Having defined the ILP model representing the optimal

auction, we now illustrate the algorithm that forces mesh

clients to bid their real valuation.

Algorithm 1 describes the steps performed by the WMN

operator to auction its available bandwidth. The algorithm

receives as input the parameters which describe the network

topology and mesh client bids; these latter are composed of

the required demand di and the offered value bi. It produces

as output the allocation of mesh clients to mesh access points,

Algorithm 1: Optimal and Truthful Bandwidth Auction

Input : N ,M,G,L, di, bi
Output: xi, pi, yij
Compute channel utilizations oij ;1

Compute virtual bids φi(bi);2

xi ⇐ Solve the ILP model (4)-(13);3

foreach i ∈ N do4

if xi = 1 then
p̃i ⇐ maxx−i

∑

h 6=i xhbh −maxx
∑

h 6=i xh · bh;

pi ⇐ max
{

φ−1(0), φ−1(p̃i)
}

;

else
pi ⇐ 0;

end

end

yij , as well as the price pi paid by each winning mesh client,

xi, to exploit the required bandwidth.

The algorithm proceeds in 4 steps. In step 1 and 2, the user

demands are transformed into equivalent channel utilizations,

and virtual valuations are computed using both the bid actually

offered by the buyers and valuation distribution function F (x).
Step 3 consists in solving the ILP model to find the allocation

that maximizes the expected revenue. Finally, in step 4, the

operator computes the prices paid by the winners, which,

according to Myerson [16], guarantees a truthful auction.

V. GREEDY AND TRUTHFUL BANDWIDTH AUCTION

The optimal auction problem described in the previous

section is NP-Hard, since the well known Knapsack problem

can be reduced to it in polynomial time. For this reason, in the

following we present a greedy algorithm to solve efficiently

(i.e., in polynomial time) the bandwidth allocation problem

preserving the truthful property.

The greedy auction is summarized in Algorithm 2, and it

is composed of two main phases: (1) the allocation phase,

which allocates mesh client demands in descending order of

the virtual valuation per channel utilization until the available

bandwidth of the entire network is exhausted, and (2) the

payment phase, which establishes the price paid by each

winner based on the first mesh client whose demand is not

satisfied. This latter is also referred to as critical mesh client

and its offered bid bc as critical value. Furthermore, the value

ocjc represents the lowest channel utilization among the links

that the critical mesh clients can establish with the set of its

covering MAPs to satisfy its traffic demand.

Algorithm 2: Greedy Bandwidth Auction

Input : N ,M,G,L, di, bi
Output: xi, pi, yij
(xi, yij ) ⇐ Greedy Allocation Phase(di, φi(bi), oij ) ;1

if φc(bc) ≤ 0 then2

pc ⇐ φ−1(0);
else

pc ⇐ φ−1(bc);
end

foreach i ∈ N : xi = 1 do

pi ⇐
pc

ocjc

∑

j∈Mi
oijyij ;

end

Note that the truthful property guaranteed by the payment

scheme proposed for Algorithm 1 is no longer true if the



combinatorial auction is not solved to the optimality but

approximated [17]. For this reason, we have modified the

payment scheme of the greedy algorithm, so that revealing the

true valuation is the dominant strategy for all the customers

who participate to the approximated bandwidth auction.

Our greedy allocation scheme, which is detailed in Algo-

rithm 3, sorts the list of possible MC-MAP allocations in non

increasing order of submitted virtual valuation per channel

utilization,
φi(bi)
oij

. Then, each element of the sorted list is

allocated only if its demand, or equivalently its channel uti-

lization, can be satisfied by the corresponding MAP and routed

towards any mesh gateway. Thus, FeasibleSolution(x̃, ỹ, d̃)
verifies if the additional bandwidth demand of MC i assigned

to MAP j can actually be routed through the WMN backbone

towards mesh gateways, without violating the link capacities.

To this end, we develop an efficient procedure to compute the

maximum flow that can be routed over the wireless backbone

using the well known push-relabel algorithm [18].

Algorithm 3: Greedy Allocation Phase (Step 1 of Alg. 2)

Input : di, φi(bi), oij
Output: xi, yij
Initialize: oj = 1, ∀j ∈ M;

L ⇐ Sort
(

(i, j) ∈ N ×Mi,
φi(bi)
oij

, “non− increasing“
)

;

while L 6= ∅ do
(i, j) ⇐ Next(L);
if oj − oij ≥ 0 ∧ FeasibleSolution(x̃, ỹ, d̃) ∧ φi(bi) ≥ 0 then

xi ⇐ 1, yij ⇐ 1;
oj ⇐ oj − oij ;
RemoveAll(i, L);

end

end

Note that MC i might be satisfied by multiple MAPs

j ∈ M(i); however, once its demand is satisfied, all entries in

the list representing the possible allocations are removed by

the function RemoveAll(i, L). Throughout the iterations of

Algorithm 3, the total utilization of each MAP (oj) is updated

and verified in order to keep the sum of allocated demands

within the bandwidth limit of the access network formed by

MAPs.

We observe that Algorithm 2 implements a truthful auction.

We do not give here a full proof due to space constraints.

However, to have a sketch, observe that the allocation and

refinement phases satisfy the monotonicity property (recall that

the bids are sorted in non-increasing order of their bid per

channel utilization), and there exists a critical value which

determines if the MC demand is satisfied or not. Therefore,

a WMN operator can efficiently compute a solution for the

auction problem, being assured that all MCs reveal the true

valuation for their bandwidth demand.

VI. NUMERICAL RESULTS

In this section, we illustrate the numerical results obtained

solving optimally the bandwidth allocation auction and using

the greedy algorithm detailed in previous sections.

Experimental Methodology. In our simulations, we con-

sider typical WMCN topologies composed of 30, 60, and

120 mesh devices randomly scattered over an area of

1000 × 1000m2. The ratios between the three different devices

was fixed to 1:2 and 1:3 for MGWs:MRs and MGWs:MAPs,

respectively.

In all the topologies, we vary the number of MCs, which

participate to the bandwidth auction, from 400 to 1000. The

bandwidth demands and bids are uniformly distributed in

the range [1, 9] Mbps and [10, 30] monetary units (e.g., US

dollars), respectively.

The channel capacity of both access and backbone links

was defined according to the reception sensitivity of the

Wistron CM9 commercial wireless cards (based on Atheros

chipset). The path loss necessary to evaluate the sensitivity

of the receiving node was computed according to the Friis

propagation model.

In order to gauge the performance of the proposed greedy

algorithm (Section V) with respect to the optimal solution

(Section IV), we consider as performance metrics the Revenue

(
∑

i∈N pi · xi), the Social Welfare (
∑

i∈N bi · xi), and the

number of Winners. For each network scenario we performed

10 independent measurements, computing very narrow 95%

confidence intervals. For the sake of clarity, the revenue and

the social welfare have been normalized with respect to the

maximum value measured in the network topology composed

of 120 mesh devices (about 12500 monetary units).

Performance Evaluation. Figure 2 shows the performance

metrics measured in the network topologies composed of 30,

60, and 120 backbone mesh devices as a function of the

number of MCs, using the allocation mechanisms discussed in

previous sections. The curves identified with “R.o” and “R.g”

represent the solutions obtained using Algorithms 1 and 2,

respectively. The curves “SW.o” and “SW.g” show the Social

Welfare computed as the sum of the bids bi submitted by

the MCs selected as winners by the corresponding algorithm.

Finally, the remaining curve identified with “VCG” represents

the revenue of solutions obtained by modifying Algorithm 2

in order to maximize the Social Welfare. Note that, due to

the high computational complexity, we were able to solve the

auction problem optimally only for the network scenario com-

posed of 30 mesh devices. Nevertheless, even in this simple

scenario, the maximum computational time we measured to

solve the problem on a Pentium 4 3.0 Ghz and 2 GB of RAM

was approximately equal to 43 hours, while with the greedy

algorithm we solved a 120-device scenario in few minutes.

As illustrated in Figure 2(a), the additional information

provided by the virtual bids permits to increase the operator’s

expected revenue with respect to a mechanism which exploits

only the MC bids.We can further notice that the auction

implemented by the greedy algorithm well approaches the

optimal revenue, and therefore it represents an effective and

efficient solution for the computation of the prices paid by the

MCs. In addition, the Social Welfare is always higher than the

revenue earned when using Algorithms 1 and 2. Indeed, this

value represents an ideal upper bound to the revenue, since it

can be achieved only assuming that all mesh clients behave

honestly, submitting the price they are willing to pay for their
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Fig. 2: Revenue and Social Welfare measured as a function of the number of mesh clients in scenarios with 30, 60, and 120 mesh devices.

bandwidth demands, even if it is not the best strategy. On

the contrary, we underline that the proposed solutions assure

that all mesh clients bid truthfully their valuations, because it

is their best strategy. The achieved revenue is approximately

equal to 75% of the Social Welfare.

Greedy solutions illustrated in Figures 2(b) and 2(c) confirm

the trends observed for the network scenario composed of 30

mesh devices. Note how increasing the number of mesh clients

guarantees higher revenues. This is due to the effect of the

competition: only mesh clients offering more will be accepted.

Figure 3 shows the number of winners selected by Algo-

rithms 1 and 2 as a function of the number of mesh clients

that participate to the auction for the bandwidth allocation. It

can be observed that the greedy algorithm satisfies a number of

mesh clients very close to the value obtained using the optimal

allocation algorithm (see the curves identified by labels “30.o”

and “30.g”). In particular, the greedy algorithm leads to a

performance gap always lower than 10%, for instance sizes

when both algorithms can be run. The figure illustrates also the

number of winners selected in the network scenarios composed

of 60 and 120 mesh devices. As expected, the higher is the

number of mesh devices, the higher is the available network

bandwidth and the greater is the number of mesh clients

satisfied by the allocation algorithm implementing the auction.
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Fig. 3: Number of winners as a function of the number of mesh
clients in scenarios with 30, 60, and 120 mesh devices.

VII. CONCLUSION

This paper proposed two effective mechanisms to allocate

the available bandwidth of a wireless network operator to those

customers who are willing to pay the higher price for satisfying

their bandwidth demand. We first formulated the allocation

mechanism as a combinatorial auction, which guarantees

that all customers reveal their real valuation of the required

bandwidth. Then, we proposed a greedy algorithm that finds

efficient allocations in polynomial time even for large-size, real

network scenarios, while maintaining the truthfulness property.

Numerical results show that the greedy algorithm performs

very close to the optimal auction, thus representing an efficient

and practical alternative for solving the auction.
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