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Abstract—The use of enhanced bandwidth estimation procedures within the congestion control scheme of TCP was proposed

recently as a way of improving TCP performance over links affected by random loss. This paper first analyzes the problems faced by

every bandwidth estimation algorithm implemented at the sender side of a TCP connection. Some proposed estimation algorithms are

then reviewed, analyzing and comparing their estimation accuracy and performance. As existing algorithms are poor in bandwidth

estimation, and in sharing network resources fairly, we propose TIBET (Time Intervals based Bandwidth Estimation Technique). This is

a new bandwidth estimation scheme that can be implemented within the TCP congestion control procedure, modifying only the sender-

side of a connection. The use of TIBET enhances TCP source performance over wireless links. The performance of TIBET is analyzed

and compared with other schemes. Moreover, by studying TCP behavior with an ideal bandwidth estimation, we provide an upper

bound to the performance of all possible schemes based on different bandwidth estimates.

Index Terms—TCP, bandwidth estimation, wireless.
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1 INTRODUCTION

THE Transmission Control Protocol (TCP) has proved
efficient in classical wired networks, showing an ability

to adapt to modern, high-speed networks and new
scenarios for which it was not originally designed. How-
ever, the extraordinary success of modern wireless access
networks, such as cellular networks, wireless local area
networks, and of new applications for mobile computing
environments, poses new challenges to the TCP congestion
control scheme.

The existing versions of TCP, like Reno or NewReno,
experience heavy throughput degradation over channels
with high error rate, such as wireless channels. The main
reason for this poor performance is that the TCP congestion
control mechanism cannot distinguish between packet
losses occurring randomly in wireless channels and those
due to network congestion. Therefore, the TCP congestion
control mechanism reduces, even when not necessary, the
transmission rate [1], [2].

TCP maintains two state variables to regulate the
transmission rate: congestion window (cwnd) and slow
start threshold (ssthresh). The latter sets the cwnd value that
discriminates between the slow-start and congestion avoid-
ance phases. At the beginning of the connection, the source
increases cwnd exponentially (slow start) until the network
drops packets and a condition of congestion is recognized.
In response to this, TCP Reno sets ssthresh to one half of the
bytes in flight. When cwnd reaches the new ssthresh value,
TCP enters a congestion avoidance phase during which
cwnd is increased linearly.

This scheme assumes that ssthresh gives an estimate of
the available bandwidth, and uses the congestion avoidance

phase to probe gently for extra bandwidth. However, the
bandwidth estimate is accurate only if the first packet loss
occurs when the sending rate has reached the available rate.
If the loss is due to transmission error, as in wireless
channels, ssthresh can be set erroneously to a small value,
thus limiting the sending rate and degrading the through-
put performance.

To avoid such limitation and degradation, several
schemes have been proposed and are classified in [3], as
end-to-end protocols, where loss recovery is performed by
the sender, split connection protocols, that break the end-to-
end connection into two parts at the base station, and link-
layer protocols based on a combination of ARQ and FEC
techniques. The link-layer schemes have been shown to
improve significantly the performance of TCP sources when
transmitting over wireless links [3].

However, end-to-end techniques, even if not as effective
as link-layer protocols, can achieve further gain in perfor-
mance by using more sophisticated bandwidth estimation
algorithms in the TCP congestion control scheme. A
possible way to reduce the throughput degradation due to
transmission errors is to consider the bytes in flight when a
loss is detected in addition to the past history of the
connection [4], [5].

This paper first discusses the problem of end-to-end
bandwidth estimation for TCP, and points out issues that
could affect both the estimation accuracy and its impact on
TCP tunable parameters. Then, estimation algorithms
proposed in the literature are reviewed and analyzed.
Although not necessarily related to the wireless channel
environment, various bandwidth estimation algorithms
have been proposed to set the first value of ssthresh [6],
[7], [8]. The algorithm implemented by TCP Vegas is
described in [9], and those adopted by TCP Westwood are
presented in [4], [10]. Our analysis of the estimation
algorithms proposed for TCP Westwood reveals an over-
estimation of the available bandwidth, leading to aggressive
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and unfair behavior that prevents the smooth introduction
of the new TCP version into the Internet.

To obtain more accurate, unbiased, and stable band-
width estimates, needed for a fair sharing of the network
resources, we propose a new algorithm, TIBET (Time
Intervals based Bandwidth Estimation Technique). Like
the algorithms used in TCP Vegas and TCP Westwood,
TIBET requires modifications only at the sender-side since
there is no need for cooperation from the peer TCP. To
show the benefits of the proposed scheme in networks
affected by independent or correlated losses, typical of a
wireless environment, we compare the performance of
TIBET with that of other schemes. Moreover, by studying
TCP behavior with an ideal bandwidth estimation, we
provide an upper bound to the performance of all possible
schemes based on different bandwidth estimates.

The paper is structured as follows: Section 2 studies the
problem of bandwidth estimation performed at the sender-
side, and reviews the existing estimation techniques.
Section 3 presents TIBET and shows, by simulation, that it
copes efficiently with the problems presented in Section 2.
Section 4 shows TIBET performance on wireless links,
affected by both independent and correlated losses. Also
provided is an upper bound to the performance of these
schemes, achieved by studying the behavior of TCP with an
ideal bandwidth estimation. Section 5 concludes the paper.

2 BANDWIDTH ESTIMATION

The greater the amount of information available, the better
the estimate by the TCP protocol of the bandwidth available
for a connection; this results in a better and fairer utilization
of network resources. This is the principle followed by
several bandwidth estimation techniques proposed in the
literature.

One approach, proposed in [6], [8], is to monitor the time
spacing between received acknowledgements (ACKs) at the
sender. A sample of the ACK bandwidth, i.e., the
bandwidth promised by the ACK to the sender [11], is
obtained by dividing the amount of acknowledged bytes by
the interarrival time between consecutive ACKs. Some
filtering techniques can be added to the sample sequence to
smooth fast variations, and to reduce the impact of random
losses. As proposed in [4], the TCP slow start threshold
(ssthresh) is related to the byte-equivalent of the estimated
bandwidth (Bwe) according to the following relation:

Ssthresh ¼ Bwe � RTTmin; ð1Þ

where RTTmin is the lowest Round Trip Time (RTT)
measured by the TCP connection. This value can be
considered an estimate of the Round Trip Time of the
connection when the network is not congested.

2.1 Estimation Problems

Due to the peculiar transmission timing of the packets
injected into the network by the TCP, and to the uncertainty
with which a TCP source measures time intervals and
estimates the minimum RTT, the following problems arise:

. Clustering [11], [12],

. ACK Compression [11], [12],

. TCP coarse-grained clocks [9], [13], and

. Rerouting [14].

2.1.1 Clustering

It is well-known that packets belonging to different TCP

connections sharing the same link do not intermingle;

therefore, many consecutive packets of the same connection

can be observed on a single channel [11], [12]. This means

that each connection uses the full bandwidth of the link for

the time needed to transmit its cluster of packets. Thus, to

correctly estimate the bandwidth in use, a TCP source must

observe its own link utilization for a time longer than the

time needed for entire cluster transmission, and the filtering

technique, adopted to smooth the bandwidth samples, must

operate for a long enough time interval to take all the

samples into account. The appropriate minimum observa-

tion time depends on how many connections share the link,

and on the cluster size that, in turn, depends on the

bandwidth-delay product.

2.1.2 ACK Compression

ACK compression occurs when the time spacing between the

received ACKs is altered by the congestion of the routers on

the return path [12]. In fact, when a packet cluster reaches

its destination a cluster of ACKs is generated. If these ACKs

encounter a congested node, they lose their original time

spacing since, during their forwarding, they are spaced by

the short ACK segment transmission time. The result is

ACK compression, that can lead to overestimation of the

bandwidth in use. Such error depends on the ratio between

the length of the full-size TCP data packets and the length

of the ACK packets. In a typical situation where ACKs are

40 bytes long (the length of the TCP/IP headers) and data

packets are 1,500 bytes long, the overestimation of the

available bandwidth based on ACK bandwidth can be

37.5 times the actual value. Most TCP implementations

adopt delayed ACKs, and the overestimation can even

double its actual value. Therefore, ACK compression,

commonly observed in real network operation [11], cannot

be neglected.

2.1.3 TCP Coarse-Grained Clocks

TCP must translate the estimated bandwidth into para-

meters used in its congestion control scheme. It has been

shown [7] that the optimal value for the slow start threshold

is equal to the packets in flight in a pipe when the TCP rate

equals the available bandwidth, i.e., when its transmission

window is equal to the bandwidth-delay product. As

pointed out earlier, the slow start threshold (ssthresh) can

be set equal to the byte-equivalent of the estimated

bandwidth (Bwe) according to (1).
However, TCP measures RTT with a coarse-grained clock

[13]. As a consequence, the precision of the RTTmin estimate

strongly depends on the TCP clock granularity, G. For

example, if TCP runs over a LAN with a propagation delay

equal to G=10, the RTTmin is set equal to G, a value 10 times

higher than the correct one. Therefore, even if the estimated

bandwidth value is correct, the ssthresh would be set to

10 times its correct value, thus leading to a very aggressive

behavior of the connection.
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2.1.4 Rerouting

When, during a connection, the routing-path changes, the
hosts are not notified directly. However, if the new route
has a shorter propagation delay, the RTTmin in (1) is
updated correctly. On the contrary, if the new route has a
longer propagation delay, the connection is not able to
distinguish whether the increased RTT is due to sudden
network congestion or to a new longer route, thus resulting
in a wrong RTTmin estimate.

2.2 Estimation Algorithms

The literature proposes several bandwidth estimation
schemes for TCP congestion control. Here, we review some
of them, pointing out their characteristics and their ability to
cope with the problems mentioned above.

It should be pointed out that the only quantity measured
efficiently with a sender-side-only algorithm is the band-
width used by the TCP source, not that available. Here, we
define these two quantities following the guidelines of [8]:
available bandwidth is the maximum rate at which a TCP
connection, exercising correct congestion control, would
transmit ideally; used bandwidth is the rate at which the
source is actually sending data.

2.2.1 Packet-Pair Algorithm

The Packet Pair algorithm [6] and its variants have been
proposed to be used by TCP sources at the beginning of the
connection. Their main goal is to set the first value of the
ssthresh in order to mitigate the effect of multiple losses due
to the high default value commonly used [7]. Though the
ssthresh should be set to the byte equivalent of the available
bandwidth, the proposed schemes estimate the bottleneck
bandwidth, that can be tracked more easily by analyzing the
timing structure of received acknowledgments (ACKs). The
Packet Pair algorithm is based on the assumption that, if two
data packets are sent with closely spaced timing (back-to-
back), their interarrival time at the receiver directly reflects
the bottleneck bandwidth along the path. If, also, the
returning path is uncongested, the corresponding ACKs are
received at the TCP sender with the same spacing. The TCP
source can thus estimate the bottleneck bandwidth by
dividing the length of the sent data packets by the
interarrival time between the corresponding ACKs.

Several enhancements have been proposed recently to
the Packet Pair algorithm [15], [16] to improve the estimate
of the bandwidth available along a path. However, most of
these techniques are based on active schemes that inject
additional traffic in the path and are not considered in this
paper since we focus our analysis on passive techniques
that simply exploit regular TCP traffic.

2.2.2 TCP Vegas Estimation Algorithm

A more sophisticated bandwidth estimation scheme, active
throughout the connection time, has been adopted in TCP
Vegas [9]. This scheme computes the difference between the
expected and the actual flow rate that are defined by
cwnd=RTTmin and cwnd=RTT , respectively. RTTmin is the
minimum RTT measured by the TCP source.

TCP Vegas adjusts the congestion window size based
on the observation that when the network is not

congested, the actual flow rate is close to the expected
one, while, when the network is congested, the actual rate
is smaller than the expected flow rate. More precisely,
whenever an ACK is received, TCP Vegas computes the
quantity diff = ðexpected Rate� actual RateÞ �RTTmin.
The congestion window size (cwnd) is then increased by
one if diff < 1, decreased by one if diff > 3 and left
unchanged if 1 � diff � 3.

Although the TCP Vegas algorithm often leads the
congestion window size to an equilibrium point [9], it can,
in homogeneous scenarios, fail to achieve fairness since
competing connections can converge to different cwnd
parameter values.

Moreover, in order to estimate the propagation delay of
the network path in use, TCP Vegas measures the minimum
RTT, and it can therefore suffer from the rerouting and
persistent congestion problems, as pointed out in [14].

In spite of its improved performance, TCP Vegas has not
yet been introduced into the Internet mainly because, in
mixed scenarios with TCP Reno sources, the TCP Vegas
sources would receive very little throughput [14].

2.2.3 TCP Westwood Estimation Algorithms

TCP Westwood, recently proposed in [17], [4], [18], [10],
estimates the available bandwidth by measuring the rate of
acknowledgments. This estimate is used to set the ssthresh
and the cwnd after congestion events, such as the receipt of
three duplicate ACKs or coarse timeout expirations. This
recovery mechanism avoids the blind halving of the
sending rate of TCP Reno after packet losses and enables
TCP Westwood to achieve a high link utilization in the
presence of the random, sporadic loss typical of wireless
links.

The algorithm adopted by TCP Westwood, as reported
in [17], considers the sequence of bandwidth samples
sample_BWE[k] obtained using the ACK arrivals and
evaluates a smoothed value, BWE[k], by low-pass filtering
the sequence of samples, as described by the following
pseudocode:

Algorithm WESTWOOD 1:

if (ACK is received)

sample_BWE[k] = (acked * pkt_size * 8)

/(now - last_ACK_time);

BWE[k]= (1 - beta)*(sample_BWE[k] +

sample_BWE[k-1])/2 +

+ beta*BWE[k-1];

endif

where acked is the number of segments acknowledged by
the last ACK, pkt_size is the segment size in bytes, now is the
current time, last_ACK_time is the time the previous ACK
was received, k and k-1 indexes indicate the current and
previous value of the variables, and beta is the pole used for
the filtering (in [17] a value of beta ¼ 19=21 is suggested).

We have shown in [5] that Algorithm Westwood 1
usually provides a biased estimate mainly because it filters
the bandwidth samples directly with a fixed pole filter. This
cannot provide an unbiased value just as the arithmetic
average of the bandwidth samples is not equal to the
average bandwidth.
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The improved version of the TCP Westwood algorithm
proposed in [4] and described in the following pseudocode
adopts a nonlinear filtering technique:

Algorithm WESTWOOD 2:

if (ACK is received)

ACK_interval = now - last_ACK_time;

sample_BWE[k] = (acked * pkt_size * 8)

/ACK_interval;

pole= (2*tau - ACK_interval)/(2*tau +

ACK_interval);

BWE[k]= (1 - pole)*(sample_BWE[k] +

sample_BWE[k-1])/2 +

+ pole*BWE[k-1];

endif

We analyzed the performance of this algorithm. First,
we tested the filter with constant packet lengths (equal to
1,000 bytes) and sequences of interarrival times with
various probability distributions. Fig. 1 shows the esti-
mates produced by the filter for exponential and Rayleigh
distributed interarrival times. The dotted lines in the two
lower figures represent the correct bandwidth estimate.

In both the scenarios, it was found that the TCP
Westwood filtering algorithm consistently overestimated
the available bandwidth.

We then evaluated the performance of TCP sources
adopting algorithm Westwood 2, by simulation using the
Network Simulator, “ns” ver.2 [19]; this was the simulator
used for all the results presented in this paper.We considered
10TCPWestwoodconnections sharinga single10Mbit/s link
with a RTT of 100ms. It was assumed, as for all the numerical
results presented in the paper, that the TCP Maximum
Segment Size is 1,000 bytes, that the TCP receiver implements
theDelayedACKalgorithmas recommended in [20], and that
the bottleneck buffer queue can contain a number of packets
equal to the bandwidth-delay product of the connection. The
time trace of the estimated bandwidth (Fig. 2) shows fast
variations, and its average value (2:23 Mb/s) is higher than
the fair share. To check algorithm behavior in the presence of
ACK Compression, we also considered a scenario with a

congested return path. Fig. 3 shows the time trace obtained
considering a 2 Mbit/s link and two TCP Westwood
connections sending data packets in the two directions. In
the time interval between 40 and 140 seconds the TCP
connection in the opposite direction transmits packets and a
dramatic increase in the estimated values can be observed,
showing that TCP Westwood is unable to account for ACK
compression.

To investigate the effect of a nonaccurate estimate on the
overall performance, we considered a mixed scenario where
10 TCP connections using either TCP Westwood or TCP
Reno share a 10 Mb/s link. By simulation, we measured, for
each connection, the goodput defined as the bandwidth
actually used for successful transmission of useful data
(payload). Fig. 4 shows the average goodputs of TCP
Westwood and TCP Reno connections, versus the number
of TCP Reno connections. It can be seen that, while in the
nonmixed scenarios both TCP Reno and TCP Westwood
achieve a fair sharing, in the mixed scenario, the TCP
Westwood connections behave more aggressively. The TCP
Westwood sources always achieve a goodput higher than
the fair share, with a consequent starvation of the TCP Reno
sources. Such unfair behavior, already discovered in TCP
Vegas, prevents the smooth introduction of TCP Westwood
into the Internet.
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Fig. 1. Algorithm Westwood 2 filter: estimated bandwidth values with constant packet length equal to 1,000 bytes and random independent

interarrivals: (a) exponentially distributed and (b) Rayleigh distributed. The dotted lines in the two lower figures represent the correct bandwidth

estimate equal to the packet length divided by the average interarrival time.

Fig. 2. TCP Westwood: estimated bandwidth with 10 connections

sharing a single 10 Mbit/s link.



Recently, the estimation algorithm of TCP Westwood
was modified further [18], [10], the new approach adopting
time varying coefficients in the filter with both adaptive
gain and adaptive sampling. The following pseudocode
specifies the modified approach [18], [10]:

Algorithm WESTWOOD 3:

sample_BWE[k]=(Bytes received in T[k])/T[k]

pole[k]=(2*tau[k] - ACK_interval)/(2*tau[k] +

ACK_interval);

BWE[k]= pole[k]*BWE[k-1] + (1 - pole[k])*

sample_BWE[k];

where tau[k] (the parameter that determines filter gain)
adapts to path conditions, as does the bandwidth sample
sample_BWE[k], calculated over a time interval T ½k�. The
expressionsused toobtain tau½k�andT ½k�are specified in [10].

We tested the accuracy of this filter with the same
sequences of independent random interarrival times used
for the results in Fig. 1. The bandwidth estimated by
Westwood 3, shown in Figs. 5a and 5b, is improved with
respect to Westwood 2 (see Fig. 1). However, the estimate is
still biased.

It is important to note that, no matter how sophisticated

the filter implementation, directly filtering the bandwidth

samples can, in any case, result in a biased estimate, as is

proven in the following.
Let L and T be the random variables representing the

number of bits acknowledged by the ACK and the

interarrival time between consecutive ACKs, respectively.
The algorithm directly filtering the bandwidth samples

considers the random variable Z ¼ L
T and evaluates its

expected value. Since L and T are statistically independent,

E½Z� ¼ E½L� � E½1T �. To compute E½1T �, we expand the func-

tion fðT Þ ¼ 1
T about the point E½T �. E½Z� is then given by:

E½Z� ¼ E½L� �
Xþ1

n¼0

ð�1Þn E½ðT � E½T �Þn�
ðE½T �Þnþ1

¼ E½L�
E½T � þ E½L� �

Xþ1

n¼2

ð�1Þn E½ðT � E½T �Þn�
ðE½T �Þnþ1

;

ð2Þ

where the first term, E½L�=E½T �, represents the average

bandwidth used by the TCP source. The second term

represents the bias whose entity is dominated by the
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Fig. 3. TCP Westwood: estimated bandwidth in the presence of ACK

compression. Two connections cross a 2 Mbit/s link in opposite

directions.
Fig. 4. Link utilization of TCP Westwood and TCP Reno sources sharing

the same 10 Mb/s link.

Fig. 5. Westwood 3 filter: estimated bandwidth values with constant packet length equal to 1,000 bytes and random independent interarrivals

(a) exponentially distributed and (b) Rayleigh distributed. The dotted lines represent the correct bandwidth estimate.



variance of T , usually quite high due to ACK clustering.
The region of convergence of the series (2) is [0,2E[T]].

As an example, Fig. 6 shows a simple and typical situation
where eachACKacknowledges a constant number of bits,Lp,
and the ACK arrivals follow a periodic pattern.

The average bandwidth used by the connection is given
simply by E½L�=E½T � ¼ 2Lp=3Tp, while E½Z� ¼ ðLp=T1 þ
Lp=T2Þ=2 = ðLp=Tp þ Lp=2TpÞ=2 ¼ 3Lp=4Tp, that is higher
than the bandwidth really used. The bias value, Lp=12Tp, is
very well approximated by the first term obtained for n ¼ 2,
equal to 2Lp=27Tp.

2.2.4 Core Stateless Fair Queueing Estimation

Algorithm

A nonlinear technique to estimate bandwidth directly from
bandwidth samples was first used in the Core Stateless Fair
Queueing estimation algorithm (CSFQ) [21], that was
originally designed to run on IP routers.

We implemented this algorithm at the sender-side of a
TCP connection and found appealing results even when
performed end-to-end. It was then implemented at the TCP
level, filtering the rate of returning ACKs and then setting
the ssthresh according to (1) after congestion events.

The bandwidth estimation algorithm is described by the
following equation:

Bwe½k� ¼ ð1� e
�T ½k�
K Þ � L½k�

T ½k� þ e
�T ½k�
K �Bwe½k� 1�; ð3Þ

where Bwe is the low-pass filtered estimated bandwidth,
L½k� is the number of bytes acknowledged by the last ACK,
T ½k� is the last ACK interarrival, L½k�=T ½k� is the instanta-
neous rate of the ACK stream, and K is a time constant (in
[21] it is recommended to chooseK in the range between 0.1

and 0.5 seconds). Note that k and k� 1 represent the actual

and the previous values of the variables.
We simulated the CSFQ estimate algorithm referring to

the usual scenario with 10 TCP connections sharing a

10 Mb/s channel and further assumed that a 5 Mb/s UDP

flow is active in the time interval between 300 and

400 seconds. The one-way propagation delay is equal to

50 ms, and the queue is able to contain a number of packets

equal to the bandwidth-delay product.
The time traces of the estimated bandwidth for K ¼ 0:5s

and K ¼ 20s are shown in Fig. 7, together with the fair-

share value represented by the dotted line. Although the

estimate is not accurate the bias is negligible.
A comparison of the results in the two cases highlights a

trade off between estimate stability and time responsive-

ness. The estimate oscillations reduce drastically as K

increases, however, time responsiveness to network

changes becomes weak for large values of K, e.g., for

K ¼ 20s, the bandwidth variation due to the UDP flow is

estimated too late (Figs. 7a and 7b).
The importance of unbiased estimates for TCP conges-

tion control has been confirmed by the results (not reported

for the sake of brevity) of mixed scenarios with TCP Reno,

where there was better fairness than TCP Westwood even

with small values of K.

3 TIBET

In this section, we present TIBET (Time Intervals based

Bandwidth Estimation Technique) [5], a new technique that

correctly estimates the bandwidth used by the TCP source,

even in the presence of packet clustering and ACK

compression. TIBET also enables the TCP connections to

track changes in the available bandwidth quickly.
To explain the rationale of TIBET, let us refer to the

example in Fig. 8, where transmissions occurring in a

period T are considered. Let n be the number of packets

belonging to a connection and L1; L2 . . .Ln the lengths, in

bits, of these packets. The average bandwidth, Bw, used by

the connection is given by
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Fig. 6. ACK’s arrival pattern.

Fig. 7. CSFQ bandwidth estimation with (a) K = 0.5 seconds and (b) K = 20 seconds.



Bw ¼ 1

T

Xn
i¼1

Li ¼
nL

T
¼ L

T
n

: ð4Þ

The estimate of the average bandwidth can be obtained

by performing a runtime sender-side estimate of the

average packet length, L, and the average interdeparture

time, T
n, separately. As shown when studying Westwood,

this approach is not affected by any bias. Moreover, since

intervals greater than one Round Trip Time are used to

estimate the average interdeparture time, TIBET is not

affected by interdeparture times T close to zero as usually

happens when TCP sources transmit a group of packets.

Note that algorithms like TCP Westwood use bandwidth

samples and are therefore affected by such short inter-

departure times.

3.1 Estimation Scheme

The bandwidth estimation scheme can be applied either to
the stream of transmitted packets or the stream of received
ACKs. The pseudocode of the algorithm applied to the
stream of transmitted packets is:

if (Packet is sent)

sample_length[k] = (packet_size*8);

sample_interval[k] = now - last_sending_time;

Average_packet_length[k] =

alpha*Average_packet_length[k-1]

+ (1-alpha)*sample_length[k];

Average_interval[k] = alpha*

Average_interval[k-1]

+ (1-alpha )*sample_interval[k];

Bwe[k] = Average_packet_length[k]/

Average_interval[k]

endif

where packet_size is the segment size in bytes, now is the
current time, last_sending_time is the time of the previous
packet transmission, and k and k-1 indicate the current and
previous values of the variables. Average_packet_length and
average_interval are the low-pass filtered measures of the
packet length and the interdeparture times, respectively.
Alpha (0 � alpha � 1) is the pole of the two low-pass filters.
Bwe is the estimated value of the used bandwidth. The
value of alpha has a critical impact on TIBET performance: If
alpha is set to a low value, TIBET is highly responsive to
changes in the available bandwidth, but the oscillations of
Bwe½k� are quite large. On the contrary, if alpha approaches
1, TIBET produces more stable estimates, and is less
responsive to network changes. After having tested TIBET
on several network scenarios, we reached the conclusion
that alpha equal to 0.99 provides a good compromise
between responsiveness and stability.

The algorithm applied to the stream of received ACKs
differs from the one above only in the expressions used to
calculate sample_length and sample_interval:

sample_length[k] = (acked * packet_size * 8);

sample_interval[k] = now - last_ack_time;

where last_ack_time is the time when the last ACK was
received, and acked is the number of segments acked by
the ACK.

When congestion occurs, cwnd and ssthresh are updated
according to (1), the bandwidth first being estimated by one
of the two above procedures. The overall procedure is
specified by the following pseudocode:

if (3 duplicate ACKs are received)

ssthresh = Bwe * RTT_min

if (cwnd > ssthresh)

cwnd = ssthresh

end if

end if

if (retransmission timeout expires)

ssthresh = Bwe * RTT_min

cwnd = 1

end if

All the results reported in this paper were obtained by
applying the bandwidth estimation scheme to the stream of
transmitted packets.

3.2 Estimation Accuracy and Fairness

The bandwidth estimated by TIBET was measured in a
simulation scenario: 10 TCP connections over a 5 Mbit/s
link and a drop-tail managed bottleneck queue that could
contain a number of packets equal to the bandwidth-delay
product. The measured time trace of the estimated
bandwidth is shown in Fig. 9a.

Although the average value is close to the fair share,
equal to 500 kbit/s, the oscillations are deep, and to smooth
them, and ensure an estimate closer to the right value,
further Bwe sample filtering is proposed:

Bwe½k� ¼ 1� e
�T ½k�
T0

� �
�Average packet length½k�

Average interval½k�

þ e
�T ½k�
T0 �Bwe½k� 1�;

ð5Þ

where T ½k� is the time interval between the last two
estimates and T0 is a time constant (T0 ¼ 1s in our
simulations). Binding the value of the pole to T ½k�, we
perform adaptive filtering: this entails exploiting the
oscillations of the Bwe signal in such a way as to follow
the variations in bandwidth quickly. This filter is basically
the same as that proposed for the CSFQ scheme (see (3)).

With this adaptive filter, the estimate is smoothed,
practically overlapping the fair share curve as shown in
Fig. 9b.

In order to show the accuracy of the TIBET estimation
scheme and compare it with TCPWestwood, we considered
the same sequences of independent random interarrival
times as used in Fig. 1. The bandwidth estimated by TIBET,
Figs. 10a and 10b, is very close to the correct value, shown
by the straight dotted line. The improvement with respect to
Westwood (see Figs. 1 and 5) is remarkable.

We also tested TIBET behavior in a simulated scenario
where a single TIBET source performs a file transfer over a
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Fig. 8. Pattern of packet transmission.



10 Mb/s link, with a RTT of 100 ms, sharing the link with
two UDP ON/OFF sources. The dotted line in Fig. 11a
shows the bandwidth not used at that time by UDP sources,
while the bandwidth estimated by TIBET is represented by
the solid line. The two curves almost overlap, proving the
correctness of the TIBET estimation algorithm and its ability
to follow step variations in the available bandwidth.

We have also considered a scenario with a single TIBET
connection transmitting over a link with capacity equal to
10 Mb/s. Two hundred seconds after the beginning of the
transmission, a UDP source starts transmitting with a
constant bit rate equal to the 95 percent of the link capacity,
thus causing a sudden surge in link traffic. We considered
the behavior of a TIBET source with the bandwidth
estimation scheme applied either to the stream of trans-
mitted packets or to the stream of received ACKs. Fig. 11b
shows the sending rate and the receiving rate estimate
produced by these two different TIBET implementations in
the interval between 190 and 210 seconds. The two rates
differ slightly only for few seconds just after the beginning
of the UDP connection. This is due to the window flow
control strategy of TCP sources that reduce their transmis-

sion rate when acknowledgements return slowly. Therefore,
if there is congestion along the path between the TCP
sender and receiver, the large delays experienced by the
ACKs will cause a natural slowdown of the transmitter data
rate to the actual receive rate.

To better characterize the behavior of the two different
TIBET implementations in this scenario, we have also
measured the number of segments transmitted by each of
them in the same interval around t ¼ 200s. The TIBET
connection estimating the sending rate transmitted a total of
8,592 segments, and the one estimating the receive rate
transmitted only two segments less. A similar behavior has
been observedwhen considering the same network scenario,
with a single TIBET source and 20 TCPReno connections that
start transmitting 200 seconds after the TIBET connection.

A further advantage of TIBET is that its bandwidth
estimate is not affected by the ACK compression effect. To
prove this, let us consider a scenario with a congested
return path the same as that adopted in Fig. 3 for TCP
Westwood; we considered a 2 Mbit/s link with two TCP
connections sending data packets in the two directions. In
the time interval between 40 and 140 seconds both the TCP
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Fig. 9. TIBET bandwidth estimate (a) without adaptive filtering and (b) with adaptive filtering.

Fig. 10. TIBET filter: estimated bandwidth values with constant packet length equal to 1,000 bytes and random independent interarrivals

(a) exponentially distributed and (b) Rayleigh distributed. The dotted lines represent the correct bandwidth estimate.



connections transmit packets, and ACK compression is
observed. The bandwidth estimate shown in Fig. 12 is not at
all affected by the ACK compression, proving the much
higher robustness of TIBET, compared to TCP Westwood
(see Fig. 3).

In our implementation, TCP sources use the estimated
bandwidth only after congestion events. Such a choice is
supported by the poor performance that is evident when
there is frequent updating of ssthresh (the numerical results
are not reported for the sake of brevity). The main reason
for this is that frequent ssthresh updating tends to force the
TCP source into congestion avoidance, preventing it from
following the variations in the available bandwidth.

So far, we have shown that TIBET can actually achieve an
accurate estimate of the used bandwidth. Now, a check
must be made of the TCP sources performance using TIBET
in mixed scenarios where the sources use different TCPs.
For this purpose, we simulated the same scenario as used
for Westwood to obtain the results of Fig. 4, where TIBET
sources substitute TCP Westwood sources. The average
goodputs of TIBET and TCP Reno connections are shown in
Fig. 13a. The goodput achieved by both algorithms is very
close to the fair share for the full range of sources. A
goodput very close to the fair share has been obtained in the

same scenario when TCP Reno connections are activated in
a link already loaded by TIBET connections.

We also extended our simulation campaign to similar
scenarios covering link bandwidths ranging from a few
kbit/s up to 150 Mbit/s, and with a varying number of
competing connections. The results obtained confirm that
TIBET achieves the same level of fairness as TCP Reno. We
further observed that TIBET improves its performance
when the number of connections sharing the bottleneck link
increases, since the estimate variance reduces. Moreover,
the presence of constant rate flows, such as UDP flows for
IP telephony or video conference, causes TIBET to perform
better since packet cluster size is reduced.

From the simulation results related to the scenarios
considered, we can claim that TIBET shows a quite fair
behavior toward TCP Reno, even if a mathematical proof is
not yet available. However, to further support our claim, we
have considered a simple scenario with a 2 Mbit/s link with
round trip time equal to 100 ms shared by a TCP Reno and a
TIBET connection. In Fig. 13b, we report the values of the
TCP Reno instantaneous bandwidth estimate, obtained by
dividing the congestion window value (in bits) by the
current round trip time, and the TIBET bandwidth estimate.
It turns out that TIBET estimate is very close to the average
value of Reno. So, even if TIBET does not simply halve the
window at congestion events, on average, its behavior is
equivalent to that of Reno over error free links. As already
mentioned, the only advantage of TIBET is that of adding
memory to the bandwidth estimate, while keeping the same
average value.

The effectiveness of TIBET in estimating RTTmin in
presence of persistently congested links has been tested by
considering a 10Mb/s channel with 20 active long-lived
TCP Reno connections. In this steady-state condition, a
single TIBET connection becomes active. The estimate of
RTTmin, whose real value is 100 ms, starts from 200 ms,
reduces to 130 ms after 1.5 seconds and reaches 105 ms in
80 seconds. In general, the estimate of RTTmin will converge
to the real value if the queues along the path have a
stationary behavior and, therefore, their busy periods have
a finite length. However, the convergence rate can be very
slow, especially when the network is persistently congested
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Fig. 11. (a) TIBET bandwidth estimate with concurrent UDP traffic with variable rate. (b) Comparison between sending and receive rate over a 10Mb/s

link with a sudden surge of UDP traffic.

Fig. 12. Bandwidth estimated by a single TIBET source over a 2 Mb/s

link in the presence of ACK compression.



by uncontrolled UDP flows. In the presence of TCP flows

only, we expect that the estimate converges to the real value

in a reasonable time as measured in our simulations.
As for every other algorithm using explicit bandwidth

estimate for TCP congestion control, the coarse-grained

clock problem described in Section 2 affects TIBET

performance. To reduce such effects we propose, in TIBET,

the following modified update of RTTmin, to be used when

RTTmin is smaller than the clock granularity:

if (the connection experiences a congestion event)
n ¼ nþ 1

if (n ¼ Ncong)

RTTmin ¼ � � RTTmin

n ¼ 0

end if

end if

where Ncong is the congestion events threshold value and �

(0 � � � 1) represents the reducing factor. To evaluate the

effectiveness of the RTTmin updating algorithm, we

considered the following scenario.

A single TCP source running the TIBET algorithm
transmits over a 10 Mb/s link, with a RTT of 50 ms. In the
40 to 80 second time interval an UDP flow with the same
priority as the TCP source transmits at a data rate of 4Mb/s.
The clock granularity is 500ms, i.e., 10 times greater than the
actual RTT of the connection, therefore also theRTTmin of the
TCP source is set at 500 ms. The estimated bandwidth
obtained by simulation for both versions of TIBET, without
andwith theupdating are respectively shown inFigs. 14a and
14b. In both figures, the dotted line represents the actual
bandwidth.

Without the algorithm (Fig. 14a), the connection is very
aggressive and the link is often congested. With the
algorithm, and assuming Ncong ¼ 5, � ¼ 0:5, the bandwidth
estimate is more accurate, and link congestion is more
effectively controlled (Fig. 14b): the estimate, except for rare
peaks, overlaps the actual value. It can be seen that Ncong

and � are not critical, as their values affect only the time
responsiveness of the algorithm, not the TCP source steady
state behavior.

The improvement, due to the better estimate, was
evident in the average goodput achieved by the TCP
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Fig. 13. (a) TIBET fairness toward TCP Reno over a 10 Mbit/s link. (b) Comparison between TCP Reno current rate and TIBET bandwidth estimate

over a 2 Mbit/s link.

Fig. 14. Bandwidth estimate executed (a) in absence and (b) in the presence of the RTTmin updating algorithm.



connection. When no RTTmin updating is used, the goodput
equals only 1.2Mb/s, but it increases to 5.8Mb/s when the
updating algorithm is implemented.

It is worth noting that the proposed algorithm was not
designed specifically for TIBET, it can be adopted to
improve the performance of any TCP version exploiting
bandwidth estimation algorithms.

Finally, we have measured the performance of various
TCP algorithms when applied to connections with different
RTTs. The considered network scenario, Fig. 15a, includes
10 TCP sources, S1� S5 connected at node N1 and S6�
S10 connected at node N2, that transmit to the destinations
D1�D10, all connected at node N3, through 10Mb/s links
having a one-way propagation delay equal to 25 ms. The
RTT of the sources S1� S5 is equal to 100 ms, while the
RTT of sources S6� S10 is equal to 50 ms.

The average goodputs, expressed in kbit/s, achieved by
the connections of nodes N1 and N2 when using TCP Reno,
TIBET, and TCP Sack are shown in Fig. 15b. TIBET,
similarly to Westwood studied in [22], achieves better
fairness between connections having different round trip
times.

4 WIRELESS LINKS

So far, this paper has looked at the accuracy of bandwidth
estimation algorithms and the performance of TCP sources
over error-free links. However, as such algorithms are
mainly designed to achieve high throughput in the presence

of links affected by random errors, a study was made of the
performance of these algorithms over wireless links.

In order to measure TIBET performance, and compare it
with other TCP versions, we considered several scenarios
with two different types of connection: the long-lived TCP
connections, typical of FTP file transfers, and short-lived
connection, typical of HTTP connections. In the following,
we present and discuss the results obtained by simulation.

4.1 Long-Lived TCP Connections

For long-lived TCP connections performing FTP transfers,
we considered four link scenarios with 5 and 10 Mbit/s
capacity. The Round Trip Time is equal to 100 ms and the
queue can contain a number of packets equal to the
bandwidth-delay product. Independent errors occur at
random, causing a packet error rate in the 10�5 to 10�1

range. For each channel, we measured the steady state
goodput obtained by TCP Reno, TCP Vegas, TIBET, and
TCP Westwood. The results are shown in Fig. 16.

It can be seen that, for all packet error rates and at all link
speeds, TIBET achieves higher goodput than TCP Reno.
This is due to the filtering process that takes the past history
of the connection into account, preventing, most of the time,
confusion between real network congestion signals due to
queue overflow and signals due to link errors. In order to
provide a more complete comparison, we also analyzed the
performance achieved by TCP NewReno [23] and TCP Sack
[24]. Their goodputs are not shown since, in the range of
considered packet losses, they practically overlap the
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Fig. 15. (a) Network topology with differential Round Trip Times across the connections and (b) goodput achieved (kbit/s) by TCP Reno, TCP Sack,

and TIBET in this topology.

Fig. 16. Various TCP implementations’ goodput versus packet error rate over a (a) 5 Mbit/s link and (b) 10 Mbit/s link.



goodput of TCP Reno, in agreement with what was pointed

out in [25], [26].
The TIBET and TCP Vegas goodputs are very close: for

small packet error rates, TIBET achieves the higher good-

put, however, also, TCP Vegas shows almost the same

performance for high link capacities and high packet error

rates.
To account for the effects of multipath fading typical of

wireless environments, we also investigated the behavior of

TIBET and TCP Reno in the presence of links affected by

correlated errors.
From the existing literature [27], we modeled the

wireless link state (Good or Bad) with a two-state Markov

chain. We considered two different scenarios with wireless

link capacities equal to 5 and 10 Mb/s, a Round Trip Time

equal to 100 ms, and an average duration of good and bad

states equal to 1 and 0:05 seconds, respectively. In the good

state, no packet loss occurs, while, in the bad state, the

packet error rate varies from 0 to 50 percent to take into

account various levels of fading. It can be seen from Fig. 17

that, also in this case, TIBET obtains a goodput higher than
TCP Reno.

In all the considered scenarios, TCP Westwood obtained
a higher goodput than any other TCP version. This is due to
its overestimate of the available bandwidth that has the
drawback of leading to aggressive behavior and unfair
sharing of network resources, with respect to TCP Reno in
wired links, as previously shown in Section 2.

4.2 Mixed Wired and Wireless Networks

To measure TIBET’s performance in a more realistic
scenario, we have considered the mixed wired/wireless
network shown in Fig. 18a with four TCP connections
traversing multiple wired links as well as a wireless link
affected by independent random transmission errors. A
cross-traffic, generated by 30 UDP connections between
nodes N2 and N4, shares the bottleneck channel between
N3 and N4 with the TCP traffic. Each UDP source switches
between ON and OFF periods, whose durations are Pareto
distributed with shape parameter equal to 1.5 and mean
durations equal to 100 ms and 200 ms, respectively. During
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Fig. 17. TIBET, TCP Westwood, and TCP Reno goodput achieved over a link with capacity (a) 5 Mb/s and (b) 10 Mb/s, affected by correlated losses,

as a function of the packet error rate in the Bad state.

Fig. 18. (a) Mixed wired-wireless multihop network topology. (b) Goodput achieved by TIBET, TCP Westwook, TCP Reno, and Ideal TCP as a

function of the packet error rate.



the ON period, each source transmits packets with

1,500 byte size at constant bit rate equal to 0.5 Mbit/s;

while in OFF period, the UDP sources transmit no packet.
Fig. 18b shows the goodput achieved by the TCP

connection S1�D1 versus packet error rates and for

different TCP versions. We observe that, even in this more

complex scenario, TIBET achieves a higher goodput than

TCP Reno, especially when the packet error rate increases.

4.3 Effect of Link Layer ARQ: The 802.11 Case

The scenario shown in Fig. 19a has been used to test TIBET

performance over a link layer exploiting ARQ, with a

mobile host (MH) transmitting to a fixed host (FH) through

an access point (AP ) using the Wireless LAN 802.11

protocol.
The wireless channel includes a power loss due to

shadowing, modeled as a log-normal random variable with

standard deviation equal to 4 dB and a path loss with

distance exponent equal to 3. According to the 802.11

standard, the link rate is 11 Mb/s, the channel probing

phase RTS/CTS (Request To Send/Clear To Send) is

enabled, and the maximum number of retransmission of

the ARQ level is set to 4. All other parameters of the mobile

host and the access point were configured according to

default values as proposed in the Monarch extensions to NS

[28]. In this scenario, the effect of the wireless channel is

mitigated by the ARQmechanism that, however, introduces

some delay jitter and cannot recover all losses due to the

limited number of consecutive retransmissions.
The goodputs achieved by different TCP sources as

function of the distance between the mobile host and the

access point, see Fig. 19b, show a slight improvement of

TIBET over TCP Reno.

4.4 Short-Lived TCP Connections

To study short-lived TCP connections, we considered, in

line with the literature [29], a typical HTTP connection

involving the transfer of a 10 kbyte file over a 5 Mb/s link

affected by a 5 percent random packet loss, with a 100 ms

Round Trip Time. We simulated several transfers and

measured the duration of each file transfer.

The average time to complete the transfer was 3:85s for
TIBET and 3:9s for TCP Reno, NewReno and Sack. Hence,
for short file transfers, TIBET achieves the same results as
the current TCP versions.

4.5 Throughput Upper Bound

Having proved the advantage of TIBET over Reno, let us
now address the issue of just how far the performance of
TIBET is from the upper bound of all possible schemes
exploiting the new bandwidth estimation approach. Such
an upper bound is obtained by assuming an Ideal TCP that
sets cwnd and ssthresh through knowledge of the exact
bandwidth available along the path (Exact Available Bw)
and the exact round trip time (Exact RTT ) of the connec-
tion. The exact available bandwidth is equal to the link
bandwidth, minus the transmission rate of UDP sources,
divided by the total number of TCP connections sharing the
link. This TCP source is ideal, as real bandwidth estimation
algorithms implemented at TCP sources can only measure
the used bandwidth, i.e., the transmission rate of the
connection, that can be very different from the bandwidth
available to the connection, especially over links affected by
random losses.

Ideal TCP reacts to congestion signals by changing cwnd
and ssthresh according to the TIBET algorithm described in
Section 3:

if (3 duplicate ACKs are received)

ssthresh = Exact_Available_Bw * Exact_RTT

if (cwnd > ssthresh)

cwnd = ssthresh

end if

end if

if (retransmission timeout expires)

ssthresh = Exact_Available_Bw * Exact_RTT

cwnd = 1

end if

The throughput achieved by this ideal scheme was
obtained by simulation, and is shown by the dotted curves
in Figs. 16 and 18b. The high goodput degradationmeasured,
even with the Ideal TCP, at high error rates proves that such
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Fig. 19. (a) Mixed wired-wireless 802.11 network topology. (b) Goodput achieved by TIBET, TCP Westwood, and TCP Reno in this topology.



losses are unavoidable and do not depend on the estimation

algorithm used.
Note that, for high error rates, the goodput achieved is

practically independent of channel bandwidth.

4.6 Implementation and Test Bed

To get more details on the TIBET implementation, we have
built a test bed, shown in Fig. 20a, that consists of a PC
server, a client, and a PC router, all connected by 10 Mb/s
LAN cables. In the PC server, besides the TCP NewReno
that is the current TCP implementation in the Linux kernel
version 2.2-20, we have implemented both TIBET and TCP
Westwood. The PC router emulates a wireless link with the
desired delay and packet loss rate using the NIST Net
software [30].

Running the test bed, we measured the goodputs
achieved by the three TCP versions. Fig. 20b compares the
steady-state goodput achieved by TIBET, TCP Westwood,
and TCP NewReno connections transmitting data between
the server and the client, with an emulated round trip time
equal to 100 ms versus packet loss rates.

The measures on this real scenario validate the results
obtained by simulation (see Fig. 16b) and provide a further
support on the advantages of TIBET over TCP NewReno.

Note that, in this scenario, as well as in all the simulated
scenarios presented in this section, TCPWestwood obtained
a higher goodput than any other TCP version. Again, this
behavior is due to its overestimate of the available
bandwidth, that leads to aggressive behavior and unfair
sharing of network resources.

5 CONCLUSIONS

In this paper, we have discussed and analyzed issues
related to the use of enhanced bandwidth estimation
algorithms for TCP congestion control. These algorithms,
differently from that used in TCP Reno, add memory,
considering the past history of the connection when a
congestion event occurs. Such algorithms have the potential
to improve the TCP throughput over wireless links as the
available memory enables a lessening of the impact of
channel loss.

However, for smooth adoption into the Internet, these
new versions of TCP must achieve fair behavior when used
with TCP Reno over wired links. We have discovered that a
key to achieving a fair behavior is to base the TCP operation
on an unbiased and accurate bandwidth estimate.

Thus, for real network scenarios, we studied the
problems any algorithm must face to obtain an accurate
estimate, and evaluated the performance of the schemes
proposed in the literature.

Regrettably, we found that such schemes are often
unable to give accurate estimates, and that, over wired
links, this lack of accuracy leads the TCP sources to an
unfair resource sharing with TCP Reno. To overcome this
problem, we now propose a new algorithm, TIBET, that
enables TCP to achieve both a higher throughput over
wireless links and fair behavior over wired links. The
performance of this new algorithm has been compared with
that of other existing TCP, and it has been found that
significant improvement is obtained using TIBET.

We also defined an ideal scheme that assumes the exact
value of the bandwidth, and that provides, for all possible
schemes based on the estimation approach, an upper bound
to the throughput.

Although there is still room for improvement in TCP
performance, the above mentioned bound shows that the
throughput degradation in noisy channels is unavoidable
and that the main factor limiting performance is random
packet loss.
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