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Abstract. Many bandwidth estimation techniques, somehow related to
the TCP world, have been proposed in the literature and adopted to
solve several problems. In this paper we discuss their impact on the con-
gestion control of TCP and we propose an algorithm which performs
an explicit and effective estimate of the used bandwidth. We show by
simulation that it efficiently copes with the packet clustering and ACK
compression effects without leading to the biased estimate problem of ex-
isting algorithms. We present numerical results proving that TCP sources
implementing the proposed scheme with an unbiased used-bandwidth es-
timate fairly share the bottleneck bandwidth with classical TCP Reno
sources. Finally, we point out the benefits of using the proposed scheme
compared to TCP Reno in networks with wireless links.

1 Introduction

The Transmission Control Protocol (TCP) is based on the assumption that the
network does not provide any explicit feedback to the sources. Therefore each
source must form its own estimates of the network path properties, such as round-
trip time (RTT) or usable bandwidth, in order to perform efficient end-to-end
congestion control.

The TCP congestion control has actually the twofold aim to prevent conges-
tion events and achieve a fair share of bandwidth among different connections.
Therefore, according to the guidelines in [1] and [2], it’s worth to define the
available bandwidth as the maximum rate at which a TCP connection, exercis-
ing correct congestion control, should ideally transmit, and the used bandwidth
as the rate at which the source is actually sending data.

The most widely deployed TCP implementations (TCP Reno and its exten-
sions as SACKS [3] or New Reno [4]) do not explicitly estimate the available
bandwidth. Instead, the end-systems maintain two state variables to regulate
the transmission rate: the congestion window (cwnd), which usually determines
the transmission window, and the slow start threshold (ssthresh) that marks
the cwnd value which discriminates between the slow-start and the congestion
avoidance phases. At the beginning of the connection, as the ssthresh is set to
a big value, the source exponentially increases the number of packets in flight
(slow start) until the network drops packets, thus signaling congestion. In re-
sponse to congestion TCP Reno sets the ssthresh to one half of the bytes in
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flight, and rapidly enters congestion avoidance phase during which the cwnd is
linearly increased.

In [5] it has been shown that the general scheme of additive increase and
multiplicative decrease (AIMD), on which the congestion control scheme of the
TCP is based, leads to a fair share of the network bandwidth among different
connections in an ideal scenario where all TCP connections take decisions in a
synchronized fahion. So, ideally, the ssthresh gives an implicit estimate of the
available bandwidth and the congestion avoidance is used to gently probe for
extra bandwidth.

Unfortunately, it is well known that in real scenarios TCP Reno fails to
achieve fair allocation of the bandwidth among connections sharing the same
bottleneck when the connections experiment different conditions on the end-to-
end path (as for example path delays). For these reasons the ssthresh can be
considered as an implicit estimator only of the used rather than the available
bandwidth.

Moreover, in TCP Reno, the implicit bandwidth estimate is strictly depen-
dent on the congestion control events experienced by the connection. Therefore,
as TCP Reno actually does an implicit estimate of the bandwidth it is using,
we may ask whether it is worth performing an explicit run-time estimate of the
used bandwidth and how this estimated value can be used by the congestion
control scheme.

Various bandwidth estimation techniques, somehow related to the TCP world,
have been proposed in the literature and adopted to solve different problems
[2,6,7,8,9,10,11]. In this paper we first review these techniques pointing out their
impact on the behavior of the TCP congestion control (Section 2). We then pro-
pose an algorithm which performs an explicit and effective estimate of the used
bandwidth and show by simulation that it efficiently copes with the packet clus-
tering and ACK compression effects without leading to the biased estimate prob-
lem of the algorithm proposed in [10,11] (Section 3). We show, however, that the
best way to use the estimated value is to set the ssthresh to the byte-equivalent of
the bandwidth/delay product only after congestion events as proposed in [10,11].
Moreover, we present numerical results proving that TCP sources implement-
ing the proposed scheme with an unbiased used bandwidth estimate fairly share
the bottleneck bandwidth with classical TCP Reno sources provided that the
end-to-end path conditions are the same. Finally, we point out the benefits of
using the explicit used bandwidth estimate compared to the implicit bandwidth
estimate of TCP Reno when wireless links are on the path.

2 Estimation Techniques

In a classical IP architecture, to provide best effort service the network resources
must be shared by all flows in an as fair as possible way. A centralized controller
could in principle regulate the rate of all flows to ensure fairness based on the
knowledge of the number of flows and the routing paths. However, a central
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controller is unfeasible and too far from the IP philosophy, so the network must
somehow estimate the bandwidth availability in a distributed way.

In Core Stateless Fair Queing (CSFQ) scheme [6], bandwidth estimate is
performed at the IP router level. The router, knowing the bandwidth Bk of
its k-th outgoing link and the number nk of active flows by means of packet
classification, estimates by Bk/nk the bandwidth available to each flow. Through
a run-time estimate of the bandwidth actually used by each flow, the router can
decide to drop packets belonging to connections using bandwidth in excess, i.e.
connections sending at a rate greater than the available bandwidth Bk/nk. This
approach has been shown to solve problems of unfairness among connections
having different round trip times, and can be the basis for mechanisms designed
to regulate non TCP-friendly or unresponsive flows [12].

CSFQ has the great advantage of forcing flows to fairly share bandwidth
even when the congestion control mechanism of the transport protocol is not
accurate. However, it requires relevant modifications in the IP routers and it
cannot be easily deployed over the Internet.

If only the end-systems are in charge of the rate regulation without any
explicit support from the network, some kind of bandwidth estimate must be
performed at the TCP level. Explicit bandwidth estimation algorithms have been
proposed to be used by the TCP sources at the beginning of the connection. Their
main goal is to set the first value of the ssthresh in order to mitigate the effect
of multiple losses due to the high default value commonly used [7]. Though the
ssthresh should be set to the available bandwidth, most of the proposed schemes
estimate the bottleneck bandwidth, a quantity which can be more easily tracked
by analyzing the timing structure of received acknowledgments (ACKs). The
“Packet Pair” algorithm [8] is based on the assumption that if two packets are
sent with closely spaced timing, the interarrival time of the ACKs strictly reflects
bottleneck bandwidth. However, as shown in [1], this technique performs poorly
if implemented at the sender side, mainly due to the ACK compression [13]
which alters the ACK spacing. Some variants of “Packet Pair” consist in tracking
“Closely Spaced ACKs” (CSAs) [2,7].

A more sophisticated bandwidth estimation scheme which runs throughout
the connection has been adopted in TCP Vegas [9]. While TCP Reno relies on
packet losses in order to estimate the available bandwidth of the network, TCP
Vegas estimates the available bandwidth of the network based on the difference
between the expected and the actual flow rate. The expected and actual rates
are given by cwnd/baseRTT and cwnd/RTT , respectively, where baseRTT is
the minimum RTT ever recorded by the TCP source and RTT its last value.
By this mechanism, when the network is not congested, the actual flow rate is
close to the expected one, while, when network is congested, the actual rate is
smaller than the expected flow rate.

TCP Vegas builds over this explicit and continuous bandwidth estimate a
new congestion control scheme which leads to convergence of the congestion
window to an equilibrium point. It has been shown, however, that even TCP
Vegas fails to obtain a fair allocation of bandwidth especially in an heterogeneous
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environment. Moreover, it is known that TCP Vegas is greatly penalized by the
aggressive nature of TCP Reno, and so it receives very little bandwidth while
Reno easily captures the rest [14]. Even the use of RED gateways [15], while
bettering the situation, fails to fill the gap between Reno and Vegas. Finally,
in [16] it has been pointed out that even in a homogeneous environment, TCP
Vegas may fail to achieve fairness, fundamentally due to the convergence to fixed
but different values of the cwnd parameters of competing connections.

TCP Westwood, recently proposed in [10,11], performs an estimate of the
available bandwidth by measuring the returning rate of acknowledgments, and
uses this estimate to set the ssthresh and the cwnd after congestion events such
as the receipt of three duplicate ACKs or coarse timeout expirations. TCP West-
wood uses this faster recovery mechanism to avoid the blind halving of the send-
ing rate as in TCP Reno after packet losses. Therefore, this explicit bandwidth
estimation scheme has a deep impact over the performance of TCP Westwood
sources, especially in presence of random, sporadic losses typical of wireless links
or with paths with high bandwidth/delay product.

The bandwidth estimation algorithm performed by TCP Westwood as re-
ported in [11] is described by the following pseudocode:

if (ACK is received)
sample_BWE[k] = (acked * pkt_size * 8)/(now - lastacktime);
BWE[k]= beta*BWE[k-1] + (1 - beta)*(sample_BWE[k] +

sample_BWE[k-1])/2;
endif

Here, acked indicates the number of segments acked by the latest ACK,
pkt size indicates the segment size in bytes, now indicates the current time,
lastacktime indicates the time the previous ACK was received, k and k-1 indicate
the current and previous value of the variables, BWE is the low-pass filtered
measure of the available bandwidth, and beta is the pole used for the filtering
(in [11] a value of beta = 19/21 is suggested).

The basic idea of the proposed scheme is to low-pass filter the bandwidth
signal to obtain an accurate estimate of the bandwidth not affected by spo-
radic losses. Unfortunately, filtering directly the samples of BWE presents some
drawbacks when the packet interarrivals are significantly different. The example
depicted in Figure 1 shows a simple and typical situation where this scheme fails
to correctly estimate the bandwidth:
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Here L is the packet length expressed in bits, Tp the time interval between
contiguous packets, T the total observed time. The bandwidth used by the con-
nection is 4L

T , and for simplicity T = 9 ∗ Tp. The algorithm above, however,
estimates approximately the value 7L

T , as it averages the rates. By filtering we
extract the average value of the rate, which is different from the used bandwidth.
To be slightly more rigorous let the random variables Y and X represent the
packet length and the interarrival time respectively. The average rate is given
by:

E[
Y

X
] = E[Y ] ∗ E[

1
X

] (1)

being X and Y independent. This value is in general different from the used
bandwidth which is given by µy/µx, where µx = E[X] and µy = E[Y ]. If we
expand the function 1/X around the value µx, up to the third term, we obtain:

E[
Y

X
] ≈ µy ∗ [

1
µx

+
σx

2

µx
3 ] (2)

where σx
2 = E[(X−µx)2]. Even if the validity of the expression (2) is limited

due to the approximations, it shows that the estimate is biased and the error
depends on the variance of the interarrivals.

Figure 2 shows the bandwidth estimated by one of 20 TCP Westwood con-
nections performing the rate estimation algorithm and sharing the same 10 Mb/s
bottleneck. Similar curves are observed for the other connections. The bottleneck
queue was designed to hold a number of packets equal to the bandwidth/delay
product. The one-way-RTT was 50 ms, the test lasted 600 simulated seconds
to simulate an FTP session, and beta was set to 0.995. These results as all the
others presented in this paper were obtained using the Network Simulator, ’ns’
ver.2 [17]. To provide a comparison, the dotted line represents the bandwidth
estimated by a TCP Reno source running the DFT algorithm we propose and
describe in detail in the next section. Since the fair-share value is 500 kb/sec,
while TCP Westwood algorithm estimates more than 8 Mb/s we conclude that
variance of packet interarrivals is quite large.

The interarrivals would be almost regular if packets belonging to different
connections could alternate on the channel. On the contrary, it has been shown
that TCP transmissions tend to be clustered so that on a channel we usually
observe many consecutive packets of the same connection [13]. Note that the
bias on the bandwidth estimate does not depend on the value beta chosen for
the pole of the IIR filter. It’s easy to understand that any fixed value of the pole
leads to the same problem.

Filtering directly the rate measured considering the ACK arrival times also
exposes the algorithm to the phenomenon of the ACK compression. This hap-
pens when the time spacing between returning ACKs is altered due to congestion
of the routers on the return path. As one or more ACKs spend some time in the
queue of the congested router in the reverse path, subsequent ACKs may reach
each other and their original spacing is lost. It has also been shown that ACK
compression is quite relevant for real networks operation [18], and therefore it
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Fig. 2. Bandwidth estimated by TCP Westwood

cannot be neglected. To evaluate the impact of the ACK compression on the al-
gorithm we have considered a scenario with two connections sharing the same 10
Mb/s bottleneck link, but transmitting data in opposite directions, as described
in [13]. The end-to-end propagation delay was 100 ms, and the bottleneck queue
could contain a number of packets equal to the bandwidth/delay product. The
two routers at each end of the bottleneck are therefore charged with both pack-
ets from one connection and ACKs of the other, thus leading to the situation
of ACK compression described before. The results show that the impact on the
estimate of TCP Westwood is dramatic since the estimate is about 25 times
higher than that shown in Figure 2.

Finally, we point out that an algorithm implemented in the TCP source
according to the TCP Westwood approach can estimate the used bandwidth and
not the available bandwidth. Therefore, the benefits of the new scheme are not
due to the estimate of the available bandwidth which cannot be estimated end-
to-end, but on the possibility to explicitly estimate the used bandwidth taking
into account the short-medium term history of packet arrivals. Moreover, the
bandwidth which the algorithm tries to explicitly estimate is the same implicitly
considered by TCP Reno and reflected by the ssthresh in steady-state conditions.
So, if the estimate is accurate enough we expect that the bandwidth used by
TCP Reno and by a TCP exploiting a bandwidth explicit estimate are almost
the same. This can provide a fair behavior in homogeneous (all sources using the
algorithm) and heterogeneous scenarios (with also classical TCP Reno sources).
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3 Double Filtering Technique

In this section we present a new technique, the Double Filtering Technique
(DFT), which using the basic idea of TCP Westwood succeedes to obtain correct
estimates of the bandwidth used by the TCP source.
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Fig. 3. Packet timing structure

To explain the rationale of DFT let us refer to the example in Figure 3 where
transmissions occurring in a period T are considered. Let n be the number
of packets belonging to a connection and L1, L2...Ln the lengths, in bits, of
these packets. The average bandwidth used by the connection is simply given
by 1

T

∑n
i=1 Li. If we define L = 1

n

∑n
i=1 Li, we can express the bandwidth (Bw)

occupied by the connection as:

Bw =
nL

T
=

L
T
n

(3)

The basic idea is to perform a run-time sender-side estimate of the average
packet length, L, and the average interarrival, T

n , separately. Following the TCP
Westwood approach this can be done by measuring and low-pass filtering the
length of acked packets and the intervals between ACKs’ arrivals. However, since
we want to estimate the used bandwidth we can also low-pass filter directly the
packets’ length and the intervals between sending times.

Note that sending time intervals can be very very short when groups of
packets are generated by TCP sources. However, this is not a problem for DFT
since the estimate is performed directly on the interarrival samples. Different
would be the case for algorithms that filter the bandwidth samples, such as
TCP Westwood, since these samples are close to infinity.

The pseudocodes of the two bandwidth estimation schemes are the following:
1)Processing the stream of sent packets:

if (Packet is sent)
sample_length[k] = (packet_size * 8);
sample_interval[k] = now - last_sending_time;
Average_packet_length[k] = alpha * Average_packet_length[k-1] +

(1-alpha)*sample_length[k];
Average_interval[k] = alpha * Average_interval[k-1] +

(1-alpha )* sample_interval[k];
Bwe[k] = Average_packet_length[k] / Average_interval[k]

endif
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where packet size indicates the segment size in bytes, now indicates the cur-
rent time, last sending time the time the previous packet was sent, k and k-1
indicate the current and previous values of the variables. Average packet length
and average interval are the low-pass filtered measures of the packet length and
the interval between sending times. Alpha is the pole of the two low-pass filters.
Bwe is the measure of the available bandwidth.

2)Processing the stream of received ACKs:

if (Packet is received)
sample_length[k] = (acked * packet_size * 8);
sample_interval[k] = now - last_ack_time;
Average_packet_length[k] = alpha * Average_packet_length[k-1] +

(1-alpha)*sample_length[k];
Average_interval[k] = alpha * Average_interval[k-1] +

(1-alpha )* sample_interval[k];
Bwe[k] = Average_packet_length[k] / Average_interval[k]

endif

where the quantities are the same as before. Here, acked indicates the num-
ber of segments acked by the latest ACK. In order to compute this value, the
algorithm shown in [11] must be used.

If we consider the minimum RTT measured by the TCP source (RTTmin) as
a good estimator of the end-to-end propagation delay, then we can set:

Ssthresh = Bwe ∗ RTTmin (4)

The ssthresh is set to the value of equation (4) only after three duplicate
ACK’s, or after a coarse-grained timeout expiration, following the guidelines
of [11].

Simulation results show that DFT is not biased, and obtains bandwidth
estimates which oscillate around the fair-share value when all TCP sources ex-
perience almost the same path conditions. In order to smooth these oscillations
and ensure an estimate closer to the right value, we propose to further filter the
value of Bwe as follows [6]:

Bwe[k] = (1 − e
−T [k]

T0 ) ∗ Average packet length[k]
Average interval[k]

+ e
−T [k]

T0 ∗ Bwe[k − 1] (5)

where T [k] is the instantaneous time interval between two estimates and T0 is a
time constant we set equal to 1 second in our simulations. By binding the value of
the pole to T [k], we perform an adaptive filtering which exploits the oscillations
of the signal Bwe in order to quickly follow variations in the available bandwidth.

Figures 4a and 4b show the behavior of DFT without and with the filtering
performed by Equation (5), respectively. For both the figures the scenario con-
sists of a single TCP connection running over a 10 Mb/s link. In the interval
between 200 and 300 seconds, an UDP flow, having the same priority as TCP,
transmits at a rate of 4 Mb/s. Then, in the interval between 300 and 400 seconds,
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Fig. 4. DFT bandwidth estimate (a) without adaptive filtering (b) with adaptive fil-
tering

another UDP flow starts transmitting at 2 Mb/s. The bottleneck queue, man-
aged with a drop-tail policy, was designed to contain a number of packets equal
to the bandwidth/delay product, and the simulation lasted 600 simulated sec-
onds. In Figure 4a, the oscillations are evident, even if the estimate is unbiased.
Moreover, the algorithm adapts slowly to changes in the bandwidth available
to the connections. In Figure 4b, instead, the oscillations have been smoothed,
and the estimate follows more quickly bandwidth variations in the underlying
network.

Following the approach in [11] we set the ssthresh to the estimated value
only after congestion events. This choice is supported by the worst performance
observed with more frequent updating of the ssthresh value as shown in Figure 5.
The scenario and the parameters considered are the same as in Figure 4, but the
ssthresh is continuously updated. We observe that the estimate is not accurate
mainly because the continuous updating of the ssthresh to the estimated used
bandwidth value forces the source in the congestion avoidance phase and prevents
to follow available bandwidth variations. Similar results have been obtained with
a periodic updating with period equal to 0.5 s.

Figure 6 compares the performance of DFT algorithm (the version filtering
the stream of sent packets), and the TCP Reno, referring to a simulation scenario
that considers 10 connections sharing a single bottleneck link of 10 Mb/s with
an end-to-end delay of 100 ms. The buffer contains a number of packets equal
to the bandwidth/delay product, and FIFO queueing management is adopted,
to test DFT even in absence of a somewhat fair queueing. Several simulations
have been run and the results have been averaged in order to eliminate phase
effects [19]. We have numbered the connections from 1 to 10: the first 5 used DFT
algorithm, the other 5 TCP Reno. We observe that an almost fair division of the
link has been obtained and both algorithms use almost the same bandwidth.
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Fig. 5. Bandwidth estimate with continuous ssthresh updates
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We have run also simulations over different scenarios covering link band-
widths ranging from few kb/s to 150 Mb/s, varying the number of competing
connections and using also a more complex topology with multiple congested
gateways. The conclusions obtained are the same: DFT obtains a no worse level
of fairness than TCP Reno. Simulation results also show that the strength of
DFT lies in its scalability: as more connections share the bottleneck link, as the
estimate variance reduces. The presence of constant rate flows, such as UDP
flows for IP telephony or video conference, makes DFT perform better as it
reduces the dimension of packet clusters.
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So far we have proved the accuracy of the DFT algorithm and shown that
TCP sources using this algorithm are fair to other sources. To complete the
performance evaluation we need to verify the ability to achieve high throughput
in presence of links affected by sporadic losses as achieved by TCP Westwood.
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Fig. 7. DFT and RENO throughput vs link error rate

To this purpose, in Figure 7 we compare the throughput achieved by a con-
nection running the DFT algorithm to that of a TCP Reno connection over
a link with random errors. The link has a capacity of 10Mb/s, and the FIFO
queue can contain a number of packets equal to the bandwidth/delay product.
The one-way RTT is 50 ms, and the link drops packets according to a Pois-
son process with average ranging from 0.01% to 1%. We observe that DFT can
sustain higher throughput than TCP Reno at all drop rates considered. This
is due to the filtering process which keeps in account also the past history of
the bandwidth estimates avoiding to confuse network congestion signals due to
queue drops with losses due to link errors.

4 Conclusions

In this paper we proposed the DFT algorithm which performs an explicit and
effective run-time estimate of the used bandwidth of a TCP source. It is based
on separate filtering of both the intervals between sending times of TCP packets
and the packets’ lengths.

Following the approach of TCP Westwood, we used the estimate to set the
ssthresh after congestion events. We proved by simulation that the accuracy of
the estimation algorithm allows the proposed scheme to be fair with TCP Reno
connections sharing the same bottleneck channel. As a result it is suitable to be
gracefully adopted in the IP world with no coexistence problems. In addition
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the new scheme, differently from TCP Reno, is effective to cope with channel
random errors as it occurs in wireless environments.
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