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Abstract—
One of the major concerns of optical network operators is

related to improving the availability of services provided to
their highest-class clients through the use of different protection
schemes. However, the majority of the work concerning protection
schemes considered the primary connections as equally important
when contending for the use of the backup resources. As a first
contribution we therefore propose an improvement of the existing
shared protection schemes through the introduction of relative
priorities among the different primary connections contending
for the access to the protection path. Moreover, as a second
contribution, we propose to include a novel service differentiation
parameter, the service disruption rate of a connection, to provide
differentiated services in a WDM mesh network, and we motivate
the use of such a parameter with numerical examples. As a
third contribution, we present a mathematical model for both the
classical protection schemes and for the proposed priority-aware
scheme. As a key distinguishing feature from existing literature
we derive explicit analytic expressions for the average availability
and service disruption rate resulting from the deployment of such
schemes. By solving these models we then evaluate numerically
the benefits of the service differentiation feature introduced in
our scheme as well as the impact of the service disruption rate as
service differentiator.

Index Terms: - Optical Networks, Protection, Mathematical
Models, Quality of Service Provisioning.

I. INTRODUCTION

The revolutionary Wavelength-Division multiplexing
(WDM) technology increases the transmission capacity of
fiber links by several orders of magnitude. As WDM keeps
on evolving, fibers are witnessing a huge increase regarding
their carriage capacity, which has already reached the order
of terabits per second. Therefore, the failure of a network
component (e.g., a fiber link, an optical cross connect, an
amplifier, a transceiver, etc) can weigh heavily on optical
carrier operators due to the consequent huge loss in data and
revenue. To get an estimate of the different optical components
failure characteristics, Table I presents the mean failure rates
and failure repair times of various optical network components
according to Bellcore (now Telecordia) [1], where Failure-
In-Time (FIT) denotes the average number of failures in 109

hours, Tx denotes optical transmitters, Rx denotes optical
receivers, and MTTR stands for Mean Time To Repair.
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Metric Telecordia Statistics
Equipment MTTR 2h
Cable-cut MTTR 12h

Cable-cut rate 501142 FIT/1000 sheat miles
Tx failure rate 10867 FIT
Rx failure rate 4311 FIT

TABLE I
FAILURE RATES AND REPAIR TIMES (TELECORDIA [1])

Two main conclusions may be drawn based on these statis-
tics: the frequency of failure occurrence in optical networks is
not negligible; moreover, cable cut is the dominant failure sce-
nario, compared to Tx and Rx failures, for lengths in the order
of hundreds of kilometers, normally found in backbone optical
networks. With the frequent occurrence of fiber cuts and the
tremendous loss that a failure may cause, network survivability,
together with its impact on network design, becomes a criti-
cal concern for operators who strive to keep up with the com-
petition for broadband traffic transport. Moreover, as WDM
networks migrate from ring to mesh topology, planning a sur-
vivable WDM mesh network has been the subject of extensive
studies [2], [3], [4] leading to the definition of various resilience
approaches. Mainly, there are two types of fault recovery mech-
anisms: protection [5] and restoration schemes [6]. In this pa-
per we focus our study on protection schemes, dealing mainly
with the impact these schemes have on the customer-perceived
service quality which is an emerging topic and of special inter-
est today. We believe that protection, a proactive procedure, is
a key strategy to ensure fiber network survivability.

To the best of our knowledge what still lacks in existing lit-
erature is a systematic methodology to efficiently select a cost-
effective protection scheme for each connection, while satis-
fying its quality of service (QoS) requirements. Usually, by
means of service contracts called Service Level Agreements
(SLA), a client subscribes to optical network services from the
optical operator with a certain guaranteed QoS level. Within
the SLA, Service Level Specifications (SLS) [7] quantify the
quality of service provided to the customer. A certain number
of SLSs indicate the reliability constraints needed by the sub-
scribed service. Reliability parameters presented in the litera-
ture include mainly service availability, and restoration time.
Our interest will be directed to service availability since the
problem of how connection availability is affected by network
failures is currently attracting more research interest.

Contributing to the design of new quality of service aware
protection schemes, we propose an extension for the so-called
shared protection scheme. To date, the majority of the work
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concerning shared protection considered the primary connec-
tions as equally important when contending for the use of the
backup resources. From a service perspective, this scheme does
not provide an optimal solution as it does not take into account
the different QoS requirements of the primary connections dur-
ing the recovery procedure. To cope with such limitation, we
envision through our proposal to introduce a relative priority
among the primary connections sharing backup resources.

Furthermore, as a second contribution of this paper, we pro-
pose the use of a novel QoS metric, the service disruption rate,
besides service availability, in order to provide differentiated
services in a WDM mesh network. In fact, two connections
may have the same availability during their entire service peri-
ods; however, one of them may experience fewer network fail-
ures with longer service downtime for each failure, while the
other may experience more network failures with shorter ser-
vice downtime. Although the two connections have the same
service availability, they experience different service disruption
rates, which may lead to different customer-perceived service
qualities.

In order to gauge the benefits of our proposals, we evaluate
numerically both the service differentiation feature introduced
in the proposed priority-aware scheme as well as the impact of
the service disruption rate as a service differentiator. Therefore,
we present a mathematical model for both the classical shared-
protection schemes and the proposed priority-aware scheme.
Then by solving these models, we derive explicit analytic ex-
pressions for the average availability and service disruption rate
resulting from the deployment of such schemes.

The paper is structured as follows: in Section II we propose
and describe the priority-aware shared protection scheme; in
Section III we introduce a mathematical model to evaluate the
impact of the protection schemes analyzed in this paper on the
proposed Quality of Service parameters (availability and ser-
vice disruption rate); in Section IV we present numerical results
to evaluate the benefits of the service differentiation feature in-
troduced in our scheme as well as the impact of the service
disruption rate as service differentiator. Finally, Section V con-
cludes this paper and proposes future issues.

II. PRIORITY-AWARE SHARED-PROTECTION SCHEME

This Section introduces our novel scheme that extends the
existing shared-protection schemes through the introduction of
relative priorities among different primary connections con-
tending for the backup paths. Let us consider N working paths
(wi, i = 1, . . . , N ) with the same source and destination shar-
ing M backup paths (bi, i = 1, . . . ,M ), i.e. an M:N protections
scheme, as depicted in Figure 1. Both work paths and backup
paths can be in failure. When a failure occurs, the repair process
is started.

In the classical shared-protection scheme, when several sub-
sequent failures happen in the network, all connections are con-
sidered of equal importance when contending for backup re-
sources. As such, the first failed connection gains access to the
backup path.

On the other hand, in our proposed scheme these connec-
tions are divided into K sets of reliability classes, C1, . . . , CK ,
with Ni connections belonging to class Ci for i = 1 to K, and∑K

i=1 Ni = N . Connections belonging to class C1 have the

highest priority, while those belonging to CK have the lowest
priority. When the working path of a connection t belonging
to class Ci breaks down, the first available backup path, if any,
is assigned to protect connection t and restoration is ensured
by switching t to the backup path. Meanwhile, repair actions
are performed on the primary path to restore it to be as good as
new. Once repairing the primary path is achieved, the restored
connection is switched back to its primary path. On the con-
trary, if at the moment t fails all the backup paths are already
occupied protecting other connections, a check is made to ver-
ify the existence of protected connections belonging to classes
of lower priority than t, i.e. to classes comprised between i + 1
and K. If several such connections exist, the one having the
lowest priority is immediately preempted by connection t. The
preempted connection thus becomes unavailable, waiting for a
backup path to be freed or for its working path to be repaired.
Finally, if neither of the two above situations is verified, con-
nection t becomes unavailable.

III. THE MATHEMATICAL MODEL

In this Section, we present a mathematical model for both
the classical 1:N shared protection scheme and the correspond-
ing priority-aware extension discussed previously. Solving this
model, we derive explicit expressions for the average availabil-
ity and service disruption rate of a connection resulting from
deploying the aforementioned protection strategies. It is impor-
tant to note that the dedicated protection case can be viewed as
a special case of the shared protection scheme with N=1.

We are interested in the following metrics: availability and
service disruption rate of a connection. The availability of a
connection is defined as the probability that such connection is
“up” at any given time [8], and can be expressed as the propor-
tion of time the connection is up during its entire service. If a
connection is carried by a single unprotected path, its availabil-
ity is equal to the path availability. The service disruption rate
of a connection is defined as the average number of transitions
from an available to an unavailable state per one time unit.

The availability of a protected connection is determined by
both the primary and the backup paths. In other words, a pro-
tected connection t is said to be available when either no failure
affects its primary path or it is recovered by the backup path in
case of failure along the primary path. Connection t becomes
unavailable in the following two cases:

• one failure occurs on the primary path of t and a second
failure occurs on its backup path;
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Fig. 1. N working paths sharing M backup paths between a source node S and
a destination node D.
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• if t shares the backup path with connection t′, then t will
be unavailable if both t and t′ fail but the shared backup
path is taken by t′. In the priority-aware scheme, this hap-
pens if t′ has higher priority than t.

In this study we disregard the impact of the reconfiguration
time for switching traffic from primary paths to backup paths on
availability, since this time is negligible (usually on the order of
milliseconds) compared to the failure repair time (usually on the
order of hours) and to the connection’s holding time (usually in
the order of weeks or months).

A. Basic Assumptions

We base our mathematical study on the following classical
assumptions [9]:

• a connection has only two states: it is either available or
unavailable.

• Different network components fail independently leading
to repair actions.

• Sufficient resources are available to repair simultaneously
any number of failed connections, restoring them to be as
good as new. This is known in the literature as unlimited
repair [9].

• For any component the inter-failure time and the repair
time are independent stationary Markovian processes with
known mean values: Mean Time To Failure (MTTF) and
Mean Time To Repair (MTTR), respectively.

A path holding a connection t fails when at least one of the
components along the path is defective. The contribution of
cable-cut rate to the overall path failure rate is predominant,
compared to that of other components. Hence, for the sake of
simplicity we assume that the failure rate λ of a path is equiva-
lent to that of a single cable-link having the same length as the
considered path. As a result, to compute the failure rate of each
path we can multiply its length to the cable cut-rate per length
unit (see Table I).

B. Model Definition and Resolution for the Classic Shared-
Protection Scheme

Let us consider N working paths that share the same backup
path, i.e. a 1:N shared-protection scheme. Let λi, i =
1, ..., N + 1 be the mean failure rate of the i-th path and µi

be the mean recovery rate of the i-th path; 1
λi

and 1
µi

hence rep-
resent the Mean Time To Failure and Mean Time To Repair of
the i-th path, respectively. Based on the above assumptions, all
the path failures are statistically independent, and interfailure
and repair times are exponentially distributed.

To gain insight into the behavior of the system and according
to existing literature [10], [9], we will consider a case of special
interest in which all the paths (working as well as backup ones)
have identical failure and recovery rates, i.e. λi = λ and µi =
µ,∀i = 1, . . . , N + 1. Let us define ρ = λ

µ . We have here
a classical problem of reliability, with 1 redundant unit for N
working units. Here a unit is an optical path.

The steady-state availability Ai of a single path i, viz. the
limiting (τ → ∞) probability of finding the path successfully
operating at time t, can be calculated as follows:

Ai =
MTTF

MTTF + MTTR
=

1/λ

1/λ + 1/µ
=

1
1 + ρ

(1)

Ai = 1 − Ai represents the unavailability of path i.
Let F (τ) be the number of failed paths at time t. Because of

the assumptions, F (τ); τ ≥ 0 forms a continuous and station-
ary Markov process, with F (0) = 0. Let p(n) be the steady
state probability that F (τ) = n in stationary regime. The tran-
sition diagram is given in Fig. 2.

0 N+1N321

(N+1)λ Nλ (N-1)λ (N-2)λ 2λ λ

(N+1)µNµµ 2µ 3µ 4µ

Fig. 2. Transition Diagram

After some classical calculus we can express the steady state
probability p(n) of the Markov chain as follows [11], [9]:

p(n) = Cn
N+1A

n
AN+1−n

=
(N + 1)!

n!(N + 1 − n)!
ρn

(1 + ρ)N+1
(2)

where Cn
N+1 represents the number of all combinations of n

failed paths out of N + 1, and A is given by equation (1). In
other words, the number of failed paths follows a binomial dis-
tribution with parameters N + 1 and A.

Note that p(n) represents the proportion of time in which
there are n failures in the network. When the total number of
path failures n is greater than or equal to one, we can distinguish
two cases:

1) the backup path is among the failed paths and the remain-
ing n − 1 connections cannot be restored;

2) all the n failed paths are primary paths, and as such, only
one connection is restored by the backup path while the
remaining n − 1 are not.

Therefore, under such conditions there will always be exactly
n − 1 unavailable connections. For n ≥ 2 at least one connec-
tion will be unavailable, while when the number of failures n is
equal to 1, there will be no unavailable connections.

From this classical result, we are now interested in calculat-
ing the average unavailability and the average service disruption
rate of a specific connection t among the N shared-protected
ones. The average unavailability of t is the proportion of time
such connection is unavailable for all possible numbers of fail-
ures n, 2 ≤ n ≤ N + 1.

Let us define Y (n) the event of t being unavailable under
state n.

The probability of having our reference connection t unavail-
able when there are n failed paths is equal to p(n)P (Y (n)). As
p(n) has already been calculated in equation (2), what remains
is to calculate P (Y (n)). To do so, we have to consider all the
events that may lead to the connection t becoming unavailable
under state n. These events are the following:

• W (n): both the primary path of connection t and the
backup path are failed;

• Z(n): connection t’s primary path is failed but the backup
path is available.

Building on this information and according to the theorem of
total probability, P (Y (n)) can be calculated as follows
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P (Y (n)) = P (Y (n)|W (n))P (W (n)) +
+ P (Y (n)|Z(n))P (Z(n)) (3)

where P (Y (n)|W (n)) and P (Y (n)|Z(n)) are, respectively,
the conditional probabilities of having our reference connec-
tion t unavailable, given that events W (n) and Z(n) occurred.
P (Y (n)|W (n)) = 1 as the backup path in this case is failed
and no restoration is possible; P (Y (n)|Z(n)) = n−1

n as only
one of the n primary paths under failure in this case can be re-
stored.

The probability of the event W (n) is:

P (W (n)) =
Cn−2

N−1

Cn
N+1

=
n(n − 1)
N(N + 1)

(4)

where the numerator indicates all possible combinations where
the primary path of connection t and the backup path are among
the failures. The denominator indicates all possible combina-
tions of n failed paths out of N + 1.

The probability of the event Z(n) is:

P (Z(n)) =
Cn−1

N−1

Cn
N+1

=
n(N + 1 − n)

N(N + 1)
(5)

where the numerator indicates all possible combinations where
the primary path of the connection t is among the failures while
the backup is not.

Then, based on the above equations, the probability P(Y(n))
that the observed connection t is unavailable under state n is
equal to:

P (Y (n)) =
n − 1

N
, 2 ≤ n ≤ N + 1 (6)

It can be seen that this equation is also valid for the case n =
1, for which P (Y (n)) = 0, since in this case all connections
will be available, as stated before.

Based on the theorem of total probability, the unavailability
of a connection in the case of 1:N protection is given by the
following formula:

U(N,λ, µ) =
N+1∑

n=2

p(n) · P (Y (n))

=
N+1∑

n=2

p(n) · n − 1
N

(7)

and, substituting the expression (1) for p(n) we obtain:

U(N,λ, µ) =
1
N

·
N+1∑

n=2

(n − 1) · Cn
N+1 · ρn

(1 + ρ)N+1
(8)

The average availability for a connection is simply equal to
1 − U(N,λ, µ).

Following the guidelines given in [12], let us now calculate
the average service disruption rate of a given connection t. Ac-
cording to equation (6) the probability that a given path is un-
available in state n, with n ≥ 1, is equal to n−1

N . Hence, the
probability that such connection is available is equal to 1− n−1

N .

This probability corresponds to two distinct events, i.e.
• connection t is up;
• connection t’s primary path is failed but t is restored by

the backup path.
In the first case, as n ≥ 1, we are sure that the backup path is

either occupied to restore one of the n failed connections or it is
among such failures. Hence, when connection t breaks down,
it has no possibility of restoration by the backup path and it
transits from an available to an unavailable state at a rate equal
to the failure rate of its working path, λ.

In the second case, such transition happens when the backup
path fails, again at rate equal to λ.

The expression of the average service disruption rate,
S(N,λ, µ) is thus the following:

S(N,λ, µ) = λ
N+1∑

n=1

(1 − n − 1
N

) · p(n) (9)

and, substituting the expression of p(n) we obtain the follow-
ing expression:

S(N,λ, µ) =
λ

N
·

N∑

n=1

(N + 1 − n) · Cn
N+1 · ρn

(1 + ρ)N+1
(10)

C. Model Definition and Resolution for the Priority-Aware
Scheme

Let us consider the priority-aware shared-protection system
proposed in Section III, where N connections are divided into
two sets of reliability classes, C1 and C2, with N1 and N2

connections belonging to class C1 and C2, respectively, and
N1 + N2 = N . Connections of class C1 have higher priority
than connections belonging to C2.

In the following we derive the analytic expressions for the
availability and the service disruption rate for each connection
according to its priority class.

We will begin by considering higher-priority connections.
First of all, the N1 connections having the highest priority can
preempt instantaneously all the other connections belonging to
the lower-priority class in the utilization of the backup path.
Consequently, the analysis of the proposed scheme with regard
to the high-priority connections is equivalent to the study of a
classic 1:N1 shared-protection scheme.

Therefore, we can derive straightforwardly the average un-
availability U1 and service disruption rate S1 of high-priority
class connections based on equations (8) and (10) by simply
substituting N with N1.

When a low-priority connection fails, it becomes unavailable
if any of the following mutually exclusive conditions is verified:

1) the protection path has already failed;
2) the protection path is up but there is at least one high-

priority connection among the failures;
3) the protection path is up, no high-priority connections

are among failures, there is however another low-priority
connection occupying the protection path.

Let Ei be the event of having condition i verified, i = 1, 2, 3.
Therefore, to study the unavailability U2 of a low-priority con-
nection, we consider the process Q(τ) whose general state is a
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triplet (n1, n2, b), where n1 and n2 indicate, respectively, the
number of failed high and low-priority connections at time τ ,
and b is a flag set to 1 if the backup path is down and to 0 if it
is up.

Q(τ) is a continuous and stationary Markov process, with a
limiting probability for each state given by

P (n1, n2, b) = P (n1)P (n2)P (b) (11)

where P (n1), the probability of having n1 failed high-
priority connections and P (n2), the probability of having n2

failed low-priority connections, are respectively equal to:

P (n1) = Cn1
N1

A
n1

AN1−n1 (12)

P (n2) = Cn2
N2

A
n2

AN2−n2 (13)

and A is given by equation (1). P (b) is the probability of hav-
ing b backup path failures. In other words, when b = 0, there
is no failure affecting the backup path, whereas if b = 1 the
backup path is down. The expression of P (b) is:

P (b) = A
b
A1−b (14)

The events (Ei, i = 1, 2, 3), leading to the unavailability of a
low-priority connection, are verified according to the values of
n1, n2 and b. So, b = 1 leads to E1, meaning that the protection
path has failed; on the other hand, b = 0 and n1 ≥ 1 lead to
event E2; finally, b = 0, n1 = 0 and n2 ≥ 2 produce event E3.

Under state (n1, n2, b), a specific low-priority connection t
is unavailable when it fails and one of the events E1 − E3 is
produced. Based on this observation, U2 is given by:

U2 =
∑

∀(n1,n2,b)

P (t fails in state (n1, n2, b)) ×

× P (n1, n2, b) × P (E1 ∪ E2 ∪ E3) (15)

where:

P (t fails in state (n1, n2, b)) =
Cn2−1

N2−1

Cn2
N2

(16)

and P (E1 ∪ E2 ∪ E3) can be obtained with classical manipu-
lations. It follows that U2 is equal to:

U2 =
N2+1∑

i=2

Ci−2
N2−1A

i
AN2−i+1 +

+
N2∑

i=1

Ci−1
N2−1A

i
AN2−i+1 · (1 − AN1) +

+
N2∑

i=2

Ci−1
N2−1A

i
AN2−i+1 · AN1 · (i − 1)

i
(17)

We note that equation (17) can be also obtained with the fol-
lowing reasoning based on the conservation law presented in
[13] adapted to our study case.

In fact, the classical shared-protection scheme and the
priority-aware extension under study can be viewed as two dif-
ferent scheduling schemes for organizing the access to a shared

resource which is the backup path. Therefore, an invariant rela-
tion of the following form is obtained:

N∑

i=1

ρiWi = C (18)

where in our case ρi is equivalent to the already defined ρ, Wi is
the average unavailability of connection i, and C is a constant.

Note that Wi = U1 if connection i ∈ C1 and Wi = U2 if
i ∈ C2.

Considering the same number of primary paths N in the two
schemes, equation (18) becomes

U(N,λ, µ) · N = U1 · N1 + U2 · N2 = C (19)

As such, U2 is equal to

U2 = U(N,λ, µ) · N

N2
− U1 · N1

N2
(20)

Following the same reasoning, we can compute the service
disruption rate S2 of a low-priority connection as follows:

S2 = S(N,λ, µ) · N

N2
− S1 · N1

N2
(21)

IV. NUMERICAL RESULTS

In this Section we gauge the benefits of the service differen-
tiation feature introduced through the proposed priority-aware
protection scheme, then we evaluate the impact of the service
disruption rate as a service differentiator. For the sake of sim-
plicity, we consider a scenario consisting of 3 primary connec-
tions sharing one backup path. We first consider a priority-
aware protection scheme, with one high-priority and two low-
priority primary connections. The availability of each class is
calculated for different connections’ lengths based on equations
(19) and (20), and is reported in Figure 3. Then, a classical
shared protection scheme is applied to this scenario, and the
availability of a connection is evaluated using equation (8). The
corresponding results are reported again in Figure 3 for com-
parison purposes. It is important to state that the Mean Time To
Repair ( 1

µ ) of all the paths is considered equal to 12 hours (see
Table I).
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protection scheme
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Based on Figure 3 we can observe that the high-priority
connection protected using the priority-aware scheme is more
available than the connections protected by the classical shared
scheme.

The observed availability results can be interpreted from a
Quality of Service level perspective using the following rea-
soning. According to [7] a Gold client requests an availability
of 99.999% (i.e. at most 5 minutes of unavailability per year),
whereas a Silver client requires an availability of 99.99% per
year. With regard to this QoS terminology, the high and the
low-priority classes can be mapped into Gold and Silver QoS
levels [7] or to lower QoS classes according to the connection’s
length. In fact, as shown in Figure 3, the availability of the high-
priority connection drops below 99.999% when the connection
length exceeds 850km, while in the classical scheme this target
availability is never achieved. This proves that by deploying
the proposed scheme, Gold connections provisioning becomes
possible in the network even for long communications which
are encountered typically in backbone optical networks. More-
over, the QoS level of the Silver connections is still maintained.

To backup the mathematical analysis we also simulated the
previously discussed scenario using a discrete-event simulation
tool [14], and the results are again shown in Figure 3. Each
availability value has been calculated over multiple simulations
to achieve very narrow 97.5% confidence intervals. We note
that simulation results practically overlap analytic data in every
situation, thus backing-up the analytic approach.

Finally, we evaluate the impact of service disruption rate as a
service differentiator. We still consider the same scenario with
3 primary connections and one backup path presented above.
For illustration purposes, we consider a reference connection
cut-rate λ = 1/250 h−1. The service disruption rate experi-
enced in a reference period of one year for the classical 1:3
scheme, calculated based on equation (10), is approximately
equivalent to 6 service disruptions per year. For the priority-
aware scheme, the high-priority connection experiences in av-
erage 3 service disruptions per year while the low-priority ones
become unavailable in average 7 times per year. Hence, the rate
at which the high-priority connection becomes unavailable is
approximately the half of that experienced by classically pro-
tected connections. In the following study, the number N of

primary connections is varied between 2 and 10, to gain insight
into the impact of such variation on the service disruption rate.
First, a priority-aware scheme is assumed with only 1 connec-
tion of high-priority. Then the classical 1:N protection scheme
is applied. In Figure 4, the service disruption rates for the dif-
ferent primary connections are depicted. These results demon-
strate the advantage of the priority-aware approach as the gain
realized is consistent.

V. CONCLUSIONS AND FUTURE ISSUES

In this paper we proposed an improvement of the existing
shared protection schemes through the introduction of relative
priorities among the different primary connections contending
for the access to the protection path. We introduced a novel ser-
vice differentiation parameter, the service disruption rate of a
connection, to provide differentiated service in a WDM mesh
network, and we motivated the use of such parameter with nu-
merical examples. Finally, we presented a detailed mathemati-
cal model for both the classical shared-protection schemes and
for the proposed priority-aware scheme. We derived explicit
analytic expressions for the average availability and service dis-
ruption rate resulting from the deployment of such schemes.

The introduction of the priority-aware protection scheme, of
the service disruption rate, and of the models studied in this
paper have a generic fundamental significance, beyond the spe-
cific context of path protection in WDM networks. Indeed, they
can be applied to general systems. Due to this generality, any
further results that can be derived have a potential significance
for other fields.
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