IEEE CAMAD 2014 — Athens, 1-3 December

From dumb to smarter switches

in software defined networks:
an overview of data plane evolution

— | Giuseppe Bianchi
—J University of Rome “Tor Vergata”

Antomo Capone

G. Bianchi & A. Capone - SDN tutorial 1

Agenda

1) Setting the scene: a brief intro to SDN and
OpenFlow

2) Switches cannot remain dumb: Starting the
process of data plane evolution

3) Not too much not too little: OpenState and
statefull data planes

4) Applied smartness: statefull applications

G. Bianchi & A. Capone - SDN tutorial

Setting the scene: a brief intro to
SDN and OpenFlow

The future has already arrived. It's just not
evenly distributed yet. [William Gibson]

G. Bianchi & A. Capone - SDN tutorial

Classic network paradigm

Distributed network functions

State distribution mechanism
(protocols)

Forwarding HW

Forwarding HW

Router/switch/appliance

G. Bianchi & A. Capone - SDN tutorial 4

Vertically integrated

-~

Control-plane —=

Data-plane —

L3 Routing, L2 switching, ACL, VPNs, etc\

PN
O
——

Closed
platform!

Forwarding HW J

Protocols guarantee interoperability...

But what’s the drawback?

G. Bianchi & A. Capone - SDN tutorial

Way too many standards?

Publication rate per year

500

L

300 |
200 |

DA JO TequinN

¥10C
€10c
cloc
110T
0roc
600T
800¢C
L00T
900¢
€00c
00T
€00T
00c
100T
000¢
6661
8661
L661
9661
€661
661
€661
w661
1661
0661
6861
8861
L8361
9861
¢86l
¥861
€861
861
1861
0861
6L61
8L61
LL61
9L61
SL61
PL61
€L61
L6l
1L61
0L6l
6961
8961

Year

IETF

Source

G. Bianchi & A. Capone - SDN tutorial

HOW STANDARDS PROUFERATE:
(<66 A/C CHARGERS, CHARACTER ENCODINGS, INSTANT MESSAGING, ETC)

47! RiDICULOLS! OOON:
WE NEED To DEVELOP
N
SITUATON: || SEVERAL SRR || GiTUATION:
THERE ARE USE CASES. yepup THERE ARE

|4 COMPETING |5 COMPETING

STANDPRDS. O o STANDARDS.
i1

G. Bianchi & A. Capone - SDN tutorial

Vendors dominated?

Number of Authors per Company

SIOYINY JO JoquInN

Source: IETF

G. Bianchi & A. Capone - SDN tutorial

Non-standard management

* Configuration interfaces vary across:
— Different vendors
— Different devices of same vendor
— Different firmware versions of same device!

e SNMP fail

— Proliferation of non-standard MIBs
— Partially implemented standard MIBS

— |[ETF recently published a recommendation to stop
producing writable MIB modules

G. Bianchi & A. Capone - SDN tutorial 9

The (new) paradigm

Traditional networking Software-Defined Networking

Switch Programmable
l switch

«*=
-
- 8 ® -

- ® au
.
.
. a u
* .

Data-plane

Control-plane

Control-plane

Data-plane Control-plane

Data-plane

Data-plane

Control-plane

Data-plane

Data-plane

G. Bianchi & A. Capone - SDN tutorial 10

SDN architecture

u u Network control API

Network OS

HW open interface

Simple forwarding

HW
Simple forwarding

HW

Simple forwarding
HW

Simple forwarding
HW

G. Bianchi & A. Capone - SDN tutorial 11

From protocols to API

* HW forwarding abstraction
— low-level primitives to describe packet forwarding

e Control plane API
— Network topology abstraction
— High-level access to switch programming

— Common libraries

* Host tracking
* Shortest-path
* Etc..

G. Bianchi & A. Capone - SDN tutorial 12

Success keys

* Low-level HW open interface

* Good, extensible and possibly open-source
Network OS

* Open market for third-party network
application developers

— Network app store

e Several attempts (Active Networks, IETF
ForCES), but one winner ...

G. Bianchi & A. Capone - SDN tutorial 13

OpenFlow

e Stanford, 2008
* Clean Slate research program

* “With what we know today, if we were to start
again with a clean slate, how would we design
a global communications infrastructure?”

Is it really a clean
slate approach?

G. Bianchi & A. Capone - SDN tutorial 14

OpenFlow

* OpenFlow is actually a pragmatic approach to
SDN based on a simple HW abstraction that can
be implemented with current HW commercial
platforms

Open FlOW Protoco| In-bound or out-bound

(SSL/TCP)

G. Bianchi & A. Capone - SDN tutorial 15

What is OpenFlow

e Switch abstraction

— Match/action flow table
— Flow counters

— It doesn’t describe how this should be implemented in
switches (vendor neutral !!!)

* Application layer protocol

— Binary wire protocol, messages to program the flow
table

* Transport protocol
— TCP, TLS

G. Bianchi & A. Capone - SDN tutorial 16

Flow table

Match Actions Counters

Bytes + packets

1. Forward (one or more ports)

2. Drop

3. Encapsulate and send to controller

4. Header rewrite

5. Push/pop MPLS label / VLAN tag

6. Queues + bitrate limiter (bit/s)

/. Etc..
Switch | viAN | VLAN| MAC | mac | Eth P | IP P | P L4 L4
Port ID pcp src dst type Src Dst ToS | Prot | sport dport

Slide courtesy: Rob Sherwood

G. Bianchi & A. Capone - SDN tutorial 17

Switch abstraction

OpenFlow controller

*
*
*

*
*

Software OpenFlow client

Hardware (e.g. TCAM) Flow table
or software (aka Forwarding Information Base)

G. Bianchi & A. Capone - SDN tutorial 18

Description Port MAC src

Example

IP Dest

Action

L2 switching * * 00:1f:.. * * * * * Port6
L3 routing * * * * * * 5.6.%.* * Port6
Micro-flow 3 00:20.. 00:1f.. 0x800 Vlanl 1.2.3.4 5.6.7.8 17264 Port4
handling
Firewall * * * * * * * 22 Drop
VLAN * * 00:1f.. * Vlanl * * * Port6,
switching port7,
port8
G. Bianchi & A. Capone - SDN tutorial 19

Reactive vs Proactive

e Reactive

— Start with flow table empty
— First packet of a flow sent to controller
— Controller install flow entries

— Good for stateful forwarding:
e L2 switching, dynamic firewall, resource management

* Proactive

— Flow entries installed at switch boot

— Good for stateless forwarding:
* L3 routing, static firewall, etc..

G. Bianchi & A. Capone - SDN tutorial

20

OpenFlow 1.0 recap

A

Redirect to controller

Packet Apply actions, forward

Flow table =

Drop

G. Bianchi & A. Capone - SDN tutorial 21

Models can be perfect and clean,
reality is dirty!

The match/action model can ideally be used to program

any network behavior and to get rid of protocol
limitations at any level

e But unfortunately, with OF:

— Matches can be done only on a set of predefined header
fields (Ethernet, IPv4, MPLS, VLAN tag, etc.)

— Actions are limited to a rather small set

— Header manipulation (like adding label/tags, rewriting of
fields, etc.) is limited to standard schemes

* Asaresult, OF is not really protocol independent and
standards (including OF standards) are still necessary

G. Bianchi & A. Capone - SDN tutorial 22

Where do OF limitations come from?

* OpenFlow has been designed having in
mind current specialized HW architecture

lllllllll

for switches ! e
* Specialized HW is still fundamental in [@ @ % .
networking 5] D

— General purpose HW (CPU) and soft- m
switches are still 2 order of magnitude | |
slower -

— Architectures based network processors
are also at least 1 order of magnitude

slower
Packet Actions
e The reference HW model for OF flow > —

tables is TCAM (Ternary Content

Addressable Memory) 7

Redirect to
controller

G. Bianchi & A. Capone - SDN tutorial 23

Where do OF limitations come from?

« TCAMs however are typically expensive components that
are used by manufacturers only when strictly necessary

* Less expensive memory components based on predefined
search keys are often used for most of the common
functions of a switch

* OF success depends on its “vendor neutral” approach
where implementations issues are completely opaque
(including reuse of standard modules for e.g. MAC and IP
forwarding)

e Specialized ASICs (Application-Specific Integrated Circuits)
are typically complex with a number of hard limitations on
table types, sizes, and match depth

|II

G. Bianchi & A. Capone - SDN tutorial 24

Switches cannot remain dumb:
Starting the process of data
plane evolution

One man alone can be pretty dumb sometimes, but for real
bona fide stupidity, there ain't nothin' can beat teamwork.
[Edward Abbey]

G. Bianchi & A. Capone - SDN tutorial 25

Evolution of the AL in OpenFlow: OF 1.1

* Single tables are costly: all possible combinations of
header values in a single long table

e Solution: Multiple Match Tables (MMT)

OpenFlow Switch

ejese Packet +
Packet port ingress port + Execute Packet
In metadata Packet . :] t
Table o Ta0le | O | Table -——» Action _Ou_>

' 0 . 1 n Action -

Action Action Set [Set]

Set={} Sety |} 1 o '

— — —

* New actions:
— Add metadata: parameters added and passed to next table

— Goto table: possibility to go to specific tables for further
processing

G. Bianchi & A. Capone - SDN tutorial 26

Evolution of the AL in OpenFlow: OF 1.1

e Packets of the same flow are applied the same actions
unless the table entry is modified by the controller

* Not good for some common and important cases (e.g.

multicast, multipath load balancing, failure reaction, etc.)
* Solution: Group tables

— Goto table “group table n”

— List of buckets of actions

— All or some of the buckets are executed depending on the type
* Types of Group tables

— All (multicast)

— Select (multipath)

— Fast-failover (protection switching)

G. Bianchi & A. Capone - SDN tutorial 27

Evolution of the AL in OpenFlow: OF 1.1

* Fast failover

* Note that this is the first “stateful” behavior in the data
plane introduced in OF !!!

Group table
fast failover

Action bucket 1:
FWD Port A, ...

Port B

Action bucket 2: | | | Status
——5| | FWDPortB, ... -

Action bucket 3: I
FWD PortC, ... > Port C

Action bucket 4:
monitoring
FWD Port D, ...

G. Bianchi & A. Capone - SDN tutorial 28

Evolution of the AL in OpenFlow: OF 1.2

e Support for IPv6, new match fields:

— source address, destination address, protocol
number, traffic class, ICMPv6 type, ICMPvV6 code,
IPv6 neighbor discovery header fields, and IPv6
flow labels

* Extensible match (Type Length Value)
* Experimenter extensions
* Full VLAN and MPLS support

* Multiple controllers

G. Bianchi & A. Capone - SDN tutorial 29

Evolution of the AL in OpenFlow: OF 1.3
* |nitial traffic shaping and QoS support

— Meters: tables (accessed as usual with “goto
table”) for collecting statistics on traffic flows and
applying rate-limiters

Meter Table

Meter indentifier Meter band Counters

G. Bianchi & A. Capone - SDN tutorial 30

Evolution of the AL in OpenFlow: OF 1.3

* More extensible wire protocol

* Synchronized tables
— tables with synchronized flow entries

* Bundles
— similar to transactional updates in DB

e Support for optical ports

G. Bianchi & A. Capone - SDN tutorial 31

Next OF: discussion started

Within ONF

* Tunnel support

* L4-L7 service support
* Error handling

 Fitness for carrier use

— Support for OAM in its various forms

* Flow state (...)

G. Bianchi & A. Capone - SDN tutorial 32

Next OF: discussion started

* Flow state

— The capability to store / access flow metadata that
persists for lifetime of flow (not just current packet)
— Potential to enable a variety of new capabilities:
* Fragment handling without reassembly

* Relation between bidirectional flows (e.g., RDI)
Autonomous flow learning + flow state tracking

MAC learning
TCP proxy
— Hierarchies of flows
* e.g. FTP control / data, all belonging to a user, etc.
[MAC13] Ben Mack-Crane, “OpenFlow Extensions”, US Ignite ONF GENI workshop, Oct 2013

G. Bianchi & A. Capone - SDN tutorial 33

Also abstraction “involutions” (?):
Typed tables

* “A step back to ensure wider applicability”
* A third way between reactive and proactive

* Pre-run-time description of switch-level
“behavioral abstraction” (tell to the switch which
types of flowmods will be instantiated at run time)

e Limit types supported according to HW type

Typed tables patterns: Forwarding Elements (F:E.)

Statefull
Ol ALY Layer 3 Generic 802.1D
1.0 IPv4 ' :
Tunnel Forwarding (...)
Stateless o v
Constrained e &Zi% N\ gﬁ:
OpenFlow 1.1 Tunnel ONF Forwarding Abstractions WG

G. Bianchi & A. Capone - SDN tutorial 34

Further flexibility limitations due to
specialized HW

e OF introduced the MMT model but does not mandate
the width, depth, or even the number of tables

* OF allows the introduction of new match fields through
a user-defined field facility

e But existing switch chips implement a small (4-8)
number of tables whose widths, depths, and execution
order are set when the chip is fabricated.

* This severely limits flexibility through specialized chips:

— Chip for core routers: large 32-bit IP longest matching table
and a small 128 bit ACL match table

— Chip for enterprise router: small 32-bit IP table and large
ACL table, with an additional MAC address match tables

[BOS13] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKeown, M. Izzard, F. Mujica, and M. Horowitz, “Forwarding

metamorphosis: Fast programmable match-action processing in hardware for sdn”, in ACM SIGCOMM 2013.

G. Bianchi & A. Capone - SDN tutorial 35

Reconfigurable Match Tables (RMT)

* Recent proposal by McKeown, Varghese et al.
BOS13]

* RMT

— Field definitions can be altered and new fields added

— Number, topology, widths, and depths of match tables
can be specified, subject only to an overall resource
limit on the number of matched bits

— New actions may be defined

— Arbitrarily modified packets can be placed in specified
gueues, for output at any subset of ports, with a
gueuing discipline specified for each queue.

[BOS13] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKeown, M. Izzard, F. Mujica, and M. Horowitz, “Forwarding

metamorphosis: Fast programmable match-action processing in hardware for sdn”, in ACM SIGCOMM 2013.

G. Bianchi & A. Capone - SDN tutorial 36

Reconfigurable Match Tables (RMT)

L Logical Stage 1 Logical Stage N
Switch State -
Global states - (motaaa) [Statistics] | State |
\ . 7_ A A - b, .
Z] S > < Configurable
| > - - Z Output
- @ 7| Match \ VLIW z) Queues
AN 8 || Tables Action I o | 2 —I
Packets Prog.” | > 2 | 8 _ Packets
— Parser - - > > “> 3 [7] A —
N . - 3 : 7
Input E § . : . Output
Channels ¢ ﬁ\' > 1 " k Channels
g = Programmable Header re-write with very al T
arser long instruction word (VLIW :
P 8 () Configurable
[1.Srct
- Src2 Physical ~ Physical Physical q ueues
12| sres Stage 1 Stage 2 Stage M
P ik
gf—:g é (frorrioin:t
Packet ° < % mem) Packet Logical $tage 1
Header [o . Header
Vector | & ® g . Vector _
Slsrc _ e éfaigﬂ PhySicaI
> g Src 2 ‘ Logical Stage 2 H:l .
E— | sre3 | ——ill—— flexible
vt viemony -] architecture
Match | Results L OP|code .
Tables ‘Ctrl I“ [] on Chlp
‘ VLIW Instruction Memory . i . i
. B pmiien [i

[BOS13] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKeown, M. Izzard, F. Mujica, and M. Horowitz, “Forwarding

metamorphosis: Fast programmable match-action processing in hardware for sdn”, in ACM SIGCOMM 2013.

G. Bianchi & A. Capone - SDN tutorial 37

All the way down to programmability: P4

* Recent “strawman proposal” by McKeown, Rexford et al.
[BOS13b]

* Towards real protocol independence:
— No predefined fields, but reconfigurable fields

— Protocol independence, switches not be tied to
any specific network protocols

— Target independence: flexible packet-processing
functionality independently of the specifics of the
underlying hardware.

* Advanced “configurability”

[BOS13b] P. Bosshart, D. Daly, M. Izzard, N. McKeown, J. Rexford, D. Talayco, A. Vahdat, G. Varghese, D.

G. Bianchi & A. Capone - SDN tutorial 38

All the way down to programmability: P4

* Configurability achieved with a programming language
describing parsing and control

...

! Parse Control Table Action E
SDN Control Plane | Fes e (e ot |
Configuration: Populating:: T 3
P4 Program Installing and : %
S e A Classic E '3,:::0’ ing E f::,::a'dmg
Compiler OpenFlow N 5 l :
: 8 :
Parser & Table Rule I P v ¥ . 0
Configuration Translator N A : : , v
R T
| ¥ p —» _ —» | Match —» | . N
| ¥ u S M Action F PR | Y
- i c i 0
- . R Ingress R Egress Pipeline T
— e e A s 0 Pocket Mods
Egress Selection

Target Switch

* Programs are “compiled” according to the specitic specialized
HW

[BOS13b] P. Bosshart, D. Daly, M. Izzard, N. McKeown, J. Rexford, D. Talayco, A. Vahdat, G. Varghese, D.

“” R . . ”

G. Bianchi & A. Capone - SDN tutorial 39

Protocol Oblivious Forwarding (POF)

* Removing/neglecting constraints on general HW can lead
to extreme flexibility of a clean slate approach (not in the
OF evolution track)

 POF proposal by Huawei [SON13]

 POF makes the forwarding plane totally protocol-oblivious
 The POF FE has no need to understand the packet format.
 POF FE execute instruction of its controller to:

— extract and assemble the search keys from the packet header,

— conduct the table lookups,

— execute the associated instructions (in the form of executable
code written in FIS or compiled from FIS).

[SON13] H. Song, “Protocol-oblivious forwarding: Unleash the power of SDN through a future-proof
forwarding plane, HotSDN ’13. ACM, 2013, pp. 127-132.

G. Bianchi & A. Capone - SDN tutorial 40

Tiny programs in the packets

* Taking programmability to the extreme ...
* Remember “active networks” ...

Ethernet Header
SP = 0x0 SP = 0x4 SP = 0x8 SP = @xc

PUSH [QSize] PUSH [QSize] PUSH [QSize] PUSH [QSize]
0x00 0x00 0x00

""""""""""""""" 0xa0 TTTT0xa0

"""""""""""""""""""""""""" Ox0e

Other headers
(e.g., TCP/IP)

Packet memory is preallocated. The TPP never grows/shrinks inside the network.

[JEY13] V. Jeyakumar, M. Alizadeh, C. Kim, and D. Mazieres, “Tiny packet programs for low-latency

network control and monitoring,”. HotSDN ‘13

G. Bianchi & A. Capone - SDN tutorial 41

Deeply Programmable Networks (FLARE)

* Fully programmable control plane

e Fully programmable data plane

* Flexible and extensible API for both planes
* Experimental implementation

N x86 ' Many Core [ll-+ s
: Processor Processor —

-
away.
- 4 .

= S
’,/"

g

' (board designed by Nakaol ahy)

Aki Nakao, FLARE Project, NakaolLab, The university of Tokyo.

G. Bianchi & A. Capone - SDN tutorial 42

Not too much not too little:
OpenState and stateful data planes

Too clever is dumb.
[Ogden Nash]

G. Bianchi & A. Capone - SDN tutorial 43

Looking for the “right” abstraction

* Programmability and real world viability

— High levels of (deep) programmability in the data
and control planes since ages

e Active Networks
 |[ETF ForCES

* Keywords for success: |
— Pragmatism 2
— Compromise

— “right” mix of programmability: right level of
abstraction

* Many wonderful programmable platforms buried in the
“lab world”

G. Bianchi & A. Capone - SDN tutorial 44

Remember: OF meant to be a compromise

[original quotes: from OF 2008 paper]

* Best approach: “persuade commercial name-brand
equipment vendors to provide an open, programmable,
virtualized platform on their switches and routers”

— Plainly speaking: open the box!! No way...

* Viable approach: “compromise on generality and seek
a degree of switch flexibility that is

— High performance and low cost

— Capable of supporting a broad range of research

— Consistent with vendors’ need for closed
platforms.

G. Bianchi & A. Capone - SDN tutorial

45

OF forces separation of data and control

ically-centralized control Events from switches
< Topology changes,

Traffic statistics,

DRI Arriving packets

Commands to switches
(Un)install rules,
Query statistics,
nd packets " _

e
| .
I ——
: == ‘m
I

“\\ \ 2===4
=

< /

SMART!

G. Bianchi & A. Capone - SDN tutorial 46

Centralized Control: pros and cons

Great idea for

e PROS: network-wide states
— Central view of the network as a wha and «b"‘.g picture»
decisions
* Network states, etc N\ J
— One-click network config/deploy 7 o (e o gl
e Platform agnosting switch APl is key - e.g. states/decision,
OpenFlow forwarding abstraction (way!) better
e CONS: handled locally

less delay, less load
\ (y) /

— Control latency!!!

* O(second)
1s = 300M packets lost @ 100 gbps

— Signalling overhead

G. Bianchi & A. Capone - SDN tutorial 47

Distributed controllers

the «common» way to address such cons

Proprietary controller extensions?
Back to Babel?

A non-solution!
still slow path latency!!

«true» fast path solution: update

g? forwarding rules in 1 packet
" / time — 3 ns @ 40B x 100 Gbps

——

3 ns = 60cm signal propagation...

G. Bianchi & A. Capone - SDN tutorial 48

Our vision

Events from switches & central rule updates
Restricted to those of interest
for GLOBAL decisions

Decision on how network should operate
remains at the controller (SDN vision)
But “execution” of forwarding plane

Vo pdates can be locally delegated

SMART!

~
~

~

|

|

| H (11 H 77
I L ~« Inject “switch control programs
| Change forwarding behavior as

D

specified by “this program” IF
? ents occur

Local processing: Ultra low Latency:
o(nanosec) versus o(sec)

/

Local states: lower signalling

'\ SMART!
! @

\

/

G. Bianchi & A. Capone - SDN tutorial 49

What is missing in the picture

@)
/" «repurposed \

Behavioral Description
» device

src=1.2.*.*, dest=3.4.5.* - drop
src = *.* * * dest=3.4.*.* 2 forward(2)
src=10.1.2.3, dest=*.*.* * 2 send to controller

¢! N

OF forwarding abstraction insufficient!!

Any vendor, any size, any HW/SW platform...

G. Bianchi & A. Capone - SDN tutorial 50

Easier said than done

e We need a switch architecture and APl which is...

— High performance: control tasks executed at wire-speed (packet-
based events)

— Platform-independent: consistent with vendors’ needs for
closed platforms

— Low cost and immediately viable: based on commodity HW

Apparently, far beyond OpenFlow switches...

Our (perhaps surprising?) finding:
much closer to OF than expected!!

G. Bianchi & A. Capone - SDN tutorial 51

Our findings at a glance

* Any control program that can be described by
a Mealy (Finite State) Machine is already (!)
compliant with OF1.3

* MM + Bidirectional flow state handling

requires minimal hardware extensions to
OF1.1+

* Proof of concept HW and SW implementation

G. Bianchi & A. Capone - SDN tutorial

52

Our approach: OpenState

easier understood via a running
example: port knocking

[CCR14] G. Bianchi, M. Bonola, A. Capone, C. Cascone, “OpenState: programming
platform-independent stateful OpenFlow applications inside the switch”, ACM
Computer Communication Review, vol. 44, no. 2, April 2014.

[ARX14] G. Bianchi, M. Bonola, A. Capone, C. Cascone, S. Pontarelli, “Towards Wire-
speed Platform-agnostic Control of OpenFlow Switches”, available on ArXiv, 2014.

G. Bianchi & A. Capone - SDN tutorial 53

Remember OF match/action API

Programmabile logic Vendor-implemented

Matching
Rule

Action ‘

: 2. ENCAPSULATE&FORWARD
: 3. DROP

| switch

IV-IUItIpIe flo“’. tables Pa::‘ket I"gr;nss Table mmaé Table . Table |Packet E:(;e&.lt;e- P?)c:tet
since OF version 1.1 powon | © K n [Amenm: AZRN T

G. Bianchi & A. Capone - SDN tutorial 54

Background: Port Knocking firewall
knock «code»: 5123, 6234, 7345, 8456

IPsrc=1.2.3.4 Port=5123
IPsrc=1.2.3.4 Port=6234
IPsrc=1.2.3.4 Port=7345
IPsrc=1.2.3.4 Port=8456
IPsrc=1.2.3.4 Port=22

‘ Drop(); 1.2.3.4 = 1° knock OK
‘ Drop(); 1.2.3.4 = 2° knock OK

‘ Drop(); 1.2.3.4 = 3° knock OK

=) Drop(); 1.2.3.4 > OPEN port SSH

‘ Forward()

G. Bianchi & A. Capone - SDN tutorial

55

Port Knocking @ controller

IPsrc=any Port=any

When knock sequence

Encapsulate & forward finalized, add entry

ALL packets of ALL flows <Ipsrc, port=22; forward>
IPsrc=any Port=any
Lots of overhead!! Maintain Knock state per flon

Needed as no «knock» state handled in switch

G. Bianchi & A. Capone - SDN tutorial 56

«Abstract» description for port
knocking: Mealy Machine

Port!=5123 Port=5123 Port=6234 Port=7345 Port=8456 Port=22
Drop() Drop() Drop() Drop() Drop() Forward()

Port!=8456
Drop()

Port!=7345
Drop()

Port!=6234
Drop()

G. Bianchi & A. Capone - SDN tutorial 57

Can transform in a flow table? Yes:

lpsrc: ?7

<>
State DB

MATCH: <state, port> - ACTION: <drop/forward, state_transition>
Plus a state lookup/update

Metadata:

IPsrc Port
State-label

Actions
Next-state

DEFAULT Poft=5123 drop STAGE-1
STAGE{1 Po|t=6234 drop STAGE-2
QAG E-;7 PQrt=7?¥5 drop STAGE-3
STAGE-3 PortZ8456 drop OPEN > Ipsrc>OPEN

OPEN Port=22 forward OPEN

OPEN Port=* drop OPEN "3

* Port=* drop DEFAULT

G. Bianchi & A. Capone - SDN tutorial

58

Putting all together

1) State lookup

2) XFSM state transition

IPsrc=1.2.3.4 Port=8456 STAGE-3 | IPsrc=1.2.3.4 Port=8456
State Table L XFSM Table
Match fields Actions
— state event action Next-state
Igsrc= 1 2 3 4 DEFAULT | Port=5123 drop STAGE-1
IPsrc=5.6.7.8 STAGE-1 | Port=6234 drop STAGE-2
IPsrc= — STAGE-2 | Port=7345 drop STAGE-3
EYPITREE Er - ——— STAGE-3 | Port=8456 drop OPEN P
IPsrc= no match DEFAULT OPEN Port=22 forward OPEN
OPEN Port=* drop OPEN
write * Port=* drop DEFAULT
i i 3) State update
OPEN Y
1 «program» XFSM table for all flows
IPsrc=1.2.3.4 Port=8456

(same knocking sequence)
N states, one per (active) flow

G. Bianchi & A. Capone - SDN tutorial

59

Proof of concept

* SW implementation:
— Trivial modifications to SoftSwitch

— Public domain

e HW implementation:
— 5 clock (2 SRAM read + 2 TCAM + 1 SRAM write)
— 10 Gbps just requires 156 MHz clock TCAM, trivial
— Optimization in progress (pipelining) for 100 Gbps.

G. Bianchi & A. Capone - SDN tutorial 60

Cross-flow state handling

* Yes but what about MAC learning, multi-port protocols
(e.g., FTP), bidirectional flow handlingé etc?

MACdst MACsrc

~Z

MACdst MACsrc

~Z

te Table
lookup Flow key state
48 bit MAC addr Port #
XFSM Table
state event action Next-state
Port# * forward In-port
State Table
update Flow key state
48 bit MAC addr Port #

DIFFERENT lookup/update scope

Field 1

Field 2

Field N

~Z N7 N7

Flowkey selector

<€— Read/write signal

~

G. Bianchi & A. Capone - SDN tutorial

61

Current challenge

Prove programmability of complex functions

DONE: CHALLENGE:

* Port Knocking => IDS/DPI

 MAC learning =>» TCP flow processing

e Label/address =» Monitoring
advertisement learning > ..

* Reverse Path Forwarding

* Flow-consistent Load Need new «actions»
Balancing , Need extra logic (full XFSM)

e DDoS multi-stage flow
marking

All (1) otherwise not possible without
explicit controller’s involvement or

custom distrib. control...

Our challenge: towards an open «flow processor»?

G. Bianchi & A. Capone - SDN tutorial 62

Aftermath

* Control intelligence in devices seems possible
— Via Platform-independent abstraction
— Retaining high speed & scalability
— As «small» OpenFlow extension (?!)
* TCAM as «State Machine processor»
— Now Mealy Machines
— Currently working on full XFSM extension
* Rethinking control-data plane SDN
separation?
— Control = Decide! Not decide+enforce!

G. Bianchi & A. Capone - SDN tutorial

63

Applied smartness:
stateful applications

There are science and the applications of science,
bound together as the fruit of the tree which bears it.
[Louis Pasteur]

G. Bianchi & A. Capone - SDN tutorial 64

openstate-sdn.org

OpenState-SDN Welcome to OpenState SDN project.

OpenState is a research effort focused in the development of a stateful data-plane
API for Software-Defined Networking. We propose an extension to current
OpenFlow abstraction that use state machines implemented inside switches to
reduce the need to rely on remote controllers. To know more about our project you
can read our first paper:

G. Bianchi, M. Bonola, A. Capone, and C. Cascone, "OpenState: Programming Platform-
independent Stateful OpenFlow Applications Inside the Switch® ACM SIGCOMM
Computer Communication Review, vol. 44, no. 2, pp. 44-51, 2014. [PDF] [BibTex].
Try OpenState
To try OpenState you need to run our custom version of Mininet.
The following commands have been tested in a clean Mininet v2.1.0 VM (on Ubuntu
14.04). You can download a fresh Mininet VM at this link. For help running Mininet

please refer to http:/mininet.org/

1) Update Mininet install scripts in order to download and configure OpenState
switch/controller. Inside Mininet shell type the following commands:

cd mininet

git remote add openstate https://github.com/OpenState-SDN/mininet.g
git fetch openstate master
git checkout openstate/master

Switch: ofsoftswitch13; Controller: Ryu

G. Bianchi & A. Capone - SDN tutorial

Forwarding Consistency

* Ensure consistency in forwarding decisions for
packets of a same transport layer flow

Example: LAG @Internet Exchange Point

Network Load Balancer
NLB Virtual Ad 5 .168.0.100

Example: Server
Load Balancer

a

(1]

- w

: @

b -l

(<o)

N
© © © ©
N N N N
> > > >
g o g g
o o o o
& w N =

G. Bianchi & A. Capone - SDN tutorial 66

Forwarding Consistency

One to Many:
Intra-flow state handling

Many to One:
Cross-flow state handling

Many to Many:

Inter-stage cross-flow state
handling

G. Bianchi & A. Capone - SDN tutorial

67

Forwarding Consistency: One to Many

10.0.0.2

The first packet of a TCP connection coming from the input port
is sent to one of many possible output ports.

All the next packets of the same TCP connection must be
forwarded on the same selected port.

G. Bianchi & A. Capone - SDN tutorial 68

Forwarding Consistency: One to Many

OpenFlow solution: the controller is in charge of states management.

First packet of each new TCP connection is sent to the controller

in order to:
-select an output port (e.g. randomly) and forward the packet

-install a flow entry for subsequent packets

G. Bianchi & A. Capone - SDN tutorial 69

Forwarding Consistency: One to Many

OpenState solution:

the switch itself handles connection’s state.

A flow is identified by [IP_SRC,IP_DST,TCP_SRC,TCP_DST]
FLOW STATE: output port

First packet of each new TCP connection is sent to the
Group Table in order to:

e select an output port randomly

e store the selected port in the State Table for subsequent

packets

Controller is not involved!

G. Bianchi & A. Capone - SDN tutorial 70

Forwarding Consistency: One to Many

In this case the state is set in the group table

Random Group Entry M

10.0.0.1

Lookup Scope: IP_src, IP_dst, TCP_src,TCP_dst
Update Scope: IP_src, IP_dst, TCP_src,TCP_dst

1) State lookup 2) XFSM state transition
IP_src=10.0.0.1 | 1P dst=10.0.02 | TCP src=2500 | TCP dst=80 | DEFAULT | IP_src=100.0.1 | IP_dsi=10.0.0.2] TCP_src=2500 | TCP_dst=80 |
A
State Table
l XFSM Table
Flow key State ald Actia
IP_src=10.0.0.1 | IP_dst=10.0.0.2 | TCP src=1000 | TCP dst=80 | 1 | : :
DEF. In-port=1 Group(1
IP_src=10.0.0.1 | IP_dst=10.0.0.2 | TCP src=3000 | TCP dst=80 3 T Tnbore Forwafé&) —>
* * : * DEFAULT |- 2 In-port=1_| Forward(3)
3 In-port=1 | Forward(4)
* In-port=2 | Forward(1)
- * In-port=3 | Forward(1)
write * In-port=4 Forward(1)
4) State update
Group Table
2 OUQR s
F 2 1
IP_src=10.0.0.1 | IP_dst=10.0.0.2 | TCP_src=2500 | TCP_dst=80 | Entry 1 Fmﬂ&? 2 éy
Forward(4) 3

G. Bianchi & A. Capone - SDN tutorial 71

Forwarding Consistency: Many to One

Forwarding consistency must be ensured according to packets
received in the reverse direction.

10.0.0.100

10.0.03

The first packet of a TCP connection coming from one of the
many input ports is forwarded on the only output port.

All packets of the reverse flow of the same TCP connection
must be forwarded on the same ingress port.

G. Bianchi & A. Capone - SDN tutorial 72

Forwarding Consistency: Many to One

OpenFlow solution:
the controllerisin charge of states management.

/_w

10.0.0.100

10001

Q/

10.0.0.3

First packet of each new TCP connection is sent to the controller

in order to:
-forward the packet
-install a flow entry for reverse flow’s packets

G. Bianchi & A. Capone - SDN tutorial 73

Forwarding Consistency: Many to One

OpenState solution:
the switch itself handles connection’s state.

A flow is identified by [IP_SRC,IP_DST,TCP_SRC,TCP_DST]
FLOW STATE: input port

First packet of each new TCP connection is forwarded and the
input port is stored to forward response packets

Cross-flow state
Controller is not involved!

G. Bianchi & A. Capone - SDN tutorial 74

Forwarding Consistency: Many to One

Communication Host -> Server \b
Lookup Scope: IP_src, IP_dst,TCP_src,TCP_dst Q&m%
Update Scope: IP_dst,IP_src,TCP_dst,TCP_src \/
1) State lookup 2) XFSM state transition

IP_src=10.0.0.1 | IP dst=10.0.0.100 | TCP src=2500 | TCP dst=80 | ["DEFAULT | P src=100.0.1 | IP_dst=10.0.0.100 | TCP_sro=2500 | TCP dst=80]

State Table
XFSM Table
0 a dlC - D10 A U
IP_src=10.0.0.200 | IP_dst=10.0.0.2 | TCP src=80 | TCP_dst=1000 2 e e ~otin

1 In-port=4 | Forward(1)

.............................. 2 In_port=4 Forward(z)

* * * ¥ DEFAULT 3 In-port=4 | Forward(3)

* In-port=1 | Forward(4) 1 9
* In-port=2 | Forward(4) 2
- * In-port=3 | Forward(4) 3
write

3) State update
£|< = .

IP_src=10.00.100 | IP_dst=10.0.0.1 | TCP src=80 | TcPdst=2500 | DIFFERENT

lookup/update

IP_src=10.0.0.1 | IP_dst=10.0.0.100 | TCP_src=2500 | TCP_dst=80 | scope

G. Bianchi & A. Capone - SDN tutorial 75

Forwarding Consistency: Many to One

Communication Server -> Host

Lookup Scope: IP_src, IP_dst,TCP_src,TCP_dst
Update Scope: IP_dst,IP_src,TCP_dst,TCP_src

\/ 10.0.0.100

1) State lookup 2) XFSM state transition 10003
[1P_src=10.0.0.100 | IP_dst=10.0.01 | TCP src=2500 | TCP dst=80 | [IP_src=10.00.1 | IP_dst=10.0.0.100 | TCP_src=2500 | TCP_dst=80]
State Table
XFSM Table
][0 A 0
| IP_src=10.0.0.200 | IP_dst=10.0.0.2 | TCP_src=80 | TCP_dst=1000 2 - = —
| IP_src=10.0.0.100 | IP_dst=10.0.0.1 | TCP_scr=80 | TCP_dst=2500 1 . inport=4 | Forward()
.............................. 2 In_port=4 Forward(z)
* * ¥ * DEFAULT 3 In-port=4 | Forward(3) -
* In-port=1 | Forward(4) 1
* In-port=2 | Forward(4) 2
* In-port=3 | Forward(4) 3

G. Bianchi & A. Capone - SDN tutorial 76

Forwarding Consistency: Many to Many

Combining the first two, we want here to load balance on the
output ports while doing reverse path forwarding on the input

port
>

\Qé?’lﬁ

10.0.0.2

10.0.0.100

10.0.0.3

The first packet of a TCP connection coming from one of the many input ports is
forwarded to one of many possible output ports.

All the next packets of the same TCP connection must be forwarded on the same
selected output port, while all packets of the reverse flow of the same TCP
connection must be forwarded on the same ingress port.

G. Bianchi & A. Capone - SDN tutorial 77

Forwarding Consistency: Many to Many

OpenState solution

A flow is identified by [IP_SRC,IP_DST,TCP_SRC,TCP_DST]

Two states are needed for each bidirectional flow:
FLOW STATE 1: output port
FLOW STATE 2: input port

For each first packet of each new TCP connection:

e packet is forwarded to a random output port

* the selected output port is stored in the State Table O
* the input portis stored in the State Table 1

G. Bianchi & A. Capone - SDN tutorial 78

Forwarding Consistency: Example Results

Results will show the average value of the

time required by 1000 TCP SYN packets to cross the switches at increasing rate.

500

One-to-Many

400

500

en vSwitch

enState PolyFit
300 enFlow PolyFit
en vSwitch PolyFit

Many-

[ms]
[ms]

200

en vSwitch
— OpenState PolyFit
— OpenFlow PolyFit
en vSwitch PolyFit

200

300

100

[ms]

100

200

Many-to-Many :
Z:svtsa‘gts:wﬁt 0] pen Flow
e roy ofsoftswitch13

OpenFlow
Open Vswitch

OpenState

ofsoftswitch13
OpenState
ofsoftswitch13
Switch: ofsoftswitch13; Controller: Ryu
G. Bianchi & A. Capone - SDN tutorial 79

Fault Tolerance

* Ensure the network failure resiliency, quickly
readapting the routing after a failure

* Fundamental function in any network (telco
operators, data centers)

 Weak support in OpenFlow

G. Bianchi & A. Capone - SDN tutorial 80

Fault Tolerance

 OpenFlow

Fast failover: local

reroute based on port

states (Group table)
(S

/

But what if a local
reroute in not
available ???

Q

G. Bianchi & A. Capone - SDN tutorial

81

Fault Tolerance

 OpenFlow

Obviously it is always possible to rely on the
controller to:

* forward the packet on the backup path
 install flow entries for the backup path

G. Bianchi & A. Capone - SDN tutorial 82

Fault Tolerance in OpenState

With OpenState the switch itself can react to the fault

‘ S =

Proposed solution:

=>» Faults are signaled using the same data packets
=>» Packets are tagged and sent back

=>» Packets are sent back until matched against a node able
to respond to that fault

G. Bianchi & A. Capone - SDN tutorial 83

Fault Tolerance

OpenState

« ADETOUR is enabled based on the specific failure without
constraints

* Backup paths can be pre-computed and installed by the
controller (traffic engineering and quality/congestion control)

* The controller is entitled to restore the primary path once the
fault has been resolved

[CAP14] A. Capone, C. Cascone, A. Nguyen, B. Sanso, “Detour Planning for Fast and
Reliable Failure Recovery in SDN with OpenState”, available on ArXiv, Nov. 2014.

G. Bianchi & A. Capone - SDN tutorial 84

Fault Tolerance: Fault Reaction Example
OpenState

Redirect Node:

FLOW STATE = DEF 20 GLOBAL REGISTERS = 00 01
TAG = STATE = 20 TAG = FAULT_ID = 20

OO

s,

G. Bianchi & A. Capone - SDN tutorial 85

Fault Tolerance:
Example on larger network

‘ Primary node

@ Detect node

@ Forward-back node
Redirect node

‘ Detour node

r-1-9-f-12-13

G. Bianchi & A. Capone - SDN tutoria

86

Fault Tolerance: Exampe Results

mmm OpenFlow

OpenFlow:
Controller
applications

eeeeeeeeeeeeeeeeee

mmm OpenState

OpenState:
Precomputed

backup paths

uuuuuuuuuuuuuuuuuu

G. Bianchi & A. Capone - SDN tutorial

87

Thanks

=11 Giuseppe Bianchi
=) Email: giuseppe.bianchi@uniroma?Z.it

OpenState: openstate-sdn.org
EU project BEBA (web site available soon) — follow us!

This slide-set soon available on OpenState web site!

G. Bianchi & A. Capone - SDN tutorial

88

