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Setting the scene: a brief intro to 
SDN and OpenFlow

The future has already arrived. It's just not 
evenly distributed yet. [William Gibson]
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Forwarding HW

OS

Classic network paradigm
Distributed network functions

Forwarding HW

OS

Forwarding HW

OS

State distribution mechanism
(protocols)

Router/switch/appliance
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Vertically integrated

Forwarding HW

OS

AppApp App

L3 Routing, L2 switching, ACL, VPNs, etc… 

Control-plane

Data-plane

Closed 
platform!

Protocols guarantee interoperability…
But what’s the drawback?
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Way too many standards?

Source: IETF
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Vendors dominated?

Source: IETF
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Non-standard management

• Configuration interfaces vary across:
– Different vendors
– Different devices of same vendor
– Different firmware versions of same device!

• SNMP fail
– Proliferation of non-standard MIBs
– Partially implemented standard MIBS
– IETF recently published a recommendation to stop 

producing writable MIB modules 
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The (new) paradigm

Data-plane

Control-plane

Data-plane

Control-plane

Data-plane

Control-plane

Switch

Data-plane

Data-plane

Data-plane

Control-plane
Programmable

switch

Traditional networking Software-Defined Networking
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SDN architecture

Simple forwarding 
HW

Simple forwarding 
HW

Simple forwarding 
HW

Simple forwarding 
HW

Network OS

App App App

HW open interface

Network control API
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From protocols to API

• HW forwarding abstraction
– low-level primitives to describe packet forwarding

• Control plane API
– Network topology abstraction
– High-level access to switch programming
– Common libraries
• Host tracking
• Shortest-path
• Etc..
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Success keys
• Low-level HW open interface
• Good, extensible and possibly open-source 

Network OS
• Open market for third-party network 

application developers
– Network app store

• Several attempts (Active Networks, IETF 
ForCES), but one winner …
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OpenFlow
• Stanford, 2008
• Clean Slate research program
• “With what we know today, if we were to start 

again with a clean slate, how would we design 
a global communications infrastructure?”
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OpenFlow Protocol 
(SSL/TCP)

OpenFlow controller

In-bound or out-bound

OpenFlow
• OpenFlow is actually a pragmatic approach to 

SDN based on a simple HW abstraction that can 
be implemented with current HW commercial 
platforms
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What is OpenFlow

• Switch abstraction
– Match/action flow table
– Flow counters
– It doesn’t describe how this should be implemented in 

switches (vendor neutral !!!)
• Application layer protocol
– Binary wire protocol, messages to program the flow 

table
• Transport protocol
– TCP, TLS
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Flow table
Match Actions Counters

1. Forward (one or more ports)
2. Drop
3. Encapsulate and send to controller
4. Header rewrite
5. Push/pop MPLS label / VLAN tag
6. Queues + bitrate limiter (bit/s)
7. Etc..

Bytes + packets

Switch
Port

MAC
src

MAC
dst

Eth
type

VLAN
ID

IP
Src

IP
Dst

IP
Prot

L4
sport

L4
dport

VLAN
pcp

IP
ToS

Slide courtesy: Rob Sherwood
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Switch abstraction

OpenFlow client

Flow table
(aka Forwarding Information Base)

OpenFlow controller

Software

Hardware (e.g. TCAM)
or software
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Example

Description Port MAC src MAC
dst

Eth 
type

VLAN 
ID

IP Src IP Dest TCP 
sport

TCP 
dport

Action

L2 switching * * 00:1f:.. * * * * * * Port6

L3 routing * * * * * * 5.6.*.* * * Port6

Micro-flow 
handling

3 00:20.. 00:1f.. 0x800 Vlan1 1.2.3.4 5.6.7.8 4 17264 Port4

Firewall * * * * * * * * 22 Drop

VLAN 
switching

* * 00:1f.. * Vlan1 * * * * Port6,
port7, 
port8
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Reactive vs Proactive

• Reactive
– Start with flow table empty
– First packet of a flow sent to controller
– Controller install flow entries
– Good for stateful forwarding:

• L2 switching, dynamic firewall, resource management

• Proactive
– Flow entries installed at switch boot
– Good for stateless forwarding:

• L3 routing, static firewall, etc..

G. Bianchi & A. Capone - SDN tutorial 20



OpenFlow 1.0 recap

Flow table

Redirect to controller

Packet Apply actions, forward

Drop
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Models can be perfect and clean, 
reality is dirty!

• The match/action model can ideally be used to program 
any network behavior and to get rid of protocol 
limitations at any level

• But unfortunately, with OF:
– Matches can be done only on a set of predefined header 

fields (Ethernet, IPv4, MPLS, VLAN tag, etc.)
– Actions are limited to a rather small set
– Header manipulation (like adding label/tags, rewriting of 

fields, etc.) is limited to standard schemes
• As a result, OF is not really protocol independent and 

standards (including OF standards) are still necessary
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Where do OF limitations come from?
• OpenFlow has been designed having in 

mind current specialized HW architecture 
for switches

• Specialized HW is still fundamental in 
networking
– General purpose HW (CPU) and soft-

switches are still 2 order of magnitude 
slower

– Architectures based network processors 
are also at least 1 order of magnitude 
slower

• The reference HW model for OF flow 
tables is TCAM (Ternary Content 
Addressable Memory)
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Flow table
(TCAM)

Redirect to 
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Drop



Where do OF limitations come from?
• TCAMs however are typically expensive components that 

are used by manufacturers only when strictly necessary
• Less expensive memory components based on predefined 

search keys are often used for most of the common 
functions of a switch

• OF success depends on its “vendor neutral” approach 
where implementations issues are completely opaque 
(including reuse of standard modules for e.g. MAC and IP 
forwarding)

• Specialized ASICs (Application-Specific Integrated Circuits) 
are typically complex with a number of hard limitations on 
table types, sizes, and match depth 
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Switches cannot remain dumb: 
Starting the process of data 

plane evolution

One man alone can be pretty dumb sometimes, but for real 
bona fide stupidity, there ain't nothin' can beat teamwork. 
[Edward Abbey]
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Evolution of the AL in OpenFlow: OF 1.1
• Single tables are costly: all possible combinations of 

header values in a single long table
• Solution: Multiple Match Tables (MMT)
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• New actions:
– Add metadata: parameters added and passed to next table
– Goto table: possibility to go to specific tables for further 

processing

OpenFlow Switch Specification Version 1.1.0 Implemented

Table
0

Table
1

Table
n

Packet Execute 
Action 

Set

Packet
In

Action
SetAction

Set = {}

OpenFlow Switch

Packet
Out...

Ingress
port

Packet +
ingress port +

metadata

Action
Set

(a) Packets are matched against multiple tables in the pipeline

Match fields:
Ingress port +
metadata +

pkt hdrs

Action set

Flow 
Table

➀ Find highest-priority matching flow entry

➁ Apply instructions:
       i. Modify packet & update match fields
          (apply actions instruction)
      ii. Update action set (clear actions and/or
          write actions instructions)
     iii. Update metadata

➂ Send match data and action set to
     next table

➀

➁

➂
Action set

Match fields:
Ingress port +
metadata +

pkt hdrs

(b) Per-table packet processing

Figure 2: Packet flow through the processing pipeline

The flow tables of an OpenFlow switch are sequentially numbered, starting at 0. Pipeline processing
always starts at the first flow table: the packet is first matched against entries of flow table 0. Other flow
tables may be used depending on the outcome of the match in the first table.

If the packet matches a flow entry in a flow table, the corresponding instruction set is executed (see
4.4). The instructions in the flow entry may explicitly direct the packet to another flow table (using the
Goto Instruction, see 4.6), where the same process is repeated again. A flow entry can only direct a packet
to a flow table number which is greater than its own flow table number, in other words pipeline processing
can only go forward and not backward. Obviously, the flow entries of the last table of the pipeline can
not include the Goto instruction. If the matching flow entry does not direct packets to another flow table,
pipeline processing stops at this table. When pipeline processing stops, the packet is processed with its
associated action set and usually forwarded (see 4.7).

If the packet does not match a flow entry in a flow table, this is a table miss. The behavior on ta-
ble miss depends on the table configuration; the default is to send packets to the controller over the control
channel via a packet-in message (see 5.1.2), another options is to drop the packet. A table can also specify
that on a table miss the packet processing should continue; in this case the packet is processed by the next
sequentially numbered table.
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Evolution of the AL in OpenFlow: OF 1.1

• Packets of the same flow are applied the same actions 
unless the table entry is modified by the controller

• Not good for some common and important cases (e.g. 
multicast, multipath load balancing, failure reaction, etc.)

• Solution: Group tables
– Goto table “group table n”
– List of buckets of actions
– All or some of the buckets are executed depending on the type

• Types of Group tables
– All (multicast)
– Select (multipath)
– Fast-failover (protection switching)
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Evolution of the AL in OpenFlow: OF 1.1
• Fast failover
• Note that this is the first “stateful” behavior in the data 

plane introduced in OF !!!
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Port A
Status 

monitoring

Port B
Status 

monitoring

Port C
Status 

monitoring

Port D
Status 

monitoring

Group table 
fast failover

Action bucket 1:
FWD Port A, …

Action bucket 2:
FWD Port B, …

Action bucket 3:
FWD Port C, …

Action bucket 4:
FWD Port D, …

A
B

CD



Evolution of the AL in OpenFlow: OF 1.2

• Support for IPv6, new match fields:
– source address, destination address, protocol 

number, traffic class, ICMPv6 type, ICMPv6 code, 
IPv6 neighbor discovery header fields, and IPv6 
flow labels

• Extensible match (Type Length Value)
• Experimenter extensions
• Full VLAN and MPLS support
• Multiple controllers
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Evolution of the AL in OpenFlow: OF 1.3
• Initial traffic shaping and QoS support
– Meters: tables (accessed as usual with “goto 

table”) for collecting statistics on traffic flows and 
applying rate-limiters
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Meter Table

Meter indentifier Meter band Counters

… … …

… … …

… … …

Type Rate Counters Type/argument



Evolution of the AL in OpenFlow: OF 1.3

• More extensible wire protocol
• Synchronized tables
– tables with synchronized flow entries

• Bundles
– similar to transactional updates in DB

• Support for optical ports
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Next OF: discussion started

Within ONF
• Tunnel support
• L4-L7 service support
• Error handling
• Fitness for carrier use
– Support for OAM in its various forms

• Flow state (…)
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Next OF: discussion started

• Flow state
– The capability to store / access flow metadata that 

persists for lifetime of flow (not just current packet)
– Potential to enable a variety of new capabilities:

• Fragment handling without reassembly
• Relation between bidirectional flows (e.g., RDI)
• Autonomous flow learning + flow state tracking
• MAC learning
• TCP proxy

– Hierarchies of flows
• e.g. FTP control / data, all belonging to a user, etc.

G. Bianchi & A. Capone - SDN tutorial 33

[MAC13] Ben Mack-Crane, “OpenFlow Extensions”, US Ignite ONF GENI workshop, Oct 2013 



Also abstraction “involutions” (?): 
Typed tables

• “A step back to ensure wider applicability”
• A third way between reactive and proactive
• Pre-run-time description of switch-level 

“behavioral abstraction” (tell to the switch which 
types of flowmods will be instantiated at run time)

• Limit types supported according to HW type
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ONF Forwarding Abstractions WG

OpenFlow
1.0 

Typed tables patterns: Forwarding Elements (F:E.)

Constrained 
OpenFlow 1.1 

Layer 3 
IPv4 

Stateless 
Generic 
Tunnel 

Statefull
Generic 
Tunnel 

802.1D 
Forwarding (…)



Further flexibility limitations due to 
specialized HW

• OF introduced the MMT model but does not mandate 
the width, depth, or even the number of tables

• OF allows the introduction of new match fields through 
a user-defined field facility

• But existing switch chips implement a small (4–8) 
number of tables whose widths, depths, and execution 
order are set when the chip is fabricated. 

• This severely limits flexibility through specialized chips:
– Chip for core routers: large 32-bit IP longest matching table 

and a small 128 bit ACL match table
– Chip for enterprise router: small 32-bit IP table and large 

ACL table, with an additional MAC address match tables
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Reconfigurable Match Tables (RMT)
• Recent proposal by McKeown, Varghese et al. 

[BOS13]
• RMT
– Field definitions can be altered and new fields added 
– Number, topology, widths, and depths of match tables 

can be specified, subject only to an overall resource 
limit on the number of matched bits

– New actions may be defined
– Arbitrarily modified packets can be placed in specified 

queues, for output at any subset of ports, with a 
queuing discipline specified for each queue.
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Reconfigurable Match Tables (RMT)
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Figure 1: RMT model architecture.

2. Flexible Resource Allocation Minimizing Resource Waste:

A physical pipeline stage has some resources (e.g., CPU,
memory). The resources needed for a logical stage can vary
considerably. For example, a firewall may require all ACLs,
a core router may require only prefix matches, and an edge
router may require some of each. By flexibly allocating phys-
ical stages to logical stages, one can reconfigure the pipeline
to metamorphose from a firewall to a core router in the field.
The number of physical stages N should be large enough
so that a logical stage that uses few resource will waste at
most 1/N -th of the resources. Of course, increasing N will
increase overhead (wiring, power): in our chip design we
chose N = 32 as a compromise between reducing resource
wastage and hardware overhead.

3. Layout Optimality: As shown in Figure 1b, a logical
stage can be assigned more memory by assigning the logical
stage to multiple contiguous physical stages. An alternate
design is to assign each logical stage to a decoupled set of
memories via a crossbar [4]. While this design is more flexi-
ble (any memory bank can be allocated to any stage), worst
case wire delays between a processing stage and memories
will grow at least as

p
M , which in router chips that require

a large amount of memory M can be large. While these

delays can be ameliorated by pipelining, the ultimate chal-
lenge in such a design is wiring: unless the current match
and action widths (1280 bits) are reduced, running so many
wires between every stage and every memory may well be
impossible.
In sum, the advantage of Figure 1b is that it uses a tiled

architecture with short wires whose resources can be recon-
figured with minimal waste. We acknowledge two disadvan-
tages. First, having a larger number of physical stages seems
to inflate power requirements. Second, this implementation
architecture conflates processing and memory allocation. A
logical stage that wants more processing must be allocated
two physical stages, but then it gets twice as much memory
even though it may not need it. In practice, neither issue
is significant. Our chip design shows that the power used
by the stage processors is at most 10% of the overall power
usage. Second, in networking most use cases are dominated
by memory use, not processing.

2.2 Restrictions for Realizability
The physical pipeline stage architecture needs restrictions

to allow terabit-speed realization:
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A physical pipeline stage has some resources (e.g., CPU,
memory). The resources needed for a logical stage can vary
considerably. For example, a firewall may require all ACLs,
a core router may require only prefix matches, and an edge
router may require some of each. By flexibly allocating phys-
ical stages to logical stages, one can reconfigure the pipeline
to metamorphose from a firewall to a core router in the field.
The number of physical stages N should be large enough
so that a logical stage that uses few resource will waste at
most 1/N -th of the resources. Of course, increasing N will
increase overhead (wiring, power): in our chip design we
chose N = 32 as a compromise between reducing resource
wastage and hardware overhead.

3. Layout Optimality: As shown in Figure 1b, a logical
stage can be assigned more memory by assigning the logical
stage to multiple contiguous physical stages. An alternate
design is to assign each logical stage to a decoupled set of
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ble (any memory bank can be allocated to any stage), worst
case wire delays between a processing stage and memories
will grow at least as
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impossible.
In sum, the advantage of Figure 1b is that it uses a tiled

architecture with short wires whose resources can be recon-
figured with minimal waste. We acknowledge two disadvan-
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to inflate power requirements. Second, this implementation
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logical stage that wants more processing must be allocated
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even though it may not need it. In practice, neither issue
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All the way down to programmability: P4
• Recent “strawman proposal” by McKeown, Rexford et al. 

[BOS13b]
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[BOS13b] P. Bosshart, D. Daly, M. Izzard, N. McKeown, J. Rexford, D. Talayco, A. Vahdat, G. Varghese, D. 

Walker, “P4: Programming protocol-independent packet processors,” arXiv:1312.1719.

• Towards real protocol independence:
– No predefined fields, but reconfigurable fields
– Protocol independence, switches not be tied to 

any specific network protocols 
– Target independence: flexible packet-processing 

functionality independently of the specifics of the 
underlying hardware.

• Advanced “configurability” 



All the way down to programmability: P4
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• Configurability achieved with a programming language
describing parsing and control

[BOS13b] P. Bosshart, D. Daly, M. Izzard, N. McKeown, J. Rexford, D. Talayco, A. Vahdat, G. Varghese, D. 

Walker, “P4: Programming protocol-independent packet processors,” arXiv:1312.1719.

• Programs are “compiled” according to the specific specialized 
HW



Protocol Oblivious Forwarding (POF)
• Removing/neglecting constraints on general HW can lead 

to extreme flexibility of a clean slate approach (not in the 
OF evolution track)

• POF proposal by Huawei [SON13]
• POF makes the forwarding plane totally protocol-oblivious 
• The POF FE has no need to understand the packet format. 
• POF FE execute instruction of its controller to:
– extract and assemble the search keys from the packet header, 
– conduct the table lookups,
– execute the associated instructions (in the form of executable 

code written in FIS or compiled from FIS). 
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Tiny programs in the packets
• Taking programmability to the extreme …
• Remember “active networks” …
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[JEY13] V. Jeyakumar, M. Alizadeh, C. Kim, and D. Mazieres, “Tiny packet programs for low-latency 

network control and monitoring,”. HotSDN ’13

Instruction Meaning
LOAD, PUSH Copy values from switch to packet
STORE, POP Copy values from packet to switch
CSTORE Conditional store for atomic operations
CEXEC Conditionally execute the subsequent instructions

Table 1: The tasks we present in the paper require support only for
the above instructions, whose operands will be clear when we discuss
examples.

performance requirements.2 The instructions are simple in
that they execute within the time budget for handling small
sized packets at line-rate. These instructions free the ASIC
of complex tasks, leaving end-hosts to coordinate with the
network directly in the dataplane to achieve a desired func-
tionality. We show how even a minimal read and write in-
struction set enables new capabilities on a network, many of
which would otherwise be feasible today only after years of
investment on ASIC development.

This interface raises a number of questions and concerns,
which is the subject of this paper.
• How general is this interface? In §2, we walk through

refactoring three different network tasks on a TPP enabled
Linux Router using read/write instructions.

• Can TPPs work at line-rate and what are the overheads?
(§3) Restricting TPPs to (say) five instructions per-packet
requires only 20 bytes of instruction overhead and up to
60 bytes of output space, and execution takes less than a
packet’s transmission time. Nonetheless, we show how
network tasks can use many TPPs to overcome this limi-
tation.

• Where is it applicable, and what are its security implica-
tions? (§4) The rise of large-scale and privately owned
networks (e.g., datacenters, WANs) makes the TPP ap-
proach attractive. In such networks, only trusted entities
may use TPPs.

2. EXAMPLE PROGRAMS
In this section we use a sequence of tiny packet programs

(TPPs) at end-hosts to implement three network tasks: (i)
micro-burst detection, (ii) a rate based congestion control
algorithm, and (iii) a network forwarding plane debugger.

What is a TPP? A TPP is any ethernet packet with a
uniquely identifiable header that contains instructions, some
additional space (packet memory), and encapsulates an op-
tional ethernet payload. The TPP exclusively owns its packet
memory, but also has access to shared memory on the switch
(its SRAM and internal registers) through a virtual address
interface. TPPs are executed on a tiny CPU (TCPU) in the
dataplane by the ASIC, but are forwarded just like other
packets. TPPs use a very minimal instruction set listed in
Table 1. Section 3 talks about the structure of a TPP, the
virtual address space, and the TCPU in greater detail.

2A 64-port 10GbE switch has to process about a billion 64-byte-
packets/second to operate at line-rate.

SP = 0x0
PUSH [QSize]

SP = 0x4
PUSH [QSize]

0x00

SP = 0x8
PUSH [QSize]

0x00
0xa0

SP = 0xc
PUSH [QSize]

0x00
0xa0
0x0e

Packet memory is preallocated.  The TPP never grows/shrinks inside the network.

Ethernet Header

Other headers
(e.g., TCP/IP)

Figure 1: Visualizing the execution of a TPP that queries the network
for queue sizes. As the TPP traverses a network of switches, the ASIC
executes the program, which modifies the packet to reflect the queue
sizes on the link.

For readability, when we write TPPs in an x86-like assem-
bly language, we will refer to specific dataplane statistics us-
ing the notation [Namespace:Statistic]. For instance,
[Queue:QueueSize] will be compiled a virtual memory
address (say) 0xb000 at compile time. To the ASIC, the ad-
dress 0xb000 refers to the queue size on the link the packet
will be sent out. To simplify discussion, we assume that the
address is the same across all network devices, and that they
are unaffected by network operation (such as routing).

2.1 Micro-burst Detection
In low-latency networks such as datacenters, queueing

delays contribute significantly to overall network latency.
Queue occupancy fluctuations due to small-timescale con-
gestion (i.e., “micro-bursts”) are hard to detect as queues
change at timescales of a few RTTs, which can be as small as
a few 100 microseconds. Today’s monitoring mechanisms
operate only on timescales that are 10s of seconds at best,
and are therefore ill-suited for isolating micro-bursts.

TPPs can provide fine-grained per-RTT, or even per-
packet visibility into queue evolution inside the network.
Today, the ASIC memory manager already keeps track of
per-port, per-queue occupancies in its registers. If packet
memory is addressed like a stack, then, the instruction PUSH
[Queue:QueueSize] copies the queue register onto packet
memory. As the packet traverses each hop, the packet mem-
ory records snapshots of queue size statistics at each hop.
The queue sizes are useful in diagnosing micro-bursts, as
they are not an average statistic. They are recorded the in-
stant the packet traversed the switch. Figure 1 shows how
the state of of a sample packet as it traverses a network.
In the figure, SP is the stack pointer which points to the
next offset inside the packet memory where new values may
be pushed. Since the maximum number of hops is small
within a datacenter (typically 5–7), the end-host preallocates
enough packet memory to store queue sizes. Moreover, the
end-host knows exactly how to interpret values in the packet

2



Deeply Programmable Networks (FLARE)
• Fully programmable control plane
• Fully programmable data plane
• Flexible and extensible API for both planes
• Experimental implementation 
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Aki Nakao, FLARE Project, NakaoLab, The university of Tokyo.

FLARE Node Implementation 

36-72 cores 
(upto 100-200 cores in future) 

(board designed by NakaoLab) 

x86 
Processor 

Many Core 
Processor 

The University of Tokyo Confidential  

Hierarchical Resource Management 
• General Purpose Processor(s) 
• Network Processor(s) 
• ...and more types of processors 

18 18



Not too much not too little: 
OpenState and stateful data planes

Too clever is dumb.
[Ogden Nash]
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Looking for the “right” abstraction
• Programmability and real world viability
– High levels of (deep) programmability in the data 

and control planes since ages
• Active Networks
• IETF ForCES

• Keywords for success:
– Pragmatism
– Compromise
– “right” mix of programmability: right level of 

abstraction
• Many wonderful programmable platforms buried in the 

“lab world”
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Remember: OF meant to be a compromise
[original quotes: from OF 2008 paper]

• Best approach: “persuade commercial name-brand 
equipment vendors to provide an open, programmable, 
virtualized platform on their switches and routers”
– Plainly speaking: open the box!! No way…

• Viable approach: “compromise on generality and seek 
a degree of switch flexibility that is
– High performance and low cost
– Capable of supporting a broad range of research
– Consistent with vendors’ need for closed 

platforms.



OF forces separation of data and control

Logically-centralized control

DUMB!

SMART!

Events from switches
Topology changes,
Traffic statistics,
Arriving packets

Commands to switches
(Un)install rules,
Query statistics,
Send packets
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Centralized Control: pros and cons
• PROS:
– Central view of the network as a whole

• Network states, etc
– One-click network config/deploy

• Platform agnosting switch API is key - e.g. 
OpenFlow forwarding abstraction

• CONS:
– Control latency!!!

• O(second)
1s = 300M packets lost @ 100 gbps

– Signalling overhead

Great idea for 
network-wide states

and «big picture» 
decisions

Poor idea for local
states/decision, 

(way!) better
handled locally

(less delay, less load)
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Distributed controllers
the «common» way to address such cons

A non-solution! 
still slow path latency!!

Proprietary controller extensions?
Back to Babel?

«true» fast path solution: update 
forwarding rules in 1 packet
time – 3 ns @ 40B x 100 Gbps

3 ns = 60cm signal propagation…
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SMART!

SMART!

Events from switches & central rule updates
Restricted to those of interest 
for GLOBAL decisions

Inject “switch control programs”
Change forwarding behavior as 
specified by “this program” IF
(local) events occur

Decision on how network should operate
remains at the controller (SDN vision)
But “execution” of forwarding plane 
updates can be locally delegated

Local processing: Ultra low Latency: 
o(nanosec) versus o(sec)

Local states: lower signalling

Our vision



What is missing in the picture
Behavioral Description

src=1.2.*.*, dest=3.4.5.* à drop                        
src = *.*.*.*, dest=3.4.*.* à forward(2)
src=10.1.2.3, dest=*.*.*.* à send to controller

«generic» 
forwarding

device

Any vendor, any size, any HW/SW platform…

OF forwarding abstraction insufficient!!
Platform-agnostic stateful processing: how to? 

«repurposed
» device

G. Bianchi & A. Capone - SDN tutorial 50



Easier said than done
• We need a switch architecture and API which is…

– High performance: control tasks executed at wire-speed (packet-
based events)

– Platform-independent: consistent with vendors’ needs for 
closed platforms

– Low cost and immediately viable: based on commodity HW

Apparently, far beyond OpenFlow switches…

Our (perhaps surprising?) finding: 
much closer to OF than expected!!
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Our findings at a glance

• Any control program that can be described by 
a Mealy (Finite State) Machine is already (!) 
compliant with OF1.3

• MM + Bidirectional flow state handling 
requires minimal hardware extensions to 
OF1.1+

• Proof of concept HW and SW implementation
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Our approach: OpenState

easier understood via a running 
example: port knocking
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[CCR14] G. Bianchi, M. Bonola, A. Capone, C. Cascone, “OpenState: programming 
platform-independent stateful OpenFlow applications inside the switch”, ACM 
Computer Communication Review, vol. 44, no. 2, April 2014.
[ARX14] G. Bianchi, M. Bonola, A. Capone, C. Cascone, S. Pontarelli, “Towards Wire-
speed Platform-agnostic Control of OpenFlow Switches”, available on ArXiv, 2014.



Remember OF match/action API

Multiple flow tables
since OF version 1.1

Switch
Port

MAC
src

MAC
dst

Eth
type

VLAN
ID

IP
Src

IP
Dst

IP
Prot

TCP
sport

TCP
dport

Matching
Rule Action

1. FORWARD TO PORT
2. ENCAPSULATE&FORWARD
3. DROP
4. …
Extensible

Vendor-implementedProgrammabile logic

Pre-implemented matching engine
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Background: Port Knocking firewall
knock «code»: 5123, 6234, 7345, 8456

IPsrc=1.2.3.4 Port=5123 Drop(); 1.2.3.4 à 1° knock OK

IPsrc=1.2.3.4 Port=6234 Drop(); 1.2.3.4 à 2° knock OK

IPsrc=1.2.3.4 Port=7345 Drop(); 1.2.3.4 à 3° knock OK

IPsrc=1.2.3.4 Port=8456 Drop(); 1.2.3.4 à OPEN port SSH

IPsrc=1.2.3.4 Port=22 Forward()
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Port Knocking @ controller

IPsrc=any Port=any
DROP

controller

Encapsulate & forward
ALL packets of ALL flows

IPsrc=any Port=any

Maintain Knock state per flow

When knock sequence
finalized, add entry 
<Ipsrc, port=22; forward>

Lots of overhead!! 
Needed as no «knock» state handled in switch
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«Abstract» description for port 
knocking: Mealy Machine

DEFAULT Stage 1 Stage 2 Stage 3 OPEN

Port=6234
Drop()

Port!=6234
Drop()

Port!=5123
Drop()

Port=5123
Drop()

Port=7345
Drop()

Port=8456
Drop()

Port!=7345
Drop()

Port!=8456
Drop()

Port=22
Forward()

Port!=22
Drop()
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Can transform in a flow table? Yes: 
MATCH: <state, port> à ACTION: <drop/forward, state_transition>

Plus a state lookup/update

state event

DEFAULT

STAGE-1

Port=5123

Port=6234

STAGE-2

STAGE-3

Port=7345

Port=8456

OPEN Port=22

OPEN

*

Port=*

Port=*

Match fields Actions

action Next-state

drop

drop

STAGE-1

STAGE-2

drop

drop

STAGE-3

OPEN

forward OPEN

drop

drop

OPEN

DEFAULT

IPsrc PortMetadata:
State-label

State DB

State DB

IpsrcàOPEN

Ipsrc: ??
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Putting all together

Flow key state
IPsrc= … …
Ipsrc= … …

…   …   …
…   …   …

IPsrc=1.2.3.4
IPsrc=5.6.7.8

STAGE-3
OPEN

IPsrc= no match DEFAULT
IPsrc= … …

State Table

…   …   …

IPsrc=1.2.3.4 Port=8456

1) State lookup

state event
DEFAULT
STAGE-1

Port=5123
Port=6234

STAGE-2
STAGE-3

Port=7345
Port=8456

OPEN Port=22
OPEN

*
Port=*
Port=*

XFSM Table
Match fields Actions

action Next-state
drop
drop

STAGE-1
STAGE-2

drop
drop

STAGE-3
OPEN

forward OPEN
drop
drop

OPEN
DEFAULT

IPsrc=1.2.3.4 Port=8456STAGE-3
2) XFSM state transition

IPsrc=1.2.3.4 Port=8456

OPEN

3) State update

write

Write: OPEN

1 «program» XFSM table for all flows
(same knocking sequence)

N states, one per (active) flow
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Proof of concept

• SW implementation: 
– Trivial modifications to SoftSwitch
– Public domain

• HW implementation:
– 5 clock (2 SRAM read + 2 TCAM + 1 SRAM write)
– 10 Gbps just requires 156 MHz clock TCAM, trivial
– Optimization in progress (pipelining) for 100 Gbps. 
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Cross-flow state handling

MACdst MACsrc
Flow key state

48 bit MAC addr Port #
lookup

State Table

MACdst MACsrc
Flow key state

48 bit MAC addr Port #
update

State Table

state event
Port# *

action Next-state
forward In-port

XFSM Table

DIFFERENT lookup/update scope

Field 1 Field 2 Field N

Flowkey selector Read/write signal

• Yes but what about MAC learning, multi-port protocols 
(e.g., FTP), bidirectional flow handling, etc?
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Current challenge
Prove programmability of complex functions

DONE:
• Port Knocking
• MAC learning
• Label/address

advertisement learning
• Reverse Path Forwarding
• Flow-consistent Load

Balancing
• DDoS multi-stage flow 

marking
• …

Our challenge: towards an open «flow processor»?

CHALLENGE:
è IDS/DPI
è TCP flow processing
èMonitoring
è…

Need new «actions»
Need extra logic (full XFSM)
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All (!) otherwise not possible without
explicit controller’s involvement or 

custom distrib. control…



Aftermath
• Control intelligence in devices seems possible
– Via Platform-independent abstraction
– Retaining high speed & scalability
– As «small» OpenFlow extension (?!)

• TCAM as «State Machine processor»
– Now Mealy Machines
– Currently working on full XFSM extension

• Rethinking control-data plane SDN 
separation?
– Control = Decide! Not decide+enforce!
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Applied smartness: 
stateful applications

There are science and the applications of science, 
bound together as the fruit of the tree which bears it. 
[Louis Pasteur]
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openstate-sdn.org
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Switch: ofsoftswitch13; Controller: Ryu



Forwarding Consistency
• Ensure consistency in forwarding decisions for 

packets of a same transport layer flow
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Example: LAG @Internet Exchange Point

Example: Server 
Load Balancer



Forwarding Consistency
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One to Many:
Intra-flow state handling

Many to One:
Cross-flow state handling

Many to Many:
Inter-stage cross-flow state 
handling



Forwarding Consistency: One to Many 
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The first packet of a TCP connection coming from the input port
is sent to one of many possible output ports.

All the next packets of the same TCP connection must be 
forwarded on the same selected port.



Forwarding Consistency: One to Many 
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OpenFlow solution: the controller is in charge of states management.

controller

First packet of each new TCP connection is sent to the controller 
in order to:
-select an output port (e.g. randomly) and forward the packet
-install a flow entry for subsequent packets



Forwarding Consistency: One to Many 
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Controller is not involved!

OpenState solution:
the switch itself handles connection’s state.

A flow is identified by [IP_SRC,IP_DST,TCP_SRC,TCP_DST]
FLOW STATE: output port

First packet of each new TCP connection is sent to the 
Group Table in order to:
• select an output port randomly
• store the selected port in the State Table for subsequent 

packets 



# action Next-state

Flow key State

State Table

IP_src=10.0.0.1

1) State lookup

state event
DEF.

1
In-port=1
In-port=1

2
3

In-port=1
In-port=1

* In-port=2
*
*

In-port=3
In-port=4

XFSM Table
Match fields Actions

action
Group(1)

Forward(2)
Forward(3)
Forward(4)
Forward(1)
Forward(1)
Forward(1)

2) XFSM state transition

2

4) State update
write

• In this case the state is set in the group table
• Random Group Entry

Lookup Scope:  IP_src, IP_dst, TCP_src,TCP_dst
Update Scope:  IP_src, IP_dst, TCP_src,TCP_dst

IP_dst=10.0.0.2 TCP_src=2500 TCP_dst=80

IP_src=10.0.0.1 IP_dst=10.0.0.2 TCP_src=1000 TCP_dst=80
… … … … … … … …

IP_src=10.0.0.1 IP_dst=10.0.0.2 TCP_src=3000 TCP_dst=80
* * * *

1
… …

3
DEFAULT

IP_src=10.0.0.1 IP_dst=10.0.0.2 TCP_src=2500 TCP_dst=80DEFAULT

Group Entry Buckets

Entry 1
Forward(2) 1
Forward(3) 2
Forward(4) 3

Group Table

IP_dst=10.0.0.2IP_src=10.0.0.1 TCP_src=2500 TCP_src=80 2

IP_src=10.0.0.1 IP_dst=10.0.0.2 TCP_src=2500 TCP_dst=80

Forwarding Consistency: One to Many 
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Forwarding Consistency: Many to One 

G. Bianchi & A. Capone - SDN tutorial 72

Forwarding consistency must be ensured according to packets 
received in the reverse direction.

The first packet of a TCP connection coming from one of the 
many input ports is forwarded on the only output port.
All packets of the reverse flow of the same TCP connection 
must be forwarded on the same ingress port.



Forwarding Consistency: Many to One
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OpenFlow solution:
the controller is in charge of states management.

controller

First packet of each new TCP connection is sent to the controller 
in order to:
-forward the packet
-install a flow entry for reverse flow’s packets



Forwarding Consistency: Many to One
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Cross-flow state
Controller is not involved!

OpenState solution:
the switch itself handles connection’s state.

First packet of each new TCP connection is forwarded and the 
input port is stored to forward response packets

A flow is identified by [IP_SRC,IP_DST,TCP_SRC,TCP_DST]
FLOW STATE: input port



Next-stateaction
Flow key State

State Table

IP_dst=10.0.0.100

1) State lookup

state event
1
2

In-port=4
In-port=4

3
*

In-port=4
In-port=1

* In-port=2
* In-port=3

XFSM Table
Match fields Actions

Forward(1)
Forward(2)
Forward(3)
Forward(4)
Forward(4)
Forward(4)

2) XFSM state transition

1
3) State update

write

Communication Host -> Server

Lookup Scope:  IP_src, IP_dst,TCP_src,TCP_dst
Update Scope:  IP_dst,IP_src,TCP_dst,TCP_src

IP_src=10.0.0.1 TCP_src=2500 TCP_dst=80

IP_dst=10.0.0.2IP_src=10.0.0.200 TCP_src=80 TCP_dst=1000
… …… … … … … …
… … … … … … … …

** * *

2
… …
… …

DEFAULT

IP_src=10.0.0.1 IP_dst=10.0.0.100 TCP_src=2500 TCP_dst=80DEFAULT

IP_src=10.0.0.100 IP_dst=10.0.0.1 TCP_src=80 TCP_dst=2500 1 -
-
-
1
2
3

IP_dst=10.0.0.100IP_src=10.0.0.1

TCP_dst=2500TCP_src=80IP_src=10.0.0.100 IP_dst=10.0.0.1 

TCP_src=2500 TCP_dst=80

DIFFERENT 
lookup/update 

scope

Forwarding Consistency: Many to One
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Communication Server -> Host

Lookup Scope:  IP_src, IP_dst,TCP_src,TCP_dst
Update Scope:  IP_dst,IP_src,TCP_dst,TCP_src

Next-stateaction
Flow key State

State Table

IP_src=10.0.0.100

1) State lookup

state event
1
2

In-port=4
In-port=4

3
*

In-port=4
In-port=1

* In-port=2
* In-port=3

XFSM Table
Match fields Actions

Forward(1)
Forward(2)
Forward(3)
Forward(4)
Forward(4)
Forward(4)

2) XFSM state transition

IP_dst=10.0.0.1 TCP_src=2500 TCP_dst=80

IP_dst=10.0.0.2IP_src=10.0.0.200 TCP_src=80 TCP_dst=1000
IP_dst=10.0.0.1IP_src=10.0.0.100 TCP_scr=80 TCP_dst=2500

… … … … … … … …
** * *

2
1

… …
DEFAULT

IP_src=10.0.0.1 IP_dst=10.0.0.100 TCP_src=2500 TCP_dst=801

-
-
-
1
2
3

Forwarding Consistency: Many to One
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Combining the first two, we want here to load balance on the 
output ports while doing reverse path forwarding on the input 
port

Forwarding Consistency: Many to Many

G. Bianchi & A. Capone - SDN tutorial 77

The first packet of a TCP connection coming from one of the many input ports is 
forwarded to one of many possible output ports.

All the next packets of the same TCP connection must be forwarded on the same 
selected output port, while all packets of the reverse flow of the same TCP 
connection must be forwarded on the same ingress port.



OpenState solution

A flow is identified by [IP_SRC,IP_DST,TCP_SRC,TCP_DST]

Two states are needed for each bidirectional flow:
FLOW STATE 1: output port
FLOW STATE 2: input port

For each first packet of each new TCP connection:
• packet is forwarded to a random output port
• the selected output port is stored in the State Table 0
• the input port is stored in the State Table 1
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Forwarding Consistency: Many to Many



Forwarding Consistency: Example Results 
Results will show the average value of the
time required by 1000 TCP SYN packets to cross the switches at increasing rate.
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Switch: ofsoftswitch13; Controller: Ryu

One-to-Many

OpenFlow
ofsoftswitch13

OpenFlow
Open Vswitch

OpenState
ofsoftswitch13

Many-to-One

OpenFlow
ofsoftswitch13

OpenFlow
Open Vswitch

OpenState
ofsoftswitch13

Many-to-Many

OpenFlow
ofsoftswitch13

OpenFlow
Open Vswitch

OpenState
ofsoftswitch13



Fault Tolerance

• Ensure the network failure resiliency, quickly 
readapting the routing after a failure

• Fundamental function in any network (telco 
operators, data centers)

• Weak support in OpenFlow
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Fault Tolerance
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• OpenFlow

Fast failover: local 
reroute based on port 
states (Group table)

But what if a local 
reroute in not 
available ???



Fault Tolerance

controller

Obviously it is always possible to rely on the 
controller to:
• forward the packet on the backup path
• install flow entries for the backup path
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• OpenFlow



Fault Tolerance in OpenState
With OpenState the switch itself can react to the fault

PKT

PKTTAG

Proposed solution: 
è Faults are signaled using the same data packets
è Packets are tagged and sent back
è Packets are sent back until matched against a node able 

to respond to that fault
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Fault Tolerance

OpenState

• A DETOUR is enabled based on the specific failure without 
constraints

• Backup paths can be pre-computed and installed by the 
controller (traffic engineering and quality/congestion control)

• The controller is entitled to restore the primary path once the 
fault has been resolved
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[CAP14] A. Capone, C. Cascone, A. Nguyen, B. Sansò, “Detour Planning for Fast and 
Reliable Failure Recovery in SDN with OpenState”, available on ArXiv, Nov. 2014. 



Fault Tolerance: Fault Reaction Example

PKTPKT PKTTAG PKTTAGPKTTAG PKTPKTTAGPKT
PKT

Redirect Node:

FLOW STATE = DEF

Detect Node:

GLOBAL REGISTERS = 0020 01

DEF 20

i

DEF 20

STATE
TRANSITION!

FLAG
SETUP

Fault_ID=20

TAG = FAULT_ID = 20TAG = STATE = 20
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OpenState



Fault Tolerance: 
Example on larger network

Primary node19

13

17

16

15

Detect node

Forward-back node

Redirect node

Detour node
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Fault Tolerance: Exampe Results 
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OpenFlow:
Controller 
applications

OpenState:
Precomputed
backup paths



Thanks

OpenState: openstate-sdn.org

EU project BEBA (web site available soon) – follow us!

This slide-set soon available on OpenState web site!
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Antonio Capone
Email: antonio.capone@polimi.it

Giuseppe Bianchi
Email: giuseppe.bianchi@uniroma2.it


